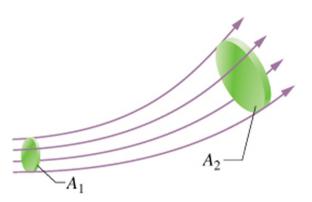
Il Corso di Fisica per Scienze Biologiche

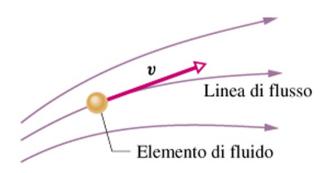
- > Prof. Attilio Santocchia
- ➤ Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 075-585 2708
- E-mail: <u>attilio.santocchia@pg.infn.it</u>
- ➤ Web: http://www.fisica.unipg.it/~attilio.santocchia
- Testo: Fondamenti di Fisica (Halliday-Resnick-Walker, Casa Editrice Ambrosiana)

Campo vettoriale

- Consideriamo una regione di spazio in cui sia definita (in ogni punto) una grandezza
 - Grandezza scalare → Campo Scalare
 - Grandezza vettoriale → Campo Vettoriale
- Un campo c = c(x,y,z,t) si dice:

- uniforme \rightarrow La grandezza è costante in ogni punto: $c=c_0$
- stazionario → La grandezza può variare da punto a punto, ma è costante nel tempo, cioè c=c(x,y,z)
- La Rappresentazione tramite linee di flusso consentono di capire direzione e verso del vettore campo in ogni punto dello spazio in un campo vettoriale stazionario

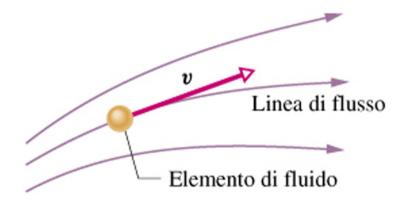




Linee di Flusso

La tangente alla linea di flusso, orientata come la linea di flusso stessa, rappresenta in ogni punto la direzione e il verso del (vettore) campo in quel punto

- E l'informazione sul modulo di tale vettore? Si ricorre alla convenzione che:
- Il numero di linee che attraversano una superficie unitaria, normale alle linee stesse, sia proporzionale alla grandezza del vettore campo nella zona in cui la superficie è disegnata
 - L'infittirsi quindi delle linee di flusso indica che lì il campo diventa più intenso, il diradarsi più debole



Linee di corrente

- Il campo rappresentato dalle linee di flusso può essere il campo gravitazionale, quello elettrostatico, magnetico... idrodinamico.
- In quest'ultimo caso la grandezza vettoriale definita in ogni punto dello spazio è la *velocità* v=v(x,y,z,t) del fluido. Ad essa si aggiungono altre grandezze definite in ogni punto dello spazio: p=p(x,y,z,t) $\rho=\rho(x,y,z,t)$
- Nel caso di un campo di velocità le linee di flusso si chiamano solitamente linee di corrente.

- La tangente alla linea di corrente in ogni punto rappresenta la direzione (e verso) del vettore velocità (del fluido) in quel punto.
- Il caso stazionario $[v=v(x,y,z); p=p(x,y,z); \rho=\rho_0]$ è estremamente interessante perché in questo caso il vettore velocità, la pressione e la densità sono costanti (nel tempo) in ogni punto.
- Ciò non vuol dire che il vettore velocità è ovunque uguale, ma che in ogni punto la velocità non varia nel tempo, anche se può essere diversa da punto a punto

Campo Idrodinamico

- Supponiamo di avere un fluido che si muove lungo un tubo
- Sotto condizioni normali di flusso si possono osservare le seguenti caratteristiche del flusso del fluido:
 - Il campo idrodinamico (cioè il campo delle velocità) è stazionario
 - Non ci sono mulinelli (cioè il campo è irrotazionale)
 - Il fluido è incomprimibile (cioè $\rho = \rho_0$)

- Il fluido non è viscoso (cioè non esiste attrito all'interno del liquido e tra il liquido e le pareti del tubo e quindi l'energia meccanica potenziale più cinetica si conserva)
- Sotto queste condizioni **ideali** è possibile caratterizzare esattamente il moto del fluido

Principio di Continuità

- Se considero un tubo di sezione variabile è ovvio osservare che il liquido (fluido) che entra e il liquido che esce devono avere la stessa massa...
- Più in dettaglio deve valere il seguente principio per ovvi motivi di conservazione della materia:

- La massa di fluido che attraversa in un dato intervallo di tempo la sezione di un tubo di flusso deve essere uguale a quella che passa nel medesimo intervallo per ogni altra sezione
- Questo principio è valido se all'interno del tubo non esistono pozzi (fori) o altre sorgenti di liquido

Equazione di Continuità

$$\Delta V_1 = A_1 \Delta x_1 = A_1 v_1 \Delta t \Rightarrow m_1 = \rho_1 \Delta V_1 = \rho_1 A_1 v_1 \Delta t$$

$$\Delta V_2 = A_2 \Delta x_2 = A_2 v_2 \Delta t \Rightarrow m_2 = \rho_2 \Delta V_2 = \rho_2 A_2 v_2 \Delta t$$

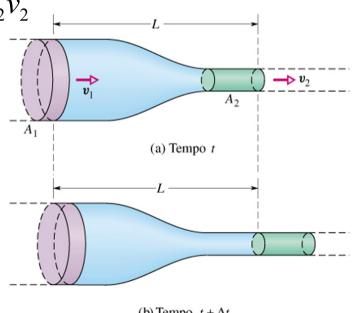
$$\mathbf{ma} \quad m_1 = m_2$$

$$\rho_1 A_1 v_1 \Delta t = \rho_2 A_2 v_2 \Delta t \Longrightarrow \rho_1 A_1 v_1 = \rho_2 A_2 v_2$$

Se il liquido è incomprimibile (cioè la densità è costante)

$$A_1 v_1 = A_2 v_2$$

Questa è l'equazione di continuità per il flusso di fluidi



La Portata

- Il prodotto ρSv rappresenta la massa che attraversa la superficie S nell'unità di tempo, cioè la *portata in massa* (kg/s).
- L'equazione di continuità è quindi detta legge della costanza della portata

◆ Se il liquido è incomprimibile, il prodotto *S·v* rappresenta la *portata in volume* (*m³/s, l/s*). In questa ipotesi, la portata in volume è costante.

Teorema di Bernoulli

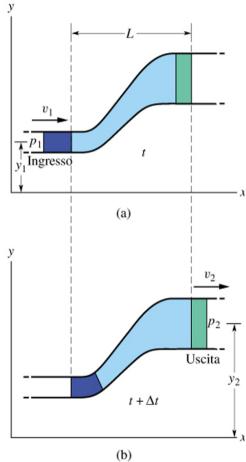
◆ Consideriamo un fluido non viscoso → Vale la conservazione dell'energia meccanica

 E' possibile calcolare il lavoro fatto dalle forze di pressione nel periodo di tempo
 Δt e la variazione di energia potenziale dovuto al cambiamento di quota del liquido colorato in verde

• Poiché l'energia totale si conserva si può quindi dimostrare che è costante la seguente quantità:

$$p + \rho gy + \frac{1}{2}\rho v^2 = \text{costante}$$

• che rappresenta appunto il teorema di Bernoulli



Teorema di Bernoulli (Dimostrazione)

- Ricordo il teorema dell'energia cinetica: Il lavoro totale delle forze agenti su un corpo eguaglia la variazione di energia cinetica del corpo stesso
- Le <u>forze</u> in gioco sono le forze responsabili di p_1 e p_2 ($F_1 = S_1P_1$ e $F_2 = -S_2P_2$ dove S₁ e S₂ sono le sezioni del tubo) e la forza peso
- Il <u>lavoro</u> prodotto da F_1 e F_2 è $L_1 = F_1 \Delta x_1$ e $L_2 = -F_2 \Delta x_2$ dove Δx_1 e Δx_2 sono rispettivamente la larghezza blu e verde in figura
- Ricordo poi il <u>principio di continuità</u>: nell'intervallo Δt la massa che passa in S₁
- Quindi vale $\rho S_1 \Delta x_1 = \rho S_2 \Delta x_2$ ed essendo il liquido incomprimibile
- Il lavoro fatto dalla forza peso equivale a spostare la massa blu al
- rispettivamente la larghezza blu e verde in figura

 Ricordo poi il <u>principio di continuità</u>: nell'intervallo Δt la m è uguale alla massa che passa in S₂

 Quindi vale ρS₁Δx₁=ρS₂Δx₂ ed essendo il liquido incomprir posso semplificare la densità (costante)

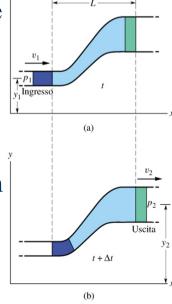
 Il lavoro fatto dalla forza peso equivale a spostare la massa l posto della massa verde → L_p=mgh=ρS₁Δxgh

 Posto Δx=νΔt → L_p=ρS₁νΔtgh e il lavoro totale diventa L_T=S₁P₁Δx₁-S₂P₂Δx₂ +ρS₁v₁Δtgh=S₁P₁v₁Δt-S₂P₂v₂Δt +ρS₁v

 ΔK=1/2m(v₁²-v₂²)=1/2ρS₁Δx₁(v₁²-v₂²)=1/2ρS₁v₁Δt(v₁²-v₂²)

 ΔK=L_T → 1/2ρS₁v₁Δt(v₁²-v₂²)=S₁P₁v₁Δt-S₂P₂v₂Δt +ρS₁v₁Δt $L_T = S_1 P_1 \Delta x_1 - S_2 P_2 \Delta x_2 + \rho S_1 v_1 \Delta tgh = S_1 P_1 v_1 \Delta t - S_2 P_2 v_2 \Delta t + \rho S_1 v_1 \Delta tgh$

 - $\Delta K = L_T \rightarrow 1/2\rho S_1 v_1 \Delta t (v_1^2 v_2^2) = S_1 P_1 v_1 \Delta t S_2 P_2 v_2 \Delta t + \rho S_1 v_1 \Delta t g h$



Teorema di Bernoulli (Dimostrazione)

- $\Delta K = L_T \rightarrow 1/2\rho S_1 v_1 \Delta t (v_1^2 v_2^2) = S_1 P_1 v_1 \Delta t S_2 P_2 v_2 \Delta t + \rho S_1 v_1 \Delta t gh$
- $1/2\rho S_1 v_1 (v_1^2 v_2^2) = S_1 P_1 v_1 (S_2 P_2 v_2) + \rho S_1 v_1 gh$
- Ma l'equazione di continuità ci dice che $S_1v_1=S_2v_2 \rightarrow$
- $1/2\rho S_1 v_1 (v_1^2 v_2^2) = S_1 P_1 v_1 (S_1 P_2 v_1) + \rho S_1 v_1 gh$
- Semplifico S₁v₁

- $1/2\rho(v_1^2-v_2^2) = P_1 P_2 + \rho gh$ ma $h=y_2-y_1 \rightarrow$
- $1/2\rho v_2^2 + P_2 + \rho g y_2 = 1/2\rho v_1^2 + P_1 + \rho g y_1 \rightarrow$

$$p + \rho g y + \frac{1}{2} \rho v^2 = \text{costante}$$