
for all users of occam and the transputer

N912 January 1990

Contents
EDITORIAL

Contributions to the newsletter
Occam user group publications
North American transputer users group publications

FORTHCOMING
Twelfth occam user group technical meeting
North American transputer users group spring meeting
Third Japanese transputer/ occam international conference
Thirteenth occam user group technical meeting
North American transputer users group fall meeting
Transputing 1991

REPORTS
Inaugural meeting of the occam user group: Latin America
Eleventh occam user group technical meeting
Why did the transputer cross The Pond?
Second seminar of the Swedish transputer user group

2

3
3
4
4
4
5
5
6
6

7
9
9

10
14
15

continued on back cover

Meiko In-Sun Computing Surface Hardware (see page 98)

occam is a trade mark of the INMOS Group of Companies

2

EDITORIAL

occam user group newsletteT

~~ New groups seem to be springing up all around the world; this issue ofnan the newsletter carries contact addresses for the first time for groups in
U:E~ Sweden and Latin America. We have contributions from as far afield as
Brazil, the Basque country, and Bristol. It is all here: from exotic hardware (see for
example pages 19, 82, 98 and many of the product announcements) to expressions
of concern that software should be as unexciting as possible (see pages 22, 27). I
would particularly like to draw your attention to the initiative to promote the occam
language (see page 84); and to the CODE system from C-DAC (see pages 86 and18),
an impromptu presentation of which stole the show in the exhibition at the OUG
technical meeting in Edinburgh.

For me, perhaps the most noticeable impact that SGS-Thomson have had on
Inmos is in the way they are taking their marketing more seriously. Regulars were as
astonished as I was, I am sure, to see an Inmos stand at the exhibition in Edinburgh
with the company's name on it! I believe that Inmos were also one of the sponsors
of the distressingly well-lubricated banquet at that meeting. (A bibulous colleague
seated near your most temperate correspondent reports that the sight of full or
almost-full bottles of wine being carried away from the tables is always distressing.)

Speaking at the panel session in the Edinburgh meeting, David May was able to
confirm exactly one thing about the much-rumoured next-generation transputer. He
was happy to dispel any doubt that its code name really is 'HI '. (Later in the bar
sources close to Inmos told me a most unlikely tale to explain the name, something
about the actor Nigel Hawthorne, and his character Sir Humphrey Appleby.) He
was less forthcoming on specifications, although Inmos have made some public hints
about the sort of specification at which they are aiming (see page 83). I note that the
device is expected in early 1991; could it just be a coincidence that the international
joint meeting of user groups (see page 7) is planned for the end of April 1991?

When I first drafted these notes, one of the things I was going to say was that
we seem· to be getting an increasing number of commercial contributions at occam
user group technical meetings. This, I was going to say, is sure sign that there is a
growing base of applications out there to report. The Edinburgh meeting, however,
turned out to be rather short of papers from the industry - although there were a
creditable number of commercial exhibitors. I remain convinced about the strength
of the application base, and so am disappointed that we are not seeing enough of
the work reported. Let me therefore take this opportunity to encourage readers in
the industry to send papers to the OUG technical meetings, and those of its sister
organisations of course. Needless to say, the same applies to contributions to this
newsletter.

Please forgive me a personal note: I keep being mistaken for the Geraint Jones who
works for the National Transputer Centre in Sheffield. I have even been congratulated
on moving to a new job there. I trust, Geraint, that if you are ever mistaken for me
you are at least as flattered by the mistake. Ladies and gentlemen! it is a common
name, but we are two, as far as I know unrelated, and in no way responsible for each
other's commissions or omissions. gJ, 11 December 1989

Ne;> 12 January 1990

CONTRIBUTIONS TO THE NEWSLETTER

3

Please contribute announcements, articles, letters about anything that looks as
though it belongs in your newsletter. In particular we welcome letters, short articles
or news about work being done with occam or transputers; calls for, discussion of,
and reports on meetings of the group or related societies; ideas for new ways the
group could help its members, or better ways of organizing what we do; details of
material published elsewhere in books and journals; information about new products
and courses.

Life would be easiest for the editor if you were able to submit material of longer
contributions by electronic mail to oug-news@uk. ac. oxford. prg; or to send either
unformatted ASCII files (on an IBM PC compatible floppy disk, or some other
medium by negotiation) or clean camera-ready copy to the editor at the address
belbw. Camera-ready copy should be arranged not to look out of place when its
linear dimensions are reduced to about 70%, i.e. from A4 to A5.

Pictures are welcome as black-and-white prints, and will be subjected to the same
reduction in size. We particularly need shorter and shorter pictures to fill the rapidly
closing gap at the bottom of the front page!

ICopy for the next edition must arrive by 25th May 1990.'

Geraint Jones
Programming Research Group
11 Keble Road
Oxford OXl 3QD
United Kingdom

Tel: +44 865 273851
Fax: +44 865 273839

oug-news@uk.ac.oxford.prg

OCCAM USER GROUP PUBLICATIONS

Occam user group technical meetings are held twice a year. The proceed-
1Il.Y§ ings of all the recent meetings are published by International Organisations
LYE Services BV and are available directly from the publisher.

l> OUG-7, 14-16 September 1987, Grenoble, Parallel programming of transputer
based machines, ed. Traian Muntean (pp. 480, $110·00).

l> OUG-8, 27-29 March 1988, Sheffield, Developments using occam, ed. Jon Ker
ridge (pp. 214, $50·00).

l> OUG-9, 19-21 September 1988, Southampton, Occam and the transputer - re
search and applications, ed. Charlie Askew (pp. 176, $50·00).

l> OUG-I0, 3-5 April 1989, Enschede, Applying transputer based parallel machines,
ed. Andre Bakkers (pp. 318, $65·00).

l> OUG-11, 25-26 September 1989, Edinburgh, Developing transputer applications,
ed. John Wexler (pp. 206, $55·00).

IOS Fax: +31 20 22 60 55
Van Diemenstraat 94
1013 CN, Amsterdam
The Netherlands

4

or in the USA and Canada
IOS
PO Box 2848
Springfield VA, 22152-2848
United States of America

Fax: +1 703 250 47 05

occam user

or in Japan
IOS Japan Department
Highway Development Co. Ltd
1st Golden Building, 8-2-9 Ginza
104 Tokyo - Chuoku
Japan

Fax: +81 35 72 86 72

NORTH AMERICAN TRANSPUTER USERS GROUP
PUBLICATIONS

The proceedings of the first two conferences of the North American Transputer Users
Group can be obtained by sending a cheque, money order or purchase order to
NATUG at the address below.

/> The proceedings of NATUG 2 consist of thirty-one papers, 451 pages in all, for
$40·00.

/> There are still a few copies of the NATUG 1 proceedings available; the price is
$30·00, for 209 pages including full colour illustrations.

When copies of these two proceedings are depleted, IOS will take over the reprinting
and sales.

NATUG
clo G. S. Stiles
Department of Electrical Engineering
Utah State University
Logan, Utah 84322-4120
United States of America

FORTHCOMING

TWELFTH OCCAM USER GROUP TECHNICAL MEETING
Monday to Wednesday, 2-4 April 1990, University of Exeter, England

The Occam User Group invites all those interested in the programming and
application of transputer based architectures to attend its twelfth Technical
Meeting at the University of Exeter. The conference includes lectures, an

exhibition, a panel session with key speakers, and meetings of the Special Interest
Groups. The emphasis of the conference is on the techniques and tools that allow
transputers to be used effectively.

The meeting and exhibition will take place in Streatham Court and accommoda
tion will be provided on campus in the Duryard Halls of Residence. The University
is situated one mile from the centre of Exeter and its attractive site enjoys fine views
over the Exe Estuary and Dartmoor Hills. A conference dinner will take place on
Tuesday 3rd April.

NC? 12 January 1990

All enquiries should be made to the Conference Organiser:
Dr Stephen J. Turner Fax: +44 392-264067
Department of Computer Science Tel: +44 392-264048
University of Exeter Telex: 42894 EXUNIV G
Prince of Wales Road steve@uk.ac.exeter.cs
Exeter EX4 4PT
England

NORTH AMERICAN TRANSPUTER USERS GROUP
SPRING MEETING

26-27 April 1990, Santa Clara, California

5

The 1990 Spring meeting of the North American transputer users group will be held
in Santa Clara, California, on 26th and 27th April. Contributions are being solicited
in the areas of hardware, software, and applications - particularly embedded and
real-time systems. Presentations will be allotted twenty minutes each, with ample
additional time for questions; this format will allow for approximately twenty-four
talks. Additional papers may be presented at poster sessions if there is sufficient
interest. All accepted papers will appear in a published proceedings.

Abstracts of 1000-1500 words must be received by 8th January 1990. Notices
of acceptance will be sent out by 22th January, and final drafts of accepted papers
will be due by 19th February. Authors should indicate on the abstract whether they
would be willing to present the paper in a poster session.

Abstracts - electronic mail submissions are preferred - should be submitted to:
Professor Alan Wagner, NATUG 3 Program Chair wagner@cs.ubc.cdn
Department of Computer Science Tel: +1 604 228-6450
University of British Columbia
Vancouver, BC
Canada V6T 1W5

THIRD TRANSPUTERjOCCAM INTERNATIONAL
CONFERENCE

organised by the occam user group Japan
17-18 May 1990, Tokyo, Japan

OUG Japan is pleased to announce the third transputer/occam international confer
ence to be held on 17-18 May 1990 in Tokyo. This is a place to find wide varieties of
transputer based parallel processing systems through original refereed papers, invited
talks, tutorials and commercial exhibits. The official language of the conference is
English. Simultaneous translation from English to Japanese is provided whenever
necessary. The registration fee is ¥20 000 and this -includes:

l> admission to all technical sessions, tutorials and exhibits,
l> admission to all lunches,
l> admission to the final party.

The conference organizing committee consists of:

6 occam user group newsletter

Prof. Dr Tosiyasu L. Kunii (Chairman), University of Tokyo;
Prof. Dr Tadao Nakamura, Tohoku University;
Prof. Dr Eiichi Miyamoto, Hokkaido University;
Prof. Dr Shinji Tomita, Kyushu University;
Associate Prof. Dr Mitsuru Ishizuka, University of Tokyo;
Research Associate Dr Shigeki Sugano, Waseda University.

Call for papers

Tel: +81 3 280-4125
Fax: +81 3 280-4131

Full papers in English are solicited and should contain previously unpublished orig
inal high-quality results. The submitted paper should be typed, double spaced,
about 10-20 pages in length with an abstract of 100-200 words and a maximum of
ten keywords. All papers will be peer reviewed and will be published for distribution
at the conference and also for later dissemination. Papers must be submitted by 1st
January 1990. Acceptance or rejection of the papers will be notified by 1st February
1990. Final camera-ready copy must be provided by 1st April 1990.

For more information, contact:
Mr Kazuto Matsui (Secretary, OUG Japan)
Technical Marketing, Inmos Division
SGS-Thomson Microelectronics K.K.
4F Nisseki-Takanawa Building 2-18-10
Takanawa Minato-ku Tokyo 108
Japan

THIRTEENTH OCCAM USER GROUP TECHNICAL MEETING
18-20 September 1990, York, England

Advance notice is given of the thirteenth technical meeting of the occam
~IIII user group, which will take place at the University of York from 18th to
~ 20th September 1990. The provisional deadline for extended abstracts of

papers is 4th May 1990. For further information about this meeting contact:
Dr Hussein Zedan Tel: +44 904 432744
Department of Computer Science Fax: +44 904 432767
University of York zedan@uk.ac.york.minster
Heslington
YorkY015DD
England

NORTH AMERICAN TRANSPUTER USERS GROUP
FALL MEETING

12-13 October 1990, Ithaca, New York

Advance notice is given of the fourth meeting of the North American transputer
users group which is to be held at Cornell University, New York.

NC? 12 January 1990

TRANSPUTING 1991
First world conference of national occam and transputer user groups

22-26 April 1991, Santa Clara, California

Advance announcement

The first world conference of all occam and/or transputer user groups is planned:

7

TRANSPUTING 1991

Santa Clara, California
week commencing 22nd April 1991

The goals of this conference are:
l> to present 'state-of-the-art' research on all aspects of parallel computing based

upon communicating process architectures;
l> to demonstrate 'state-of-the-art' products and applications from as wide a range

of fields as possible;
l> to progress the establishment of international software and hardware standards

for parallel computing systems;
l> to provide a forum for the free exchange of ideas, criticism and information from

a world audience gathered from Industry, Commerce and Academia;
l> to establish and encourage an understanding of the new software and hardware

technologies enabled by the transputer;
l> to promote an awareness of how these technologies may be applied and what their

advantages are.
The conference themes will include: education and training issues, formal methods
and security, performance and scalability, porting existing systems, parallelisation
paradigms, tools, programming languages, support environments, standards and
applications.

Applications include: embedded real-time control systems, workstations, super
computing, consumer products, artificial intelligence, databases, modelling, design,
data gathering and the testing of scientific or mathematical theories.

The conference programme will contain invited papers from established interna
tional authorities in these fields together with submitted papers. All papers will
be fully refereed by an international programme committee. Only papers of high
excellence will be accepted. The proceedings of this conference will be published
internationally and copies will be given to delegates when they register at the start
of the meeting.

Programme committee

The members of the programme committee will be invited experts from Industry
and Academia together with existing committee members from the joint organising
user-groups based in Australia, France, Germany, India, Japan, Latin America, New
Zealand, North America, Sweden, and the United Kingdom.

The aim is to spread the organising load around the world, to ensure that all
points of view and expertise are properly represented and to obtain the highest stan
dards of excellence. We shall be seeking endorsements from professional institutions

8 occam user group newsletter

on all five continents, as well as sponsorship from commercial and governmental
organisations.

Provisional conference structure

PAR
exhibition / demonstrations (Monday .. Friday)

SEQ
seminars / workshop (Monday)
conference papers (Tuesday .. Thursday)
seminars / workshop (Friday)

Provisional timetable

February 1990

1st August 1990

1st October 1990

6th January 1991

22nd Apri11991

Official publicity and first call for papers, exhibitors and delegates.

Deadline for submitted papers.
Notification of acceptance to authors; launch final call for ex
hibitors and delegates.
Receive revised camera-ready copy of papers.

TRANSPUTING 1991.

Impact on existing OUG/TUG meetings

The OUG and NATUG will not organise meetings at Easter 1991. Transputing 1991
will subsume the OUG and NATUG meetings normally scheduled for this time.

Competition

Find a suitable name for the parent organisation for all our existing user groups.
You have to do better than

t> WOTUG (the World Occam and Transputer Groups);
t> ATM (the Association for Transputing Machinery).

Also, find a better name for Transputing 1991. Prizes are unspecified for now, but
will be up to the usual OUG standards. Entries should be sent to the editor of this
newsletter.

Further information

Companies and other organisation wishing to be associated with Transputing 1991
should contact the chairman or secretary of their local user group. We also welcome
offers of help from individuals with special skills.

Further details will be announced in line with the provisional timetable above.
In case of difficulties, please contact Peter Welch (OUG Chairman) or Dyke Stiles
(NATUG Chairman). Peter Welch

N912 January 1990

REPORTS

INAUGURAL MEETING OF THE OCCAM USER GROUP:
LATIN AMERICA

14-16 September 1989, Florianopolis, Santa Catarina, Brazil
Rafael D. LinsJ Universidade Federal de Pernambuco

Invited speakers

9

MICHEL GlEN, CHORUS SYSTEMES, FRANCE. Michel presented an inspiring over
view of distributed operating systems, including a description of the Chorus system
applied to various hardware configurations.

S. VEDAT DEMIRALP, UNIVERSITY OF KENT, CANTERBURY, UK. Vedat con
ducted a two-day tutorial on occam and transputer programming. Demonstrations
of occam and C running on a transputer system were included.

DENIS NICOLE, UNIVERSITY OF SOUTHAMPTON, UK. Denis described recent and
future MIMD parallel computing architectures including the Esprit P1085 Super
node, the Esprit Genesis project and the just-initiated Puma project to build a
'universal message-passing architecture' in collaboration with Inmos and others,

Local speakers

CLAUDIO AMORIM, COPPEjUFRJ, RIO DE JANEIRO, RJ. Work at Rio on us
ing occam for numerical analysis was described, including an implementation of a
translator from Actus to occam.

CLESIO TOZZI, UNICAMP, CAMPINAS - SP. The use of occam and transputers for
image recognition and in industrial applications was outlined.

ANTONIO CAROLS RUGGIERO, UNIVERSIDADE SAO CARLOS, SAO CARLOS - SP.

The proposed use of transputers to implement a dataflow machine and an NMR
tomographer was described. The solution of the molecular dynamics problem using
transputers was also addressed.

N. FURUYA, UNICAMP, CAMPINAS - SP . Experience in using parallel C on
transputers for the analysis of numerical algorithms was described.

RAFAEL LINS, UNIVERSIDADE FEDERAL DE PERNAMBUCO, RECIFE. Work at
Recife on processors for interval arithmetic, on NMR tomography, and on functional
language implementations was described.

Discussions

All present expressed enthusiasm for the formation of an occam user group in Latin
America. Attendees at the meeting included academics from Argentina, Brazil,

10 occam user group newsletter

Tel: +55 81 251 0713
Fax: +55 81 326 4880

and Chile. Hope was expressed that the OUG:LA would help facilitate access to
transputer hardware and software in South America.

The next meeting is planned for May 1990 in Petropolis, Rio de Janeiro and it is
hoped that members of the group will be able to attend the proposed 'Transputing
1991' in the United States.

Acknowledgements

The meeting was sponsored by Institutio de Engenharia de Software da Brasil, CNPq,
UFPE, Unicamp, UFCS, Projeto Ethos and the British Council, for whose support
the participants are deeply grateful. Particular thanks are owed to Prof. E. Tadao
Takahashi of Projeto Ethos and Antonio Carols Lariani from IBM Brasil.

Contact

For any further information please contact Rafael Lins, who has agreed to act as
chairman of OUG:LA, at:

Rafael D. Lins
Av. Dr Jose Rufino 656
Estancia
50.781 - Recife - PE
Brazil

ELEVENTH OCCAM USER GROUP TECHNICAL MEETING
Monday and Tuesday 25-26 September 1989

University of Edinburgh, Scotland
Nigel J. A nderson, Univeristy of Edinburgh

This meeting, which was held in Edinburgh on the 25th and 26th of Septem
ber this year, went under the title of Developing transputer applications.
The conference was held in the Appleton Tower, part of the campus of

the University of Edinburgh, and immediately preceded the Edinburgh Concurrent
Supercomputer Project's annual seminar. The site allowed for exhibitions by a
number of commercial organisations with interests in parallel processing and the
transputer.

The papers

There was a very full program of papers, with eighteen scheduled to be presented
in the two days, as well as the now traditional panel session, and presentations by
Inmos. The contributors were almost entirely from academic institutions, with the
largest number coming from those within the United Kingdom. However, there were
also contributions from European institutions, and the United States. One paper
could not be presented, due to travel difficulties affecting its author, so the expected
contribution from Asia did not occur. The paper - on an Intelligent character reader
- is in the proceedings. These were published by lOS, as before, under the title
Developing Transputer Applications and edited by John Wexler (see page 3).

N912 January 1990 11

The spread of interests covered in the papers was almost as wide as the geo
graphical distribution of the authors. Within the general frame of reference of the
meeting, there were three main strands. These can be categorised as operating
systems, development tools and new paradigms for particular types of problems.

A brief overview of the papers presented is given below, along with the names of
their presenters.

TROS:. A REAL TIME KERNEL FOR A FAULT TOLERANT MULTI-PROCESSOR COM
PUTER BASED ON ARGUMENT FLOW - ERIC VERHULST, R. LAUWEREINS,
R. CUYVERS, J. PEPERSTRAETE, INTELLIGENT SYSTEMS INTERNATIONAL, BEL
GlUM. This paper describes the design and implementation of a fault tolerant system
to provide a load balancing kernel written in occam and t-code, for a multi-user
multi-transputer system. The system is designed to produce an environment in which
code from more than one user's program may be resident on a single compute element.
It describes the topology independence achieved through the use of argument flow
techniques, and the fault tolerance achieved against both hardware and software
failures.

DYNAMICITY THROUGH OCCAM AND TDS - D. MILLOT, J. VAUTHERIN, UNIVER
SITE PARIS-SUD, FRANCE. This paper describes an attempt at dynamic process
creation in occam, for the production of pipelines of indefinite length, by the use of
self modifying software. The situation on a single transputer, and that for known
topologies is considered. An attempt at extension to unknown topologies is also
considered.

A CASE TOOL FOR DESIGNING DEADLOCK FREE OCCAM PROGRAMS - W. D.
CROWE, R. HASSON, P. E. D. STRAIN-CLARK, THE OPEN UNIVERSITY. This
paper describes a graphically based tool for designing programs (initially in occam,
but potentially for any language which obeys the CSP model). It describes the
interface selected, which is a hierarchical one, based on the concept of reusable com
ponents, and the tools available within the system for investigating the performance
of the program being prototyped.

A DEADLOCK DETECTION TOOL FOR OCCAM - IR WOUTER JOOSEN, PROF. DR
IR PIERRE VERBAETEN, UNIVERSITY OF LEUVEN, BELGIUM. This paper dis
cusses the design and implementation of a static tool to perform deadlock detection in
occam programs. It describes the system, implemented under Unix, produced using
the yacc and lex compiler and parser generation tools. It processes the program
source, and produces action sequences, which are program execution paths. The
important events in such traces are PARbegin, PARend and channel communications.
Deadlocks and infinite loops are detected by exhaustive searching of the action
sequences, with programmer interaction to provide such things as values for loop
counters. The tool is described by the authors as an adjunct to run-time debugging
tools, and is seen as having its greatest utility in the design and early implementation
stages.

SOLVING PARTIAL DIFFERENTIAL EQUATIONS VIA CELLULAR AUTOMATA: A
BINARY AND STATISTICAL APPROACH - F. DESBOIS, A. COSNUAU, Y. MOR
CHOISNE, ONERA CENTRE DE CALCUL, FRANCE. Most systems for solving

12 occam user group newsletter

PDEs use physical models, for example, the lattice gas model. The approach de
scribed here uses a numerical method, which uses Booleans, and probabilistic meth
ods.

TOWARDS A SOFTWARE ARCHITECTURE FOR SOLID MODELLING SYSTEMS ,ON
PROCESSOR NETWORKS - D. P. MALLON, N. S. HOLLIMAN, P. M. DEW, J. R.
DAVY AND A. DE PENNINGTON, UNIVERSITY OF LEEDS. This paper discusses
the various steps taken in the production of a machine independent system for
solid modeling. It describes a three level model for this, based on the following:
a machine architecture level, to allow compatibility between different real machines;
a task specification level, which is both application and hardware independent; and a
geometric application level, which is an application specific way to express geometric
algorithms. The use of 'message to destination' schemes on a number of architectures
is discussed, as a method of providing the machine architecture level. As an example
of the higher levels, a constructive solid geometry modelling system is described.

AN IRREGULAR DISTRIBUTED SIMULATION PROBLEM WITH A DYNAMIC LOGICAL
PROCESS STRUCTURE - MING Q. Xu, STEPHEN J. TURNER, NIE PIN, UNI
VERSITY OF EXETER. This paper discusses the implementation of a host-parasite
interaction simulation, with hosts and parasites represented as logical processes. The
system uses a modification of the 'time warp' approach, with the addition of logical
process creation and deletion, and the system being action driven. That is, it is
based on the interactions between logical processes.

A GENERALLY CONFIGURABLE MULTI-GRID IMPLEMENTATION FOR TRANSPUTER
NETWORKS - OSAMA EL-GIAR AND TIM HOPKINS, UNIVERSITY OF KENT.
Multi-grid is an iterative technique for solving equations, which gains over such
approaches as Gaus-Seidel and successive over-relaxation, by using a sequence of
grids in their solution. The approach taken computationally is one of dividing the
grids into strips for processing. Results are presented for the application with a
number of different configurations of the grid step and number of processors, and are
compared with results for a similar system on the Intel hypercube.

SELF-ADJUSTING MAPPING: A HEURISTIC MAPPING ALGORITHM FOR MAPPING
PARALLEL PROGRAMS ONTO TRANSPUTER NETWORKS - HONG SHEN, ABO
AKADEMI UNIVERSITY, FINLAND. This paper describes the development of an al
gorithm for mapping arbitrary process graphs onto arbitrary processor graphs, based
on a division of the task into the following units. A grouping module, which attempts
to produce a sub-optimal clustering of processes into tasks that can be placed on
the processor graph by the placement module. The final module is routing, which
produces the connection between the real links and placed tasks and it is expected
that all three can be used to work together to find a nearly optimal solution, in a
cyclic manner.

INVESTIGATION OF COMMUNICATIONS PATTERNS IN OCCAM PROGRAMS - ROSE
MARY CANDLIN, QUIANGYI Luo, NEIL SKILLING, UNIVERSITY OF EDINBURGH.
This paper describes two approaches to examining communications in occam prog
rams. The first, direct measurement, was applied to a real application program on
a Meiko computing surface, and the second utilizes discrete event simulation of the

N912 January 1990 13

same program. Both systems are described, with some emphasis on the differences
between the two approaches, and a comparison of the results obtained by each, giving
a good indication that the simulation was producing results close to the performance
of the real" system.

SYSTEM CONFIGURATION FOR VERY LARGE DATABASE PROBLEMS - ALAN G.
CHALMERS, DEREK J. PADDON, UNIVERSITY OF BRISTOL. This paper discussed
the implementation of an extension of the process farm approach to load balancing,
with a system controller and 2n worker processors, each of which was composed of an
application process and a number of task and data control processes, to deal with the
distributed nature of the data involved. The application of this approach to radiosity
calculations was discussed, as was the choice of a topology on which to mount the
system.

A COMPARISON OF PARALLEL IMPLEMENTATIONS OF FLUX CORRECTED TRANS

PORT CODES - JING-MING JONG, UNIVERSITY OF WASHINGTON, USA AND

G. S. STILES, UTAH STATE UNIVERSITY, USA. This paper describes the authors'
experience of FCT systems for computational fluid dynamics problems on a number
of different architectures, and compares the relative speeds of the algorithm on them.
Whilst for pure speed, networks of transputers are nowhere near as fast as true vector
supercomputers, when the cost/performance ratios are taken into account networks
of transputers score very highly.

SIMULATING NEURAL NETWORKS IN DISTRIBUTED ENVIRONMENTS - JUKKA VAN

HALLA AND KIMMO KASKI, TAMPERE UNIVERSITY OF TECHNOLOGY, FINLAND.

Two types of neural network simulation are discussed, these being the sparse dis
tributed memory model and the Hopfield model. There is interest in implementing
neural networks on parallel systems, due to their inherent par~llelism. The authors
describe their results for the two models, andcompare the two as to their suitability
for this type of parallelisation.

ATTRIBUTE EVALUATION ON A NETWORK OF TRANSPUTERS - MATTHIJS F.

KUIPER, ATZE DIJKSTRA, UNIVERSITY OF UTRECHT, NETHERLANDS. This pa
per discusses the application of attribute grammars to the problems involved in
producing parallel compilers. It describes a static approach which allows program
decomposition, and therefore the utilisation of as many of the available processors
as possible. This is compared to the approach taken in pipelined parallel compilers,
where the number of processors to be used is fixed.

AN OBJECT ORIENTATED STYLE FOR THE MEIKO - MATTHEW CHALMERS, UNI

VERSITY OF EAST ANGLIA. This paper describes a novel approach to programming
on a Meiko Computing Surface, based on SmallTalk. Objects are composed of their
normal activity, and a link to their superclass, allowing inheritance of properties.
All of this takes place within the context of a message passing scheme, which passes
messages to objects. However, the objects have control over the order in which they
accept messages. The original application for which the system, called Chancer, was
designed was a ray tracer.

14 occam user group newsletter

C-NET: A C++ BASED LANGUAGE FOR DISTRIBUTED AND REAL-TIME PRO
GRAMMING - JEAN-MARC ADAMO, ECOLE NORMALE SUPERIEURE DE LYON,
FRANCE. This paper discusses the philosophy and constructs of a C++ based lan
guage which contains parallel constructs and exception handling as well as object
orientation. It gives the syntax, and examples of the use of the language, which
bases its parallelism on that available in occam.

REAL-TIME TRANSPUTER MODELS OF LOW LEVEL PRIMATE VISION - ANDREW B.
SMITH AND PETER H. WELCH, THE UNIVERSITY OF KENT. Human vision is
thought to consist of an initial parallel stage in which feature data is gathered,
followed by a sequential recognition stage. This paper discusses the implementation
of a simulation of the parallel stage on a network of transputers. The authors note
that their initial, highly parallel scheme is less efficient than one developed later with
a much higher degree of sequential activity.

Social aspects of the meeting

Despite the shortness of the meeting, it was apparent how quickly those attending
became a cohesive unit, and how barriers of language and background were quickly
overcome. Within the commercials slot, a book entitled The Transputer Community
was advertised, published by the Edinburgh University Press, being a study of the
transputer phenomenon, and covering the development of this community, showing
the degree of interest raised by such developments, even among social scientists.

Much praise is due to the meeting organiser, John Wexler, who coped wonderfully
with the difficulties inherent in setting up such an event, and edited the proceedings,
as well as carrying out his normal duties within the Supercomputer Project. He was
also charged with the organisation of the Supercomputer seminar. Despite all this he
managed to keep the whole thing running smoothly, and retained his good humour.
His crowning moment in this field must have been the conference dinner however,
which was very well attended, and universally regarded as being of the very highest
quality. It must be said that the organisers of the next meeting will have their work
cut out to match it.

WHY DID THE TRANSPUTER CROSS THE POND?

As you might expect, the founder's second consecutive absence did not prevent the
holding of the third biannual Roger Shepherd memorial joke contest at the occam
user group meeting in Edinburgh. Among the repeatable contributions were

Q: What do you call a ring of T400 transputers?
A : Unsociable.

Two transputers pass five others who are playing brass instruments in a
confined space; says one to the other: 'What's up?'; comes the reply: 'Nothing
really - just a bandwidth problem.'

Q: What would you get if you privatized INMOS?
A: Lots of HI Owners.

N912 January 1990 15

(I should explain for readers lucky enough to live outside the target area for the
advertisements that the meeting coincided with a pre-privatization publicity cam
paign for the English and Welsh water boards, which urged everyone to become a
H20wner.)

There were a surgeon, and architect and a parallel programmer, who were
discussing whose was the oldest profession.
'Mine must be', said the surgeon, 'as God removed a rib from Adam to create
Eve - quite a surgical feat.'
'No contest,' said the architect, 'out of chaos God created the ordered garden
of Eden - a major architectural project.'
'That's nothing,' said the parallel programmer, 'who do you think created the
chaos.'

Q:. Why shouldn't a Transputer run C_NET?
A: Because its pins get caught in the mesh.

Q: What is a transputer user's favourite Christmas carol?
A: 'occam all ye faithful, joyful and triumphant.'

Q: What do occam processes and condoms have in common?
A: Both are safe 99% of the time, and neither can be reused.

Someone claimed .that it was Jean-Paul McSartre who said after attending the
Edinburgh occam user group meeting, 'Och Aye! therefore occam'. [I think it was
someone more like Rene Cathcart.]

Perhaps the shortest contribution was a piece of paper bearing the single word
occam written in a hand remarkably like Iann Barron's. I suspect that if a joke could
only have been found for it, tightly coupled embedded systems - much discussed in
the panel session - would have made a successful punch-line.

On the basis of audience response, the group's regular clap-o-meter and chairman
choseColin Willcock's - the occam processes that are safe 99% of the time - to receive
McTavish's (ost~nsibly) nuclear-pow:ered self-heating haggis that had appeared in a
talk earlier in the day. Alan Chalmers walked away with a larger haggis which was
apparently the second prize - for the architect of chaos. gJ

SECOND SEMINAR OF
THE SWEDISH TRANSPUTER USER GROUP

21 November 1989, The Royal Institute of Technology, Stockholm
Martin Torngren) The Royal Institute of Technology

The Swedish market has been a tough one for the Inmos transputer. When the
transputer was introduced it represented new ideas and new technologies. It usually
takes some time for a new microprocessor to get accepted and for companies to
change to the new microprocessor. Another reason for scepticism and delay is the
fact that Inmos was not able to provide sufficient development tools in 1985. Inmos
has always emphasized the importance of occam. However, even though many people
enjoy occam, it is a new language. There is even now no occam compiler for other
computers!

16 occam user group newsletter

Today, four years after the introduction, things are looking much better. There
are now a lot of different development tools available. New transputer chips and
modules have appeared. SGS-Thomson gives stability to the transputer product and
has introduced dramatic price reductions.

In Sweden many companies and universities have shown interest in the transputer
and evaluations have been made. Recently the first transputer based product, an
image processing computer, was released in Sweden. In addition to Inmos represen
tatives, sales representatives from other manufacturers like Microway have appeared.

The Swedish Transputer User Group (STUG) was formed in May 1989. STUG
now has about sixty members in Sweden. STUG arranges seminars and publishes a
newsletter. STUG operates with a very limited budget and has the support of Inmos
representatives in Sweden, which handles some of STUG's administrative details.
The first STUG seminar was held at The Royal Institute of Technology in Stockholm
in May. At this seminar an executive committee was elected to look after the group
and it was agreed to publish a newsletter.

The seminar

The seminar was hosted by the Department of Machine Elements at the Royal Insti
tute of Technology in Stockholm. Around fifty people from Universities, Technical
Universities and companies were represented at the seminar.

The keynote speaker was Stephen Maudsley, application engineer at Inmos, ~ho
talked about new transputer products like the new low cost T400. He reported on
plans for the future development of the transputer. He gave information on the HI
project, which aims at a transputer with the following characteristics:

t> 10 times faster than todays transputers
t> code compatible with current transputers
t> caches and support for virtual channels

Stephen also mentioned new modules for ethernet with TCP/IP support, SCSI and
the VME bus. Other information included the cooperation between Inmos and
the ASIC division of SGS-Thomson, the new breakpoint debuggers (initially C and
occam) and future optimizing compilers.

After Stephen's talk there was a debate which centered around the following
questions:

t> Will there be any transputers with I/O on the chip (like the M212)?
Answer: Probably no, instead ASICs with link units will be available.

t> Is the transputer used for embedded systems applications?
Answer: It is, but you would not necessarily hear about it.

t> How can Inmos, a manufacturer of advanced parallel processing components,
produce such low quality man-machine interfaces for their development tools.
Answer: ??

t> In what way should occam develop? Should it be kept as a secure language or
should for instance records and/or recursion be included?
One answer: occam is a very nice language for 'smaller embedded applications'
with a static software structure.

t> Do you want an operating system or a library? Should the operating system be
easy to modify by the user?

N912 January 1990 17

An obvious drawback with the current transputer scheduler is the few priority
levels. This limits the use of the transputer in hard real-time applications.

Other speakers at the seminar

Lars Estreen from the Department of Electronic Motor Drives at KTH had visited
the International conference on applications of transputers in Liverpool. His overall
impression was that the transputer was mainly used for image processing and super
computer applications. He also emphasized the lack of an overall transputer standard
for operating systems and cominunications.

Hans J ohansson also from the Department of Electronic Motor Drives had at
tended an occam course arranged by Inmos in BristoJ. He briefly reviewed the course
and recommended it for people npt experienced with the TDS.

Christer Juren from the Swedish Institute of Space Physics had visited the OUG
meeting in Edinburgh and the subsequent supercomputer conference. He made a
very interesting presentation of the Edinburgh concurrent supercomputer and also
detailed the OUG proceedings.

Mariadata representatives of Alsys in Sweden presented the newly validated Ada
compiler which however was not yet ready for demonstration.

Peter Ygberg from Bofors Aerotronics talked about his experiences of the Helios
operating system which he enjoyed using.

My own contribution presented aspects on using the transputer in real-time
control systems for applications in Mechatronics, particularly real-time properties,
features which can cause non-deterministic behaviour and how to interface the trans
puter to sensors and actuators.

Mats Hanson from the Department of Machine Elements at KTH talked about
new microprocessors for embedded systems. He particularly described an ongoing
Master of Science project for fifteen students with guidance from researchers which
aims at building a transputer based robot control system. Mr Hanson also proposed
a joint project between SGS-Thomson in Sweden and the department.

The seminar was rounded up by refreshments and a few informal demonstra
tions. The CVR group showed their image processing computer and Datacraft,
sales representatives of among others Microway, displayed quadputer transputer
boards. Unfortunately neither Inmos nor Atari with their workstation could make a
demonstration.

Future

The seminar was a positive one. There's definitely a growing interest of the trans
puter in Sweden.

STUG intends to publish newsletters shortly after seminars. The deadline for
this newsletter is 10th December. The newsletter is written in Swedish but does
accept papers in English.

The next seminar has not been scheduled but will probably be in the spring of
1990.

18 occam user group newsletter

SPECIAL INTEREST GROUPS

EDUCATION AND TRAINING
Roger M. A. Peel, University of Surrey

Tel: +44 483 509284
Fax: +44 483 34139

Telex: 859331
roger@uk.ac.surrey.ee

The Education and Training SIG meeting during the twelfth OUG technical meeting
in Edinburgh was attended mainly by members of various educational institutions, as
well as by representatives of Inmos and several major industrial users of transputers.

Much of the meeting was spent reviewing hardware and software products suitable
for use in education. One new product which generated particular interest was
the CODE system from C-DAC (Pune, India), which closely emulates the Inmos
Transputer Development System, but runs on a personal computer with no subsidiary
transputer card (see page 86). Comprising an editor, occam2 translator and an
interpreted run-time environment, one of its major features is an interactive debugger
which permits the state of variables and processes to be inspected during program
execution. At a one-off price of $400, and with site licences available for $4000, this
software is likely to be of interest to many members of the educational community.

Other products mentioned were the interfaces, TRAM motherboard and server
software for the Acorn Archimedes from Gnome Computers, as well as reminders
that the Inmos TDSl product is freely available for personal computers from Jon
Kerridge, and the VAX/Unix version from Peter Welch. Bob Stallard's occam2
compiler (for Suns, etc.) is available from Loughborough University. Michael Poole
(Inmos) announced that their new occam 2 compiler (written in C) could be made
available in source form to organisations prepared to commit to porting it to novel
non-transputer environments. Support for this activity would however be limited.

The remainder of the meeting was spent discussing how educational support
might increase the uptake of transputers by industry. There was support for the
suggestion that pre-packaged courses, complete with documentation, discs containing
all the example programs and tutorial notes, should be made available to remote
educational institutions and to industrial concerns not prepared to send their staff
for direct training.

There was also considerable sympathy with the view that many technologists in
the field were aware of the benefits of using transputers and occam, but that they
were unable to convince their management that parallel program design was not
too difficult. There also seemed to be reasons why employers did not want to see
design methodologies in external courses. In addition, some engineers often prefer to
avoid the concurrent solution because more complicated conventional languages and
processors are a greater technical challenge!

Finally, there was muted interest in an occam educator's workshop, although there
did not appear to be any convenient dates until 1990.

Roger M. A. Peel
Department of Electronic and Electrical Engineering
University of Surrey
Surrey GU2 5XH
United Kingdom

N912 January 1990

HARDWARE
Deni~ Nicole, University of Southampton

19

This is a report of the meeting of the Hardware SIG held during the eleventh technical
meeting of the OUG at Edinburgh, September 1989. As usual, the group engaged in
a wide-ranging discussion about most things transputer.

Miniaturized transputer arrays

Hugh Webber of the Royal Signals and Radar Establishment described some work,
mainly by Kevin Palmer, on the construction of miniature 'Supernode' switched
transputer arrays. He has been able to build transputer modules of two types. One
is a ceramic module sized two inches by one and a quarter inches which carries a
transputer and 256 kbytes of DRAM. The other is a silicon hybrid with the same
footprint as a transputer which carries both the transputer and, underneath it,
64 kbytes of DRAM all in a twenty-eight pin package.

They have been able to construct a whole sixteen transputer Supernode including
camera, framestore, B007 graphics and LCD display in a 6" X 4" X 2" cuboid. The
system consumes 20 watts and can be powered for four hours by a standard military
battery of the same size.

Dynamic switching

There was some discussion of the use of dynamic reconfiguration of transputer
arrays for message passing. The Linda machine from Cogent in the United States
implements part of its communications in this way. Considerable care was required
to ensure that no random traffic on the links was produced by the reconfiguration
of the C004 switches. Some work on a Supernode at RSRE suggested that dynamic
switching could also be effective on that architecture.

Static column addressing

A new UK company, Division, has developed a graphics TRAM which uses static
column addressing of dynamic memory. This is implemented in a small set of
conventional PALs. Some discussion of the merits of this approach ensued, with
J. Kidd suggesting that, while it may be worthwhile for display systems, it is not
useful for most other transputer systems.

Standardisation

D. Nicole had been approached by M. Jane of the UK transputer initiative with a
suggestion that interested users and vendors should attempt to establish hardware
standards for transputer systems. An example was presented of a language vendor
having to test his compiler on B004, B008 and B001 boards separately. These
standards can take several forms: they can enshrine existing practice in such areas as
control port addressing, link buffering and TRAM I/O mechanical organisation; they
can develop new standards, for example, for miniature TRAMs; they can attempt

20 occam user group newsletter

to guide new implementations on current transputers towards facilities that will be
supported directly in new generation transputers, in such matters as through-routed
message-passing protocols; finally, they can attempt to provide a common standard
software interface' for disparate hardware, such as Supernode/B008/Meiko/Parsytec
link switching. Comments and offers of help and guidance to D. Nicole, please.

Communications regarding the hardware SIG should be addressed to:
Denis A. Nicole Tel: +44 703 787167
Department of Electronics Fax: +44 703 592865

and Computer Science dan@uk.ac.soton.ecs
The University
Highfield
Southampton 809 5NH
United Kingdom

FORMAL METHODS
R. P. Stallard} Racal-Milgo Ltd

A meeting was held at the Edinburgh Technical Meeting of the OUG. There was not
much news to report.

I spent much of the time outlining ideas not on occam itself but on what might
be the form of the language on top of occam. It is my view that there must be
a convergence between use of formal techniques and software engineering. What is
needed to promote the occam model is a high level programming environment that
maps neatly onto occam. Such a system could be of 'object-orientated' type, but
even better would be 'process-orientated'. Such systems have the benefit of clearly
defining an interface to a module and also managing the inevitable changes to a
software system. All this is possible directly in occam but it is not made compulsory.
Why should we still use systems that make straightforward changes so difficult? I
hope to produce an article on this topic for the next newsletter.

In the brief time that was left, discussion on adding more features to occam
started, I propounded the view that all further developments should be banned (or
else we will need to apply Occam's razor to occam). If users want more features
they should use a higher level language. The panacea of the perfect programming
language has been sought after for almost as long as the Elixir of Eternal Life, you
can not make a language suitable for every application. My personal plea remains:
please leave occam as an efficient medium level language with fast execution.

Deadlock got its usually mention, it was felt that tools to combat it run the
danger of oversimplifying the problem, but some degree' of modularization (hiding
internal channel intercommunication) obviously helps. It is encouraging that two
papers at Edinburgh described tools to detect deadlock. I hope they will soon be
available for all of us to use.

R. P. Stallard
Racal-Milgo Ltd
Station Road
Rook, Rants
United Kingdom

N912 January 1990

GRAPHICAL PROGRAM DEVELOPMENT TOOLS
a new special interest group

Mike Roberts} City University} London

21

At the last occam user group meeting I proposed the formation of a 'Graphical
program development tools' special interest group. As the suggestion did not meet
with quite the hilarity I anticipated (six people were genuinely interested) I decided
to test the water with the following short piece. Anyone interested in the formation
of the SIG may contact me at the· address below.

What is a graphical program development tool?

Graphical program development tools do, as their name implies, use graphics in the
program development process. Many experimental tools have been produced for
use in all stages of the sequential software life cycle ranging from high level project
management systems to low level tools using graphics in the programming process.

As yet however, few have been produced for parallel systems though many feel
that graphical tools may help in that 'Holy grail' of parallel processing - the export
of paralleL systems and languages into the so called real world.

They fall naturally into two main areas - program visualisation tools and visual
programming tools. Program visualisation is the use of computer graphics to enhance
program presentation and facilitate the visualisation, understanding and effective use
of programs by humans. Visual programming on the other hand is a collection of
related techniques through which algorithms are expressed using various graphical
representations. In short programming visualisation shows aspects of the program
gr.aphically, where as visual programming makes use of graphics as the program input
medium. For initial informed introductions to both areas see references [1, 2].

But can such methods aid concurrent programming? I thiri.k that they can.
Most of the reasons behind the adoption of graphics based programming tools centre
on increasing t1?-e use of the left side of our brains, little used in the programming
process at present. With the increased software complexity often shown in concurrent
programs, it makes sense to bring as much as is possible of our underutilised brains
to bear upon the task. Several recent reports from within the occam community [3,
4, 5,6, 7] demonstrate the viability of such tools and can be seen as supporting this
opinion.

If sufficient interest is expressed by members of the OUG, I will organize an initial
SIG meeting at the Exeter technical meeting.

References

[1] B. A.. Myers, The state of the art in visual programming and program
visualisation, Report N9 CMU-CS-88-144, Computer Science Department,
Carnegie Mellon University, Pittsburg; presented at the British Computer
Society Displays Group's Symposium on Visual programming and program
visualisation, London, 16 March 1988.

[2] Nan C. Shu, Visual programming, Van Nostrand Reinhold, New York, ISBN
0-442-28014-9, 1988.

22 occam user group newsletter

[3] W."D. Crowe, R. Hasson, P. E. D. Strain-Clark, A CASE tool for designing
deadlock free occam programs, in the Proceedings of the 11th occam user group
technical meeting, ed. John Wexler, Developing transputer applications,
OUG-11, Edinburgh, lOS, September 1989.

[4] F. Mourlin, Graphical environment for occam programming, occam user group
newsletter N9 11 , July 1989.

[5] M. Roberts, P. M. Samwell, A visual programming system for the development
of parallel software, in the Proceedings of the Second International Conference
on Software Engineering for Real Time Systems, Cirencester, lEE, September
1989.

[6] M. Stephenson, O. Boudillet, GECKO: a graphical tool for the modelling and
manipulation of occam software and transputer hardware toplogies in the
Proceedings of the 9th occam user group technical meeting, ed. Charlie
Askew, occam and the transputer - research and applications, OUG-9,
Southampton, lOS, September 1988.

[7] S. Stepney, GRAIL: graphical representation of activity, interconnection and
loading, in the Proceedings of the 7th occam user group technical meeting, ed.
Traian Muntean, Parallel programming of transputer based machines, OUG-7,
Southampton, lOS, September 1987. ..

Mike Roberts m.roberts@uk.ac.city
The Centre for Information Engineering
City University
Northampton Square
London ECIV ORB
United Kingdom

TECHNICAL CONTRIBUTIONS

SAFETY FIRST
Peter Welch, chairman of the occam user group

Performance - a secondary consideration

I was getting a little alarmed. Recently, the performance of our transputer system
shot up overnight - our T800s doubled their MIPS rating from 10 to 20 and their
MFLOPS went from 1·5 to 2·3! This upgrade cost us nothing and caused absolutely
no disruption to our user service during the conv~rsion. Indeed, our users never
noticed a thing - but we now have much more exciting numbers to put on our·
posters to impress visiting industrialists.

A few compulsory sessions of reading X-window source code soon forced the truth
out of our system administrator. These dramatic improvements were brought to us
thanks to a new aggressive marketing policy from Inmos! After a few moments of
quiet thought, this did not seem to be such a bad thing. In this world, technical
excellence is no guarantee of success - it is not even a pre-requisite! Inmos is

N912 January 1990 23

well justified in moving to the same level as its competitors and fighting to their
rules. After all, there are some exciting questions to be answered. Can four T800s
outperform an i860? Will the Hi knock everything else out of sight? Never mind
the quality - can you begin to feel the terraflops?

Hang on a moment. Chasing performance figures is not the only basis. for
impressing world opinion. There is another angle that I do not recall ever seeing
promoted in any transputer marketing literature:

I> an angle without which all the performance in the world is just candy-floss;
I> an angle on which public attention is beginning to be focussed;
I> an angle upon which the world will soon insist; ,
I> an angle around which the transputer was conceived;
I> an angle on which other technologies are a little bit wobbly.

With such a basis, surely the marketing people can come up with something fairly
macho about ...

Safety - the primary consideration

A 'safety critical' system is one whose failure may lead to loss of, or injury to,
life or wallet. The percentage of computer systems that can be classified as safety
critical is steadily gr0'Ying. During the next decade, computers will not only be con
trolling the big things like commercial airliners, nuclear power stations and railway
signals, we will be surrounded by them and ,dependent on them for most aspects
of everyday living - personal communicators, gas cookers, car braking systems, etc.
In the near future, almost all computer systems will contain some safety critical
components.

The transputer processor, along with the occam programming language, is based
upon formal mathematical theories of (parallel) computing [8, 9]. These theories
have a long~ and mature pedigree. Transputer networks and occam processes obey a
rich collection' of simple algebraic laws [10, 11] that give them a chance of becoming
amenable' to formal specification, derivation and verification. These properties are
an essential bedrock for the routine mass production of safety critical applications.
By comparison, most other technologies in practice today are built upon sand.

High performance is a by-product of this discipline. Simple manipulations at all
levels of design and implementation preserve the semantics of the system, allowing
it to be tuned ,for various criteria of efficiency. But, performance must always be a
secondary consideration - there is no merit in producing the wrong answers faster
than all your competitors!

A little example - some school algebra

Forget about parallel computing. Consider a basic computational notion, common
to all types of computing architecture and language: expression evaluation.

Occam expressions have a pure mathematical semantics - i.e. 'what you see is
what you get' (WYSIWYG). For instance, the meaning of a sub-expression depends
only on what is in that sub-expression and not upon its surrounding context. [In
the higher realms of functional programming, this is known as 'Referential Trans
parency'.]

24 occam user group newsletter

The practical importance of this is that expressions behave in the way we all
learned at school- for example:

may be replaced by:

a*(b+c)

and the semantics of the whole program is unchanged. For 'classical' languages (like
FORTRAN, Pascal, C, Ada, ...) this is not true: suppose a were a sub-expression
whose evaluation side-effected the current state of the system!

Evaluating occam expressions cannot change system state:

l> assignment of values to variables (:=) is not an operator and may not be embedded
within expressions (unlike in C);

l> the input / output processes (?, !) are not operators and may not be embedded
within expressions (unlike many standard i/o functions in other languages e.g.
getchar from C);

l> no operators cause state change (unlike ++ in C);

l> function calls cannot cause state change (unlike those in FORTRAN, Pascal, C,
Ada, ...).

Consequences

A minor consequence of this freedom from side-effects is that the order in which
operands are evaluated has no significance. Therefore, in occam there is no rule such
as: 'operands are evaluated from left to right'. The designer has one less decision
to worry needlessly about and the compiler has the freedom to choose the optimum
ordering. Simple transformations may be applied - perhaps, by a tool other than
the compiler - to assist in such optimisations. Of course, if more than one processing
element is available, operand evaluation may also proceed in parallel.

[Actually, C has no rule for ordering the evaluation of operands either. In this
case, however, the conditions are ripe for a serious disaster - it's so easy to write
code that has several different legal interpretations. If evaluating expressions can
have procedural side-effects, then the order in which this happens does matter - even
if the language definition pretends it does not!]

The major consequence is the aid to our clear understanding of the meaning of
code at this level. The properties are transparent - they are what we expect and
there can be no nasty surprises.

These are not considerations of marginal importance. They are a necessary part
of the foundations of a sound engineering discipline that will enable the production
of safe software for safety critical systems.

If you accept the above arguments, there is an immediate corollary to contem
plate: 'classical' programming languages have no safe role to play in safety critical
applications. Since it is almost inevitable that those languages will nevertheless play
major roles in such systems, we have cause for grave concern.

N912 January 1990

Interim Defence Standard 00-55 (Draft)

25

The Interim Defence Standard 00-55, published as a draft by the UK Ministry of
Defence [12], defines 'procedures and technical requirements' for the development of
safety critical software.

A crucial new feature is that 'formal' (or, at least, 'rigorous') methods are
to be used at all levels of specification, design, implementation and verification.
Encouraging news for those of us with a nervous disposition - formal proofs (or
'rigorous arguments') may not completely guarantee our safety, but they certainly
increase confidence levels and our present levels could do with a bit of a boost!

The software industry, however, seems to be in a small panic over this standard
- largely for the wrong reasons (software people are extremely conservative!). Some
proper reasons follow.

The 00-55 standard lists a number of approved formal specification and design
techniques. These include both CCS [8] and CSP [9]. However, the document
elsewhere prohibits the use of parallel processing (either across multiple 'processors'
or within a single 'processor') as an 'unacceptable practice'! We are invited to use
CSP for design but we are not allowed to exploit the results from that design!!

There is also a mandate that the programming language used must be 'high-level'
and must have a compiler with an 'approved national or international validation
certificate'. This seems to be aimed at the Ada world, but is probably also intended
to allow other languages with ISO or ANSI standardisations (i.e. C, FORTRAN
and Pascal). Unfortunately, none of these languages has a semantics that is simple
enough or well-enough defined to be amenable to the use of formal methods (or
even rigorous ones). The same is true for any credible subset (or superset) of these
languages. The example issue raised earlier in this article is only the start of a long
list of problem areas that are deeply embedded in their fundamental, design - for
further reading, see references [13, 14, 15].

Floating-point arithmetic is also banned! Presumably we are expected to use
some fixed-point software instead. It is true that a realisation of floating-point
arithmetic cannot be validated by testing. It is also true that one or two manufac
turers have recently been embarrassed by some nasty bugs emerging from 'industry
standard' hardware implementations. However, fixed-point arithmetic is no less easy
to check-out and I know of no formally verified products. On the other hand,
the T800 floating-point micro-code was derived through formal transformation of
occam source code that carries a formal proof of correctness with respect to a
formal specification in Z of IEEE-754 arithmetic [16]. I know in which of these
two mechanisms I would rather put my trust!

For additional observations on 00-55, see reference [17].

Concluding remarks

The fact that the M.o.D. has published 00-55 (with its central compulsory theme on
the use of formal methods) is clear evidence that safety considerations are uppermost
in the minds of a large group of customers for cOIIlputer systems. Commercial buyers
will certainly follow the military lead and demand at least as high a level of security.

There is a danger that the internal contradictions within 00-55 may give formal

26 occam user group newsletter

methods a bad name and that industrial systems suppliers may be able to push it
away for some while. Marrying formal methods with classical programming languages
will always lead to tears - but the problems lie mainly with the latter partners, not
the former.

The pressure for safety will get stronger every year, eventually dominating the
pressure for performance. Inmos is in an excellent position to capitalise on this
market. The T800 demonstrates that performance need not be sacrificed to meet
the demands of safety - indeed that high performance is a consequence of high
security. .

Why does Inmos publicity not:

l> highlight the formal methods being used in the design of the Hi?

l> boast about the security improvements delivered by transputer-based parallel
computing?

l> shout more loudly about occam?

After this, it would be interesting to find out about all those MIPS, MFLOPS and
Mbaud - but these will merely be the icing on the cake!

References

[8J Robin Milner, A Calculus for Communicating Systems, ECS-LFCS-86-7,
Laboratory for the Foundations of CO:qlputer Science, Edinburgh University,
1986.

[9J C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hall
International, 1986.

[10J C. A. R. Hoare ef al., Laws of Programming, Commun. ACM Vol. 30, N98,
pp. 672-686, August 1987.

[llJ A. W. Roscoe and C. A. R. Hoare, Laws of Occam Programming, Technical
Monograph PRG-53, Oxford University Computing Laboratory, 1986.

[12] Ministry of Defence, Requirements for the Procurement of Safety Critical
Software in Defence Equipment (Interim Defence Standard 00-55),
Directorate of Standardisation, Ministry of Defence, Room 5150A, Kentigern
House, 65 Brown Street, Glasgow, G2 8EX, Scotland, May 1989.

[13] Peter Welch, Going to Ceed?, Internal Memorandum, Computing Laboratory,
The University, Canterbury, Kent, CT2 7NF, England, March 1989.

[14J Roger Shepherd, Compiler Support for Floating-point Computation, Letter to
the Editor, Software - Practice and Experience, 18, p. 1193, December 1988.

[15] Roger Shepherd, Security Aspects of Occam2, Technical Note 32
(72-TCH-032-00), Inmos Ltd, Bristol, 1987.

[16] G. Barrett, Formal Methods Applied to a Floating Point Number System,
Technical Monograph PRG-58, Oxford University Computing Laboratory,
1987.

[17] David May, Draft Military Standard 00-55, Internal Memorandum, Inmos
Ltd, Bristol, July 1989 (appears in this newsletter).

NC? 12 January 1990

Peter Welch
Computing Laboratory
The University
Canterbury
Kent CT2 7NF
United Kingdom

Tel: +44 227 764000 x3629
phw@uk.ac.ukc

27

DRAFT MILITARY STANDARD 00-55
David May, Inmos Ltd, Bristol

The proposed standard for safety critical software contains many requirements for
mathematically proven software. This note comments on these proposals.

The state of the art

Over the last twenty years, considerable progress has been made in modelling and
reasoning about computer programs. A variety of notations and languages have
been developed; some of these are supported by computer-assisted proof systems.
Examples of program verification systems are the Boyer-Moore theorem prover,
Gypsy, AFFIRM, SDVS, LCF, m-EVES and NuPRL. Although some impressive
proofs have been done, the state of the art in mechanised program verification is still
limited to small programs (i.e. a few tens of pages of code).

New theories and formalisms to support software engineering have also emerged.
These include CCS and CSP for concurrent programs, and VDM and Z for system
specification. So far no theorem proving tools for these formalisms have been imple
mented, but some useful computer-based tools related to them have been developed
(e.g. the 'B tool' for Z, and the occam transformation system). However, these do not
support the construction of machine checked proofs in an explicit logical calculus.

In summary, it is now clear that formal methods are applicable to several areas of
hardware and software design. In some cases, mechanised proof systems have been
demonstrated. There have been one or two commercially important applications of
formal methods (such as the use of Z and the occam transformation system in the
design of the Inmos IMS T800 transputer floating point unit). However, none of the
languages and tools have yet reached sufficient maturity for widespread use.

Programming languages

There are few programming languages suitable for the kind of mathematical verifi
cation process outlined in the proposed standard. In order to perform mathemati
cal verification of programs, the programming language must have a mathematical
semantics. The semantics must be small enough to allow it to be used' in the
construction of program proofs - ideally, it must be small enough to be embedded
in ?' proof checker. All of the systems mentioned above employ simple languages
or language subsets - these languages have been designed to be simple enough to
allow program proofs. No existing internationally standardised language has a simple
enough semantics for this purpose. Even if sufficient resources were made available

28 occam user group newsletter

to construct a mathematical semantics for these languages, it would not be suitable
for program proofs.

The best solution (from a technical viewpoint) would be to create a new (inter
national standard?) language for safety-critical software. As it is only necessary to
write small programs with simple control structures and simple data structures, a
very small language designed for mathematical verification can be used. It would
require a simple - and verifiable - compiler. An alternative might be to standardise
the occam language (or a language closely related to it) - see the appendix to this
note.

Compilers

There are no verified compilers for existing standard languages. The languages are
all too big and complex. Further, there is an increasing trend towards the use of
optimising compilers. The standard prohibits the use of optimising compilers - but
all compilers optimise to some extent. Which optimising techniques are considered
unsafe?

Validation is not a substitute for verification. It can be used to show the presence
of bugs in the compiler, but not to show their absence. The best approach would be
to employ a simple language for which a simple verified compiler can be c·~nstructed.

An alternative process would be to use proof techniques to prove that the compiler
output (instruction level program) implements the high-level language program.

If there is no method of verifying that the assembly language program correctly
represents the high level language program, it would be better to write the programs
in assembly language and verify them mathematically in terms of a mathematical
specification of the machine instructions.

Programming restrictions

The proposed list of restrictions in the standard appears ad-hoc and inconsistent
with the proposed list of design methods. If the use of multiprocessing and parallel
processing are both prohibited, where is the need for CSP and CCS? Why has use
of gete statements, exceptions and pointers not been prohibited?

Specifically, with reference to section 21 of the draft· standard (see figure 1):

1. Floating point arithmetic may be dangerous - but it seems better to use IEEE
arithmetic (for which there is a mathematical specification in Z) than un-specified
fixed point arithmetic.

2. Although there is no obvious need for the use of recursion in safety-critical
software, there is no reason to treat it as a dangerous technique. It is often much
easier to prove the correctness of recursive programs than the equivalent non
recursive ones; for safety critical applications there is the additional obligation to
prove that the depth of recursion is bounded.

3. The problem with interrupts is the interaction between the interrupt service
routine and the interrupted program. Is the idea to allow programs which consist
of only a timer service routine? If not, this restriction does not seem to achieve
anything.

N912 January 1990

21 Unacceptable Practices
21.1 This Standard prohibits the use of practices which are unsafe,
or difficult to analyse such as:
1. floating point arithmetic;
2. recursion, whether simple or mutual;
3. interrupts, except for a timer interrupt at fixed intervals;
4. assembly level programming languages;
5. dependence on separate elements being executed on parallel

asynchronous processors. The complete set of Safety Critical
Software modules should run in a single processor;

6. multi-processing on a single processor;
7. object code patch~ng;

8. software architectures that are re-configurable under
application program control;

9. dYnamic memory management.

Figure 1: text of section 21 of the draft standard

29

4. It is dangerous to ban assembly language programming until a verified
compiler is available (see above).

5. The great success of CCS, CSP (and its implemented subset, occam) is that they
provide a design method, mathematical proof tools and associated programming
language for constructing secure concurrent systems - both for parallel processing
and for multiprocessing within a processor. These tools are much more reli
able than using complex sequential programs to achieve the same effect. They
have been developed over many years specifically to overcome the difficulties of
constructing secure real-time systems.

6. See above.
7. Object code patching should clearly be prohibited.
8. It is not clear what 'reconfiguring the software architecture' means.
9. Dynamic memory management - this is probably best prohibited for the moment.

Surnrna:ry

The above remarks can be summarised:
I> The theoretical tools do exist to allow mathematically verified software to be

constructed. Although the existing techniques can not cope with large programs,
they could be employed for the kind of safety critical programs described in the
stand~rd.

I> Existing standard languages and their compilers do not form a suitable basis for
mathematical verification. Much smaller, simpler languages are needed. They
must be designed with verification in mind from the outset.

I> Much folklore has grown up about which programming techniques are unsafe.
In particular, there is a tendency to regard all forms of concurrency and non
determinism with suspicion. This view is wrong. Secure, high-level programming

30 occam user group newsletter

techniques, supported by rigorous mathematical verification techniques, now exist
for programs incorporating parallelism and non-determinism. Indeed, such prog
rams are often easier to reason about and test than the alternative (a relatively
complex sequential program). It is important not to prohibit the very design
techniques which make mathematical verification possible!

t> A substantial investment will be needed to create - and standardise - the lan
guage(s) and tools (proof checkers, verified compilers) needed. It will also be
important to consider the relationship with mathematically verified hardware
(the specification of a machine instruction set is needed in order to verify the
compiler). See the appendix to this note.

Lastly, it should be noted that although the UK has considerable strengths in the
theory and practice of program verification, a very substantial investment in training
(and re-training) will be needed. It is unlikely that enough people are available to
teach these techniques: perhaps the most important first step is a major investment
in higher education focused around existing centres such as Oxford University Pro
gramming Research Group, Manchester University, Edinburgh University Laboratory
for the Foundations of Computing Science and Cambridge University.

Appendix

The SAFEMOS project

The construction of fully verified systems is currently a research activity. How
ever, commercial interest in formal verification is growing rapidly in view of the
increasing use of microprocessors in real-time control applications. The UK lED
project SAFEMOS (collaborative project 1036: Inmos, SRI Cambridge, Oxford
University, Cambridge University) involves the construction of languages, compilers
and hardware for verified systems.

The SAFEMOS project uses the occam language developed together with the
Inmos transputers. Of all the languages designed to support verification, occam is
probably most widely used - and primarily in embedded real-time applications. This
language is designed to support both sequential and concurrent programs. It has a
rich mathematical semantics facilitating program transformation and proof. Its com
pilers provide extensive static checking including full alias-checking and disjointness
checking for concurrent programs. There is some interest in' standardising occam as
a language for formally verified systems software.

The SAFEMOS project aims to develop a program verifier, verified compiler and
verified processor allowing mixed hardware and software systems to be designed and
verified. As far as possible, mechanised proof-checking will be provided by the HOL
theorem prover. The processor will be similar in design to the Inmos transputer,
allowing concurrent systems to be constructed and verified.

David May
Inmos Limited
1000 Aztec West
Almondsbury
Bristol BS12 4SQ
United Kingdom

N912 January 1990

AN OPTIMAL TOPOLOGY FOR MULTICOMPUTER
SYSTEMS BASED ON A MESH OF TRANSPUTERS
A. Arruabarrena\ R. Beivide\ E. Herrada2, J. L. Balcazar2, C. Izu1

1Euskal Herriko Unibertsitatea, Donostia, Spain
2Universitat Politecnica de Catalunya, Barcelona, Spain

31

In this paper we present the construction of an effective interconnection scheme to tie
any number of transputers together, in order to implement a multicomputer system.
Also, we present one way to solving the problem of routing messages through this
kind of network on a transputer-based multicomputer.

I. Introduction

A multicomputer architecture [18] is a parallel computer system that consists of N
computers, called nodes, connected by a message-passing communication network.
In this paper we consider multicomputers with nodes based on processors like the
T800 transputer [19].

One of the important problems to be addressed in such architectures refers to
the interconnection scheme which ties all of the system nodes together. The most
essential function of the interconnection network is that it allows an efficient message
interchange between processes which execute on the nodes. The characteristics of
the interconnection topology directly affect the expected performance of the global
system.

To obtain a high performance in a multicomputer system, the structure of the
interconnection scheme must accomplish several conditions. Different performance
metrics, based on graph theory, are commonly used in order to characterize the merits
of the proposal. One generally accepted set of network parameters which is adequate
for this purpose includes the following: total number of links, diameter, average
distance, link- and node-connectivity, symmetry, embeddability of algorithms and
extensibility. Let us consider briefly each of these network parameters.

The network degree' refers to the maximum number of links incident with a
node. Making constant and small the network degree signifies a simplicity for the
routing policy, as well as a reduction in the cost of nodes and links. The network
diameter and average distance are measures related to the maximum and average
delays during transmission of messages. To keep the values of these parameters as
small as possible is desirable in order to obtain a high system throughput. The
link- and node-connectivities refer to the minimum number of links and nodes,
respectively, whose removal results in a disconnected network. These two parameters
represent a measure of the robustness exhibited by the network. Node symmetry
makes the network look the same when viewed from any node, and is related to the
reduction in the complexity of designing distributed routing algorithms, as well as to
programmability issues. Good embeddability of many important parallel computation
graphs - such as rings, trees, meshes and others - allows the topology to attain
an efficient matching to the communication structure of many well-known parallel
applications. Finally, the extensibility of a network is an important property which
allows a graceful scaling of the network size.

In previous work [20, 21], the authors have proposed an intercommunication

32 occam user group newsletter

topology based on a mesh with wrap-around links. It turns out that this scheme
is especially suitable for connecting any arbitrary number of transputer nodes con
figuring a multicomputer system, since it provides a good trade-off in the network
metrics described above. To clarify this suitability, let us summarize here the main
features exhibited by this kind of interconnection topology.

These networks are optimal with respect to two distance parameters simultane
ously, namely diameter and average distance, among all 2D meshes with wrap-around
links, and so the maximum and average transmission delays are minimized. We
therefore call them midimew networks (minimum distance mesh with wrap-around
links). They are also regular, node-symmetric and maximally connected and have
degree four. One such optimal midimew network exists for any given number of
nodes.

In section 11 we review the construction procedure given in reference [21], in
order to introduce midimew networks. Their distance properties are also stated.
See reference [21] for proofs and additional properties. In section Ill, we consider
the problem of routing messages between nodes through the network. Assuming
that the processor of the system node is a transputer, we provide a distributed
routing algorithm written in occam 2 that conveys messages between nodes following
a shortest path.

11. Midimew networks

We present in this section the essentials of a systematic method, fully described in
reference [21], for constructing midimew networks with any number of nodes N >
2. We provide also analytic expressions to compute diameter and average distance
parameters for this class of networks. Finally, we compare briefly the topological
characteristics of midimew networks with other well-known static interconnection
topologies.

Procedure

(Figure 2 may help in understanding the procedure.)

Step 1 Find the following parameters:

r~l b-N, h = b+r, v

Step 2 Design a rectangular grid of width h and height v.

Step 3 If r =1= 0 and v =1= b - 1, then discard from the drawn grid a leftmost upper
rectangle of width r and height v - b+1.

Step 4 Establish the wrap-around links: Connect each node (i, 0) to the top node of
the column (i +r) mod h, and connect each node (h - 1, j) to the leftmost node
of the row (j +b - 1) mod v.

That completes the construction of the midimew network. The networks in figures 3
and 4 have been obtained using this algorithm, and the nodes haveb'een labelled in

N912 January 1990 33

j
b

v-I 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

I-~lr0 0 0 0 0 0 0 0 0 0 0 0 0 0

b - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 t~
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

I I .-
0 h - 1

Figure 2: dimensions of midimew networks

Figure 3: midimew network with N == 32 nodes

34 occam user group newsletter

t
N
-=3

b

+

~b=3

Figure 4: square midimew with N = 9

the following way: every node i, with 0 ::; u ::; N - 1 is adjacent to the nodes

(i + b) modN (North displacement)
(i - b) modN (South displacement)
(i + b - 1) mod N (East displacement)
(i - b+ 1) mod N (West displacement)

We label nodes in this way in order to preserve a graph isomorphism between midi
mew networks and a family of optimal circulant graphs described in reference [21].
This isomorphism allows us to obtain analytic expressions for the network diameter
and the average distance, to be described in' this section, and is the basis for the
routing algorithm that we will present in section Ill.

Rectangular and square cases

It can be seen from figure 2 that fully rectangular midimew networks are obtained
in each of the following cases:

1. When b+ r = b, i.e. r = O. This case occurs when N is a multiple of b, and then
the dimensions of the network are h = b and v = Nib. For each b, exactly four
such full rectangles appear, with sizes v = 2b - 3, v = 2b - 2, v = 2b - 1 and
v = 2b, corresponding to N = 2b2

- 3b, N = 2b2
- 2b, N = 2b2

- band N = 2b2
•

2. When b - 1 = rN/bl - r, i.e. r = rNlbl - b+ 1. This case occurs when N =
(rNlbl + 1) (b - 1) and then the dimensions of the network are h = NI(b - 1)
and v = b - 1. For each b, exactly one such full rectangle appears, namely that
with h = 2b - 1, that is, when N = 2b2

- 3b+ 1.

Remark that, out of the 4b - 2 midimew networks existing for each value of b > 2
(N > 8), only five of them are rectangular. On the other hand, only two square
midimew networks exist, corresponding to the cases where N = 4 or N = 9. This
can be easily seen from the fact that a square midimew can be obtained only if
b = Nib or b - 1 = NI(b - 1), and that the second equality never holds. Some
manipulations show that the first case implies that N < 4V1V - 2. Solving for V1V
yields that N < 12, and thus the only perfect squares fulfilling this condition are 4
and 9. Figure 4 presents the square midimew N = 9.

N912 January 1990 35

A generally desirable characteristic is to achieve high density meshes (large num
ber of nodes) yet minimizing the number of wrap-around links, since they may raise
some implementation difficulties. Square meshes with wrap-around links present an
advantage over similar networks with rectangular or 'L' shapes, because a square is
the rectangle with minimum the perimeter for a given area. The number of wrap
around links in midimew networks is equal to the value of the network semiperimeter,
and the area corresponds to the total number of nodes. Midimew networks have been
chosen by looking for the minimimum perimeter.

Diameter and average distance in a midimew network

We present here the analytical expressions that give the diameter and the average
distance for midimew networks~ These expressions can be derived from theorems 1
and 2 of reference [20].

The value of the diameter k can be expressed, as a function of N, as

{
b-1 ==

k=
b· =

rJN /21 - 1 if n :::; 2b2
- 2b + 1

rJN /21 if n > 2b2
- 2b + 1

The value of the average distance can be expressed, as a function of N, as

_ [2(k
2

- 1)]
k = k 1 - 3(N _ 1)

Both values are lower bounds for the diameter and the average distance of any
2D mesh topology with wrap-around links [20]. Due to the simultaneous minimiza
tion of both parameters, the midimew networks are an optimal family of 2D meshes
with wrap-around links. Moreover, these topologies can be directly implemented
with transputers, exploiting all of their connectivity.

In order to estimate the suitability of midimew networks we have compared
several well-known static interconnection networks (2D and 3D mesh, 2D and 3D
torus and hypercube) and the alternative proposed here, midimew [21]. As an
example, figure 5 illustrates the comparison of all these networks with respect to
a typical cost measure [22], namely the product of diameter and degree for a number
of nodes up to around 2200. Present medium-grain multicomputers fall in this range.

Ill. Routing strategy

Let us consider now the problem of routing messages in a transputer-based midimew
network. We simplify this problem by considering two processes running in parallel
on each node: a computing process and a routing process, communicating through
a buffer (see figure 6). We are interested in the routing of messages between nodes
through the network, excluding the passing of messages between processes in the
same node.

Every node can receive and send messages from/to any of the four channels which
connect it with its neighbour nodes. We have named these channels North, South,
East and West respectively, as~ can be seen in figure 6.

The process that must take routing decisions reads information from any of the
five channels, one from each neighbour and one from its own local computing process.
If the received message has reached its destination, the routing process sends the

36

400

350
Clj
Clj 300....
ell
Clj

~ 250
~

z...
200~

Clj

§ 150
S

100

50

0

0

occam user group newsletter

-tr 2D mesh
-0- 2D torus

3D mesh

* 3D torus
-0- hypercube
-El- midimew

250 500 750 1000 1250 1500 1750 2000 2250

Number of nodes N

West

Figure 5: diameter times degree as a function of N

North

to node (i+b) mod N

East

to node (i + (b-l» mod N

South

to node (i-b) mod N

Figure 6: channels and processes of a node

N912 January 1990 . 37

0 1 2 3 4
Local North East South West
Local North East South West

message to the local computing process. Otherwise, it will take the appropriate
routing decision sending the received message in an appropriate direction.

The routing algorithm is quite simple and can be formally derived from the
topological properties of the midimew networks [21]. Messages are sent from source
node to destination node using one shortest path of the network joining those nodes.
The routing strategy sends messages first in the E-W direction (hops of length b-1)
and next in the N-S direction (hops of length b).

The message format must include the length of the message, the destination
address and the message itself. The addresses of the nodes correspond to the labelling
proposed in section 1I.

.....-M-e-s-s-a-g-e-r--------~----:~-T"""'::::--~:---.,..--

length

If we want more than one process to be executed in the same network node, sharing
the processor time, we must add a process identifier to each message passed between
processes.

In our approach, when a parallel program is being executed on this kind of multi
computer all the nodes must perform the same routing algorithm. When a message
ill' read, the router calculates the difference, m, between the destination address and
its own address. If m = 0, then the message has reached the destination node and
it is sent to the local computing process. Actually, the message is transferred to a
buffer that stores it for further processing, so as to try to avoid blocking of the router
in case the computing process is not ready to accept the message. Otherwise, some
decisions are taken in order to send the message in the appropriate direction. If the
message has not yet completed its path along the first direction (E-W), it is routed
again in this direction. Otherwise, it is sent to the second direction (N-S).

An occam2 implementation of the routing process for a transputer-based midi
mew network is shown in figure 7. The procedure uses two arrays of five channels,
input and output. The channel numbered 0 links the routing process and the local
computing process, and channels numbered 1, 2, 3 and 4 represent North, South,
East and West links respectively, connecting to neighbouring routing processes.

Input channels
Output channels

Let us examine an example of the routing mechanism for the network shown in
figure 3. A message that goes from node 19 to node 9 will be sent first through the
West channel, to node 16. The routing process in node 16 will reroute it in the same
direction to node 13. At this node the routing process will send the message to the
South, and it will finally arrive at its destination, node 9, where will be consumed.

Another way to route messages through the network consists of computing, at
the sendiI;l.g node, a routing record with the number of hops the message must make
in each direction, (x, y) [21]. This routing record is sent as the header of the message
instead of the destination address. Then, the intermediate nodes route the message
first in one direction, namely y, updating this element of the routing record. When
the message has accomplished all the hops in this direction the routers will send it in
the x direction towards the destination node. To perform this strategy, the routing
process must be divided in two parts: one to compute the routing record, for those

38 occam user group newsletter

VAL lIT H IS 32 : -- Global variables in function of the network size
VAL lIT b IS 4 :

VAL lIT max_length IS 200 : maximum buffer size

PROTOCOL message IS liT:: []IIT
PROC routing (VAL lIT source, [6] CHAI OF message input,

[6] CHAI OF message output)
liT m, remainder, cond, sign, length:
[max_length] liT buffer
WHILE TRUE

ALT i = 0 FOR 6
input[i] ? length::buffer read a message from an input channel

SEQ
m := buffer[1] - source
IF

m <> 0
SEQ

sign := -1
IF

m > (1/2)
m := I - m

r > 0
sign := 1

m > (-(1/2))

calculate dest. - source (current node)

m := -m

m > (-I)
SEQ

sign := 1
m := I + m

remainder := m REM b
cond := (m/b) - (2*remainder)
IF

remainder > 0
IF

((b - cond) * sign) > 0
output [4] length: :buffer send to the west

((b - cond) * sign) < = 0
output [2] ! length: :buffer send to the east

remainder = 0
IF

sign = 1
output [1] length: :bufter send to the north

sign = (-1)
output [3] length: :buffer send to the south

m = 0
output [0] ! length::buffer -- message at destination

Figure 7: routing algorithm for a midimew network with 32 nodes

N912 January 1990 39

cases in which the message is originated at the node itself, and the other to route
messages. This technique could be more suitable to implement an adaptive routing
policy, as can be seen in reference [23].

References

[18] W. C. Athas, C. L. Seitz Multicomputers: message-passing concurrent
computers, IEEE Computer, August 1988, pp. 9-24.

[19] IMS TBOO transputer, Inmos Product Data, 72 TRN 116 00, February 1987.
[20] R. Beivide, E. Herrada, J. L. Balcazar and J. Labarta, Optimized

mesh-connected networks for SIMD and MIMD architectures, Proc. 14th Int.
Symp. on Comput. Archit., June 1987; pp. 163-170.

[21] R. Beivide, E. Herrada, J. L. Balcazar and A. Arruabarrena, Optimal distance
networks of low degree for parallel computers, Research Report
FISS-I-33.1-ATC-89, Informatika Fakultatea, EHU 1989 (Submitted for
publication) .

[22] P. W. Dowd and K. Jabbour, Spanning multiaccess channel hypercube
computer interconnection, IEEE Trans. on Comp., Vol. 37, N99, September
1988, pp. 1137-1142.

[23] C. R. Jesshope, P. R. Miller and J. T Yantchev, High performance
communication in processor networks, 1989 Int. Symp. on Comp. Arch., pp.
150-157.

A. Arruabarrena, R Beivide and C. Izu
Informatika Saila
Euskal Herriko Unibertsitatea
649 p.k.
20080 Donostia
Spain

agustin@gorria.if.ehu.es

E. Herrada and J. L. Balcazar
Facultat d'Informatica
Universitat Politecnica de Catalunya
Pau Gargallo 5
08020 Barcelona
Spain

AN EXPERIMENT IN PARALLELIZING EDGE-DETECTION
Fabrizio Imelio, Universita di Pisa, Italy

I have parallelized four algorithms for edge detection

l> Canny: Gaussian filter followed by second directional derivative;
l> Marr-Hildreth: Gaussian filter followed by Laplacian operator;
l> Nevatia-Babu: template matching followed by edge point selection;
l> Bartliff: structure shown in figure 8;

each on a three-dimensional cube of T800 transputers. The transputers are allocated
on a B012 motherboard with a software-programmable crossbar-switch.

There were two objects in parallelizing the algorithms:

l> a balanced division of work, so that each transputer executes the algorithms on
the same quantity of data;

40 occam user group newsletter

IN

Marr - Hildreth

operator

gradient

rescaling gradient
o / 255

Sobel
operator

rescaling §iii.JLI..~JLll.... JLJLIl.

0/255

edge - following
and edge-points u&.'...,.......A""'AJIl

Figure 8: Bartliff edge detector

Ne;> 12 January 1990 41

Figure 9: steps in distributing ·the work in a cube

l> efficient distribution of work, to minimize the number of steps required to send
the data from the root to all of the nodes of the machine and vice versa.

Figure 9 shows the data flow during the sending of work to all the nodes or the cube.
This operation is performed in three steps, that number being the dimension of the
cube.

All the algorithms are implemented on a MicroVAX (in C), on a single transputer,
and on the cube. The execution times and efficiencies are as follows:

algorithm IMicroVAX I 1 x T800 I 8 x T800 I efficiency I
Canny (7 x 7) 218.1 39.3 6 0.82
Marr-Hildreth (15 x 15) 350.7 62.6 8.51 0.92
Nevatia-Babu 374.26 63.35 8.94 0.88
Bartliff 597.6 107.4 17 0.79

The efficiency value is t1/(ntn) where t1 is th~ execution time on a single transputer
and tn is the execution time on a cube of n transputers.

These experimental results show that the algorithms have been parallelized with
an efficiency greater than 80%.

Fuller details can be found in the paper: Real-time processing architectures in
ground surveilance systems, by S. Bottalico, F. de Stefanis and F. Imelio, presented
at the 5th International Conference on Image Analysis and Processing, Positano,
Italy (1989).

Fabrizio Imelio
cloSelenia S.p.A.
via S. Maria, 83
56100 Pisa
Italy

42 occam user group newsletter

REALLY EFFICIENT MULTIPLE BUFFERING IN OCCAM
AND EFFICIENT FAIR ALTS

Piers A. Shallow, Marconi Maritime Applied Research Laboratory, Cambridgel

Although I was originally going to reply to G. Jones' article on Carefully scheduled
selection with ALT [24], it was the use of the word 'efficient' in his article on Efficient
multiple buffering in occam [25] which has enticed me to write and put forward the
methods I have been using.

In both articles, I feel that G. Jones has forgotten to stress the enormous process
ing time wasted in setting up the replicator constructs; indexing into arrays (both
channel and data arrays); the use of Boolean guards on channels; and the use of the
remainder operation to obtain the modulus of the index pointer, all of which I have
deliberately avoided for purpose of performance, at the cost of memory space.

The way in which I have been implementing a 'fairer ALT' with a small n, is by
replicating the code of the ALT (PRI ALT) and its alternatives n times by using the
'attach file' utility (method 1). Within each ALT all n alternatives are rotated by one
position (up or down) such that the bottom alternative becomes the priority one (or
vice versa). I have 'abbreviated' the channels and data arrays as single elements and
have defined them once outside of the 'WHILE condition', removing any indexing or
repetitive abbreviations. The use of data arrays is questionable and I use, whenever
possible, only one 'data type' variable for all the alternatives.

The method I have been using for the 'multiple buffer' is an unwrapped replicated
SEQ, where the format of the code is repeated three times but the variables used are
rotated around (method 2) [26, without the procedure callsJ. The deliberate use of
unique variable names and channels has meant that the variables and channels are
never shared between parallel processes within a WHILE construct.

In both cases I have also avoided the use of procedure calls when ever possible as
they take time to initiate by embedding the code into the processes with the'attach
file' utility.

The methods mentioned above have reduced the amount of processing overheads
required to implement the programs by a factor of about three. The approximate
number of processor cycles [28] (excluding the amount of time it takes to transfer data
across a channel and the amount of 'process' code) was reduced from 1608 cycles [24,
favourite code] to 495 cycles (method 1), and from 1063 cycles [25, figure IIJ to
386 cycles (method 2) for the 'fairer ALT' (with n = 4) and the 'multiple buffer'
respectively. The compiled size of the code (excluding the code required for the
'process') for implementing the 'multiple buffer' programs are the same, however my
implementation of the 'fairer ALT' program is two and a half times as large with
n = 4 and 24 times as large with n = 10. (Incidentally, the D700D TDS wiil not
compile the program in figure 11 of reference [25] as legal occam.)

I have used the word 'fairer' as the examples given are far from fair. Take my
implementation of the ALT, assume that only the channels from G onwards are always
ready and start with alternative A as the favourite. As channels A to F are not active,
alternative G is selected and processed. At the start of the next ALT the favourite
alternative now becomes B. As B to F are still inactive and because G has become

IThis document expresses the opinion of the author and not that of the company.

N912 January 1990 43

ready, it will be selected and processed again. The favourite alternative now becomes
C on the next ALT. As alternative G is always ready at the start of each ALT it will
always be selected until the favourite alternative becomes H. Alternatives I to N
will then be selected in turn as the favourite progresses through to N. At this point
the favourite alternative becomes A again, where upon alternative G is reselected.
As a result alternative G is effectively selected seven times to every single selection of
alternative H to N, which is far from fair. This problem is also inherent in G. Jones'
favourite solution [24].

In reference to R. Peel's problem [27] of ensuring that it is possible for the
buffers to be emptied, there are two very simple programs (figures 10 and 11) which
achieve this property. Needless to say these programs do not support the subtlety
incorporated in R. Peel's program which has the flexibility of allowing the processing
to start after the data has been read in and allowing the data to be transmitted
once the processing has finished, i.e. the simple programs run alternately two of the
three processes at once and then only one, instead of always running two of the three
processes.

Again it is possible to increase the performance of R. Peel's program by expanding
the program and removing the data indexing (figure 12) and can be condensed down
into to two parallel processes (figure 13). Unfortunately the variables are still shared
between the parallel WHILE TRUE processes, making the program illegal occam.

In attempting to reduce the number of internal communications, the solution
I obtained (figure 14) ended up sharing the external channels between two parallel
WHILE TRUE processes, which again is illegal occam, although their use is strictly con
trolled by the synchronisation of the internal channels. In rearranging the program,
to make it legal occam, I have arrived with an alternative (figure 15) which has the
same basic characteristics as R. Peel's program, but with fewer parallel processes
and no internal communications. This program only takes about 196 processor
cycles (excluding the time taken to transfer data over a channel and to run the
'process' code) instead of 691 processor cycles required for figure 14 (a factor of
about three).

I would also like to bring to light an underlying problem of using protocols within
a multiple buffering environment. Take for example a simple buffering program,
G. Jones' program [25, figure 9], where a simple protocol has been used. If we
attempt to replace the protocol with a tagged protocol we rapidly become stuck
because the CASE statement has to be used. Should there not be an easier way of
running parallel input and output channels without the need to use an additional
flag (tag) which has to be set upon the input tag option and used as the means of
selecting the outp~t data (figure 16)?

References

[24] G. Jones, Carefully scheduled selection with ALT, OUG newsletter N910,
January 1989.

[25] G. Jones, Efficient multiple buffering in occam, OUG newsletter N911, July
1989.

[26] Phil Atkin, Performance maximisation, INMOS Technical Note 17.

44 occam user group newsletter

PROC solutionA (CHAR OF p.data.type Chanin,
CHAR OF p.data.type Chanout)

data. type dataA, dataB:
SEQ

Chanin ? dataA
WHILE TRUE

SEQ

PAR
Chanin ? dataB
SEQ

process dataA
Chanout ! dataA

PAR
Chanin ? dataA
SEQ

process dataB
Chanout ! dataB

Figure 10: simple solution A

PROC solutionB (CHAR OF p.data.type Chanin,
CHAR OF p.data.type Chanout)

data. type dataA, dataB:
SEQ

Chanin ? dataA
process dataA

WHILE TRUE
SEQ

PAR
SEQ

Chanin ? dataB
process dataB

Chanout ! dataA
PAR

SEQ
Chanin ? dat aA

process dataA
Chanout ! dataB

Figure 11: simple solution B

N912 January 1990 45

dataB now valid
wait tor tree dataA

dataA now valid
wait for tree dataA

PROC peel. solution (CRAN OF p.data.type
CRAN OF p.data.type Chanout)

CRAN OF INT c.1.2, c.2.3, c.3.1:
data. type dataA, dataB
PAR

{{{ input data
INT data.validA, data.freedA:
INT data.validB, data.freedB:
SEQ

WHILE TRUE
SEQ

Chanin ? dataA
PAR

c.1.2 ! data.validA
c.3.1 ? data.freedB

Chanin ? dataB
PAR

c.1.2 data.validB
c.3.1 data.freedA

Chanin,

}}}

{{{ process data
INT data.validA, data.readyA:
INT data.validB, data.readyB:
SEQ

c.1.2 ? data.validA
WHILE TRUE

SEQ
process dataA

PAR
c.1.2 ? data.validB
c.2.3 ! data.readyA

process dataB
PAR

c.1.2 ? data.validA
c.2.s ! data.readyB

wait for valid dataB
dataA now ready

wait for valid dataA
dataB now ready

dataB, now tree
wait tor ready dataA

dataA now tree
wait for ready dataB

dataB now tree
wait tor ready dataA

}}}
{{{ output data
INT data.treedA, data.readyA:
INT data.treedB, data.readyB:
SEQ

PAR
c.3.1 ! data.treedB
c.2.3 ? data.readyA

WHILE TRUE
SEQ

Chanout dataA
PAR

c.3.1 data.treedA
c.2.3 data.readyB

Chanout dataB
PAR

c.3.1 data.treedB
c.2.3 data.readyA

}}}

Figure 12: Peel's solution expanded

46 occam user group newsletter'

PROC my.condensed.solution (CHAN OF p.data.type Chanin,
CHAN OF p.data.type Chanout)

CHAN OF INT c.1.2, c.2.1:
data. type dataA, dataB:

PAR
{{{ input data
INT data.validA, data.freedA:
INT data.validB, data.freedB:
SEQ

Chanin ? dataA
c.1.2 ! data.validA -- dataA now valid

? dataB

WHILE TRUE
SEQ

Chanin
PAR

c.1.2
c.2.1

data. validB
data. freedA

dataB now valid
wait for free dataA

data. valid!
data. freedB

Chanin ? dataA
PAR

c.1.2
c.2.1

data! now valid
wait for free dataB

}}}
{{{ process and output data
INT data.validA, data.freedA:
INT data.validB, data.freedB:
SEQ

c.1.2 ? data.valid! -- wait for valid dataA
process

WHILE TRUE
SEQ

PAR
SEQ

c.1.2 ? data.validB
process dataB

SEQ
Chanout ! dataA
c.2.1 ! data.freed!

PAR
SEQ

c.1.2 ? data.validA
process dataA

SEQ
Chanout ! dataB
c.2.1 ! data.freedB

}}}

-- wait for valid dataB

-- dataA now free

-- wait for valid dataA

-- dataB now free

Figure 13: condensed solution

N912 January 1990

PROC temp. solution (CHAN OF p.data.type Chanin,
CHAN OF p.data.type Chanout)

CHAN OF INT c.1.2:
data. type dataA, dataB:
PAR

INT inchan.free, outchan.free:
WHILE TRUE

SEQ
Chanin ? dataA
PAR

c.1.2 ! inchan.free -- free input channel
process dataA

Chanout ! dataA
c.1.2 ! outchan.free free output channel

INT inchan.free, outchan.free:
WHILE TRUE

SEQ
c.1.2 ? inchan.free -- wait for input channel
Chanin ? dataB
PAR

process dataB
c.1.2 outchan.free -- wait for output channel

Chanout ! dataB

Figure 14: temporary solution

PROC my.peel.solution (CHAN OF p.data.type Chanin,
CHAR OF p.data.type Chanout)

47

data. type dataA, dataB:

SEQ
Chanin ? dat aA

WHILE TRUE
SEQ

PAR
SEQ

process dataA
Chanout ! dataA

SEQ
Chanin ? dataB

process dataB

PAR
Chanin
Chanout

dataA
dataB

Figure 15: my Peel solution

48 occam user group newsletter

PROC variant.protocol (CHAI OF p.variant Chanin, CHAI OF p.variant Chanout)

data.typeA
data.typeB

data.typel
BYTE 'flagA:
BYTE 'flagB:

dataAA, dataBA:
dataAB, dataBB:

dataAI, dataBI:

SEQ
{{{ input A
Chanin ? CASE

tagA; dataAA
'flagA := IAI

tagB; dataAB
'flagA := IBI

tagl; dataAI
'flagA := III

}}}
WHILE TRUE

SEQ
PAR

{{{ input B
Chanin ? CASE

tagA; dataBA
'flagB := IAI

tagB; dataBB
'flagB := 'BI

tagl; dataBI
flagB := III

}}}
{{{ output A
CASE 'flagA

(I A')

Chanout tagA; dataAA
(I BI)

Chanout tagB; dataAB

(I 11)

Chanout tagl; dataAI
}}}

PAR
input A

{{{ output B
CASE 'flagB

(I A')

Chanout tagA; dataBA
(IB I)

Chanout tagB; dataBB

(1Nl)

Chanout tagl; dataBI
}}}

Figure 16: variant protocol

N912 January 1990 49

[27] R. Peel, Issues raised while implementing a layered protocol using occam and
the transputer, in Proceedings of OUG technical meeting N910, ed. Andre
Bakkers, Applying transputer based parallel machines, lOS, 1989.

[28] INMOS Ltd, Transputer instruction set - a compilers writers guide, Prentice
Hall, 1988.

P. A. Shallow piers@uk.co.mmarl
Marconi (MMARL)
Unit. 33
Cambridge Science Park
Milton Road
Cambridge CB4 4FX
United Kingdom

TWO IMPLEMENTATIONS OF SEMAPHORES IN OCCAM
Geoff Barrett, Inmos Ltd, Bristol

This paper presents two implementations of semaphores in occam. The aim is
to design an algorithm which has a non-busy and efficient implementation on a
communicating process architecture.

Introduction

Semaphores and hand-shaking have come to be the two most common models of
concurrency in theoretical circles. It has been shown that point to point handshaking
communication has an efficient implementation [32]. It has also been known for
some time that semaphores can be implemented in machines with only read and
write instructions [29]. We set out to exhibit a more efficient implementation of
semaphores.

Abstractly, we can think of a semaphore as a natural number variable which is
incremented by a signal operation and, if positive, is decremented by a wait operation;
otherwise, the process executing the wait operation is suspended until the variable
is made positive again by a signal operation. A binary semaphore is one whose
variable only ever takes on the values 0 and 1. Such semaphores were used in one of
the first solutions to the problem of providing mutual exclusion. For more examples
of the use and theory of semaphores see reference [31]. Semaphores are therefore a
paradigm which is most useful on shared memory architectures. In particular, we
shall be interested in an implementation for a single processor.

Notation

The language which is used to describe the algorithm is like occam except that
we abuse the fact that the transputer implementation has some properties which
are not required by the language definition. The extent of this is that we assume
that channel communications achieve the desired synchronisation whenever only one
process attempts to input or output at anyone time; and we assume that a process
can only interrupt another whenever the interrupting process is of higher priority

50 occam user group newsletter

or else the two processes are of the same priority and the interrupted process has
reached the end of the body of a WHILE-loop.

We introduce some further constructs into the language as follows:
1. Type abbreviations are allowed with a self-explanatory syntax:

TYPE name
type

2. The class of types is augmented with records:

RECORD
{ declaration }

3. There is a new type of lists which has syntax

LIST OF type

The empty list is denoted (), a singleton by (x) and catenation of lists by --.
4. To deal with lists we introduce a new control construct:

MATCH exp
branch

where
branch ::= pattern

process

Patterns are expressions with free variables and are matched by an expression if
there is an assignment to the free variables of the pattern such that the pattern
is equal to the expression. The free variables are available to the process as
constants bound according to the match. For instance, the pattern (c) -- q will
match the list (1,2,3) binding c to 1 and q to (2,3). The construct

MATCH (1,2,3)
()

STOP

(c) -- q
head, tail := c, q

has the effect of assigning 1 to head and (2,3) to tail.

Only one priority

The simple case of the implementation is when there is only one level of process
priority. In this case, we may assume that any WHILE-free segment of code can
only be interrupted at a communication. This does require a slightly different
implementation of the conditional construct from that recommended in the compiler
writer's guide [30] so that no unconditional jumps are used.

The essence of the implementation is to maintain a queue of processes which are
waiting for the semaphore. Because this queue cannot be maintained directly, we
keep a list of channels over which the processes are waiting to communicate. The
WAIT instruction will be implemented by decrementing the semaphore variable if it
is positive or, if the semaphore variable is 0, appending a channel to the end of the
semaphore queue and waiting on that channel. The SIGNAL instruction will increment

NC? 12 January 1990

PROTOCOL UNIT
CASE

unit

TYPE SEM
RECORD

INT v
LIST OF CHAN OF UNIT q

PROC INIT (SEM s, INT n)

s.v, s.q := n, ()

PROC WAIT (SEM s)

IF
s.v > 0

s.v := s.v-1
s.v = 0

CHAN OF UNIT c
SEQ

s.q := s.q (c)
c! unit

PROC SIGNAL (SEM s)

MATCH s.q
()

s.v := s.v+1
(c) q'

SEQ
s.q := q'
c? CASE unit

Figure 17: single priority interrupts

51

the semaphore variable if the queue is empty and otherwise remove the first element
of the queue and complete the communication along the channel, thereby releasing
a waiting process. The s<=:maphore variable is initialised to the initial value of the
semaphore and the queue is initially empty. The code appears in figure 17.

To verify the correctness of the implementation, we need the observation that if c
is in the semaphore queue, then there is precisely one process waiting to output
along the channel. The abstract behaviour of the semaphore (described in the
introduction) considers the WAIT and SIGNAL operations to be atomic. We have
given implementations which may be interrupted. To see that the implementation is
correct, we define a map from the interrupt points of the implementation to processes
of the specification. A SIGNAL process is only possibly interrupted when it comes to
output along the channel from the queue. At this point, we map it to SKIP because
the communication is guaranteed to terminate within some finite amount of time
as there is a process waiting to output along the channel. A WAIT process can only
be interrupted when it comes to output. This point is map'ped to a WAIT process

52 occam user group newsletter

TYPE SEM
RECORD

INT v
LIST OF CHAN OF UNIT q
SIM_SEM 10
SIM_SEM hi
BOOL 10_using
CHAN OF UNIT hi_chan

Figure 18: type of a semaphore in the two-priority implementation

in the specification because the process still has to wait for some other process to
increment the semaphore variable. This argument can be formalised to prove that
the implementation is safe in that it does no actions which are not allowed by the
specification.

We must still ensure that the implementation is live in the sense that it can
perform enough of the actions which the specification requires. In other words, if
there is a SIGNAL process of the specification which can make progress, then there
must be one in the implementation which can, and similarly with the WAIT processes.
The former assertion is obvious and the latter can be deduced from the fact there is
a process waiting on each of the channels in the semaphore queue and otherwise the
WAIT process proceeds as normal.

Two priorities

Next, we consider how to implement the semaphore when there are processes of
two priorities. The implementation is complicated because we cannot assume that
lower priority processes are only interrupted at communications. What we shall
do is to combine two single priority sempahores to make a semaphore which works
properly between processes of different priorities. Access to the semaphore state will
be protected by a binary semaphore on each priority. This means that we only have
to implement a semaphore which arbitrates between a single process of each priority.
Since it is only the low priority process which may be interrupted, the problem is
to exclude the high priority process from the semaphore state while the low priority
process has access.

A smart solution

The way in which this is achieved is with a flag and a channel (figure 18). Whenever
the low priority process has access to the semaphore state, the flag is set. If a high
priority process requires access to the state and the flag is set, then it waits to output
along the channel. Initially, the flag must be unset. In the code in figures 18 and 19,
the semaphore and procedures from the single priority implementation are prefixed
with SIM_.

We will prove a number of assertions which lead to the fact that at most one
process is attempting to access the state of the semaphore at anyone time (by state
we mean the variable and queue). This is all that is required for a proof of correctness

N912 January 1990

PROC INIT (SEM s, INT n)

SEQ
SIM_INIT (s.lo, 1)
SIM_INIT (s.hi, 1)

S.v, s.q, s.lo_using .-
n, (), FALSE

PROC HI-SIGNAL (SEM s)

SEQ
SIM_WAIT (s.hi)
IF

s.lo_us,ing
s.hLchan unit

NOT s.lo_using
SKIP

MATCH s.q
()

s.v := s.v+1
(c) -- q'

SEQ
s.q := q'
c? CASE unit

SIM_SIGNA;L (s.hi)

PROC LO-SIGNAL (SEM s)

SEQ
SIM_WAIT (s.lo)
s.lo_using . - TRUE
MATCH s.q

()
s.v := s.v+1

(c) -- q'
SEQ

s.q := q'
c? CASE unit

s.lo_using := FALSE
PRI ALT

s.hLchan? CASE unit
SKIP

SKIP
SKIP

SIM_SIGNAL (s.lo)

53

PROC HI_WAIT (SEM s)

CHAN OF UNIT c:
BOOL waiting:
SEQ

SIM_WAIT (s.hi)
IF

s.lo_using
s.hi_chan unit

NOT s.lo_using
SKIP

IF
s > 0

waiting, s.v := FALSE, s-1
s = 0

waiting, s.q . - TRUE, s.q -- (c)
SIM_SIGNAL (s.hi)
IF

waiting
c! unit

NOT waiting
SKIP

PROC LO_WAIT (SEM s)

SEQ
SIM_WAIT (s.lo)
s.lo_using . - TRUE
IF

s =1= 0
waiting, s.v := FALSE, s-1

s = 0
waiting, s.q . - TRUE, s.q -- (c)

s.lo_using := FALSE
PRI ALT

s.hLchan? CASE unit
SKIP

SKIP
SKIP

SIM_SIGNAL (s.hi)
IF

waiting
c! unit

NOT waiting
SKIP

Figure 19: two priority implementation

54 occam user group newsletter

for the new implementation is essentially the same as the old but with some extra
scheduling controL

1. Only one low priority process has access to the semaphore state, the lo_using
variable and the output end of the hi_chan channel at anyone time. No low
priority process has access to the input end of the hi_chan channel. -
(Use of low semaphore.)

2. Only one high priority process has access to the semaphore state and the input
end of the hi_chan channel at ~ny one time. No high priority process has access
to the output end of the hi_chan channel nor assigns to the lo_using variable at
anyone time.
(Use of high semaphore.)

3. If hi_chan is ready for output, then lo_using is FALSE.
(The only process which may make hi_chan ready for output is the low priority
process which has just assigned FALSE to lo_using.)

4. When hi_chan becomes enabled, lo_using is TRUE.
(The only process which may enable the channel is the high priority process which
has just tested lo_using; the process cannot be interrupted during this sequence
of actions.)

5. If a low priority process attempts to access the semaphore state then lo_using is
TRUE.
(Only low priority processes set it, by part 1 only one of them has access at a
time, and then it is obvious from the way in which the assignments bracket the
access.)

6. If a high priority process attempts to access the semaphore state'then lo_using
is FALSE.
(Either lo_using was FALSE at commencement of the test in which case the process
cannot be interrupted during its access to the semaphore state or else lo_using
was TRUE but as soon as hi_chan becomes ready, lo_using is FALSE and the process
is rescheduled and cannot be interrupted during access.)

Parts 5 and 6 together mean that at most one process has access to the semaphore
state at anyone time. We need only verify that once a high priority process suspends
on hi_chan and the low priority processes are not starved by high priority actions,
it eventually receives a communication. This is immediate since the high priority
process will only suspend on the channel when some low priority process is accessing
the semaphore state and will, if not starved, eventually communicate along hi_chan.

A n easy solution

The easy way in which to ensure that a process is atomic is to give that process the
higher priority. So that, for instance, LO_SIGNAL would be

PRI PAR
SIM_SIGNAL (s)

SKIP

Comparisons

There are three sorts of comparisons which can be made between the two implemen
tations. The first is in terms of efficiency. The second is in the way in which the

N912 January 1990 55

algorithms treat processes which are waiting to access the semaphore. The third is
the effect on the environment.

Efficiency

Both methods have a common subset of actions which are necessary in each access.
We study the extra actions needed otherwise. In the less smart algorithm, there is
the cost of spawning a high priority process for each low priority access and that
is alL For the smart algorithm, the overheads vary depending on whether other
processes of the same or different priority are attempting to access the semaphore.
In the best case, when no other process is attempting to access the semaphore, there
are four extra assignments and three extra tests for a low priority process, and two
extra assignments and three extra tests for a high priority process with an extra
assignment and test in both cases if the operation is wait. In the worst case, there
are, on top of the overheads already mentioned, two communications (we count only
one of the communications for the SIM_WAIT and SIM_SIGNAL because otherwise each
communication would be counted twice).

Since it rare that two processes attempt to access a semaphore simultaneously,
the smarter algorithm is usually more efficient.

Queuing

Suppose there is a set of processes waiting to access a semaphore. Both imple
mentations choose arbitrarily between high priority processes and if there are none,
between low priority processes. High priority processes always overtake low priority
processes. The queue of processes waiting to acquire the semaphore is always dealt
with in a first accessed first served fashion.

With rega;d to the effects on the transputer scheduler queue, the less smart
implementation causes each low priority process to reschedule on the queue thereby
reducing its effective time-slice period and increasing the chance of contention for
the semaphore.

Environment

The smart implementation has the advantage that access to semaphores by low pri
ority processes does not affect the interrupt latency of the whole program. Reasoning
about real time programs is very much simplified by only having to consider high
priority proc.esses when calculating interrupt response times.

Conclusions

The reasoning employed to show the correctness of the algorithms needs intimate
knowledge of the scheduling mechanism of the underlying process modeL This leads
to a very intricate and complicated proof. The provision of semaphores and the
bundling of synchronisation iuto hand-shaking communication gives a much more
suitable level of abstraction in which to reason about such systems.

However, the fact that it is possible to provide semaphores on a single machine
allows a more efficient implementation of some forms of replicated arbitrations. For

56 occam user group newsletter

instance, if the only use for input of the array of channels c is in:

ALT i= 0 FOR SIZE c
c [i] ? x [i]

P(i)

Then the array of channels may be collapsed to a single channel and a binary
semaphore thus the channel declaration becomes:

CHAN OF IPROT c:
SEM s:

SEQ
INIT(s,1)
P

where IPROT is the protocol INT; PROT if PROT is the protocol of c. The arbitration
becomes:

c? i; x [i]
P(i)

and output c [i] !e is replaced by:

SEQ
WAIT (s)

c! z; e
SIGNAL (s)

Note also that the implementation is fair because the output processes are queued
as they become ready so that none are infinitely overtaken. Another variation on
the same theme is the 'first come, first served marriage bureau' in which each end of
the channel is protected with a binary sempahore.

Acknowledgements

Thanks to Roger Shepherd, Geraint Jones and Tony Fisher for comments on earlier
drafts of the paper.

References

[29] E. W. Dijkstra, Solution of a problem in concurrent programming control,
Commun. ACM, Vol. 8, No. 9, Sep. 1965.

[30] Inmos Ltd, Transputer instruction set: a compiler writer's guide,
Prentice-Hall, Hemel Hempstead, 1988.

[31] A. Martin and J. L. A. van der Snepscheut, Design of concurrent programs, in
Proc. International Summer School on Constructive methods in computing
science, Marktoberdorff, 1988.

[32] D. May and R. Shepherd, The transputer implementation of occam, Inmos
Ltd, Bristol, 1987.

N912 January 1990

Geoff Barrett
Inmos Limited
1000 Aztec West
Almondsbury
Bristol BS12 4SQ
United Kingdom

geoffb@uk.co.inmos

57

MEASURING THE BUSYNESS OF A TRANSPUTER
Geraint Jones, with contributions from Andy Rabagliati,

Klaus Zeppenfeld, Michael Goldsmith and others

Something which transputer users often want to do, it seems, is to measure how
much time a processor spends not doing anything. On the face of it, this is quite
hard, because one of the things hidden by the process abstraction of occam is the
way that a processor is shared by processes.

Some time ago, Andy Rabagliati from Inmos' American Central Applications
posted to the 'transputer' electronic mailing list a code fragment for making just
this measurement. It used knowledge about the way the Inmos occam compiler
behaved, and the way the transputer scheduler behaved, in order to estimate how
often the processor had nothing to do.

Since I have never seen this trick in print, and since a number of people have
recently asked me for code to perform just this sort of measurement, I am writing it
~p here. I had to struggle a bit to understand how it worked, and I have modified
the code a bit in the hope of making it easier to understand.

Interface

The code consists of a procedure supervisor which must be run, at low priority, in
parallel with the code of the program being measured. It measures how busy the
sub ject p~ogramwould have kept the processor, by counting how often it finds the
transputer idle, and returns and integer value representing the percentage utilization
of the transputer's processor.

There are two phases: a calibration phase in which the supervisor measures how
fast the scheduling mechanism is - a function of processor speed and whether it
is running in internal or external store. In order to work, this must happen when
all other processes are idle because they are waiting for communications or timers.
When the supervisor starts, it waits for a supervisor. calibrate signal on its command
channel, indicating that it can start calibration. When the calibration is over - after
about a millisecond or two - it acknowlede;es this by a second communication on the
same channel. This indicates that it is safe for other processors to be run without
compromising the calibration.

To start a measurement, the supervisor is sent a supervisor.start command.
Thereafter, sending a supervisor. read command causes the utilization since the most
recent supervisor.start to be calculated and returned on return.

The supervisor terminates when sent a supervisor. stop signal over the command
channel.

supervisor. calibrate
supervisor.ack

58

PAR
supervisor(command, return)
SEQ

command
command

occam user group newsletter

command supervisor. start
... subject code
command ! supervisor.read
INT busyness :
SEQ

return ? busyness
Write(IIThe processor was busy 11 busyness, "% of the time")

command! supervisor. stop

Figure 20: Example of a one-shot use of supervisor

Algorithm

The supervisor works by counting the number of times it finds no processes in the
low-priority process queue of the transputer. The transputer scheduler maintains a
queue of processes that are not blocked waiting for a communication or for a timer:
these are 'ready' to be run. Leave aside for the moment the possibility that there
are high-priority processes. While there is a ready low-priority process, the processor
executes one of these ready processes. Periodically the currently executing process is
descheduled and placed at the back of the ready queue, to the replaced by a process
removed from the head of the queue.

When the supervisor is running, it is always ready. This means that - apart
from any disturbance to the execution of the program caused by the supervisor
- the transputer would have been busy running the rest of the program, without
the supervisor, if and only if there is something else in the ready queue when the
supervisor is being executed. When it is executed, the supervisor process makes
a note of the time and deschedules itself, placing itself at the back of the ready
queue.

The next time this process comes to the head of the queue and is executed, it
compares the present time with its last noted time. If these times are sufficiently
close, the assumption is that the ready queue was empty - the processor would have
been idle, were it not for the supervisor - and that the supervisor was resumed as
soon as it had been descheduled. The proportion of idle - or conversely busy - time
is obtained by comparing the number of times the queue is found to be idle in a given
period with the number of times it was found to be idle in the calibration period.

The mechanism is able to cope reasonably well with high-priority processes.
Whenever there is a ready high-priority process it is executed, and no low-priority
activity takes place. Time taken by high-priority process in the subject program is
therefore effectively lost to the supervisor, and so is measured as though it had been
consumed by some additional ready low-priority processes.

N912 January 1990

Implementation

59

The supervisor is implemented by a pair of parallel processes (figure 21). One of them
handl€s the communication with the user code, and calculates the result (figure 22).
The other process is the one that counts the number of times that it finds the
processor idle (figure 23). There are a number of 'tricks' in the implementation of
this idle counter, code which is not strictly speaking occam since it is not guaranteed
to work by the language definition. Of course, there have to be such tricks, because
the behaviour of an occam process is meant tobe unchanged by sharing a processor
with another process.

The first problem is that of implementing the descheduling operation. It is
necessary to run the body of a loop, P say, and to ensure that after P has terminated
any process in the ready queue is given a chance to execute before the next iteration
of the loop. In the code given here, this is achieved by writing

WHILE condition
PAR

SKIP
P

So long as the compiler does not optimise the code by omitting the SKIP, this will
work. Since the loop is executing on a single transputer, both the branch of the
parallel which executes the P, and the branch executing SKIP have to be executed
on the same processor. Consequently, each time the loop body is executed two
processes are ready and at least one of them has to be put at the back of the process
queue. Every process in the queue has therefore to be executed before the parallel
in the loop body can terminate, and this must happen before the next iteration of
the loop can start.

The second problem is that, although the supervisor must run at low priority, it
must have access to a timer with adequate resolution to tell whether two executions
of the loop body are really not separated by a few instructions from another process.
In the case of the transputer, this means being able to read the high-priority timer,
accessible only to high-priority processes. The trick here is an idiom:

PRI PAR
P
SKIP

which executes P as a high-priority process, whatever its context. It is not at all plain
to me (although I know that others disagree with me) what the language definition
says PRI PAR is meant to mean, except where it is the outermost PAR of a program,
or the outermost PAR of a branch of a PLACED PAR. Be that as it may, it happens
that this trick works with the Inmos occam compiler for the transputer.

The parameter threshold should be just large enough that one execution of the
body of the loop in the counter process can be executed in that number of ticks
of the high-priority clock. Thus, whenever the clock has moved on by more than
this value it can be deduced that some other code was run between iterations of the
loop. I see no reason to suppose that the same value of threshold would work for
any member of the transputer family, so it might be that it is necessary to resort
to studying the data-sheet for a particular transputer, and the instructions that the

60

PROTOCOL SUPERVISOR.COMMAND
CASE

supervisor.calibrate
supervisor.ack
supervisor.start
supervisor.read

supervisor.stop

occam user group newsletter

first command
acknowledges end of calibration
starts a measurement
returns percentage idle time

since the last supervisor. start
last command: terminates SUPERVISOR

PROC SUPERVISOR(CRAN OF SUPERVISOR. COMMAND command, CRAN OF INT return)

VAL period IS 25
VAL threshold IS 20

number of low pri clock ticks in calibration
just enough high pri ticks to reschedule

PROTOCOL IDLE.COUNTER.COMMAND
CASE

idle. counter. start
idle.counter.read
idle. counter. stop

CRAN OF IDLE.COUNTER.COMMAND calculator.to.counter
CRAN OF INT counter.to.calculator

PROC idle.counter

PROC cpu.load.calculator

PAR
cpu.load.calculator
idle. counter

Figure 21: code skeleton of the complete supervisor

N912 January 1990 61

PROC cpu. load. calculator

TIMER low.pri.timer :
INT idle.loops.per.period
SEQ

command? CASE supervisor.calibrate
INT now
SEQ

calculator.to.counter ! idle. counter. start
low.pri.timer ? now
low.pri.timer ? AFTER now PLUS period
calculator.to.counter ! idle.counter.read
counter.to.calculator ? idle.loops.per.period

command? CASE supervisor.ack

BOOL cpu.load.calculator.needed
SEQ

cpu.load.calculator.needed .- TRUE
INT start.time :
WHILE cpu.load.calculator.needed

command ? CASE

supervisor. start
SEQ

calculator.to.counter ! idle. counter. start
low.pri.timer ? start.time

/ period

elapsed time below resolution
return arbitrary resultoreturn

ELSE

supervisor.read
INT read. time, actual. count :
SEQ

calculator.to.counter ! idle.counter.read
counter.to.calculator ? actual.count
low.pri.timer ? read. time
VAL elapsed.time IS read. time MINUS start.time
VAL maximum. count IS

(idle.loops.per.period * elapsed. time)
CASE maximum. count

o

return ((maximum. count - actual. count) * 100) /
maximum. count

supervisor. stop
SEQ

calculator.to.counter ! idle. counter. stop
cpu.load.calculator.needed := FALSE

Figure 22: the process that controls and calculates results

62 occam user group newsletter

PROC idle. counter

BOOL idle.counter.needed
SEQ

idle.counter.needed := TRUE

INT idle.count, now, then
WHILE idle.counter.needed

PAR
SKIP dummy process to force rescheduling
SEQ

PRI PAR
TIMER high.pri.timer
high.pri.timer ? now
SKIP -- dummy low priority process

IF
(now MINUS then) < threshold

idle. count .- idle.count PLUS
TRUE

SKIP
then := now
PRI ALT

calculator.to.counter ? CASE
idle. counter. start

idle. count := 0
idle.counter.read

counter.to.calculator ! idle.count
idle. counter. stop

idle.counter.needed := FALSE

TRUE &: SKIP
SKIP

Figure 23: the process that detects idleness of the processor

N912 January 1990 63

compiler generates for the body of the loop, in order to determine an appropriate
value for any processor. The value of twenty is probably a little high for a T800.

Each execution of the body of the loop in the counter process polls, with the
construct

PRI ALT
calculator.to.counter ? CASE

TRUE & SKIP
SKIP

for a command from its controlling calculator process. If there is no command
pending, it goes on to reschedule itself at the back of the queue. This loop is 'busy':
it is always ready to be executed by the processor, so it appears at first sight to
be consuming valuable processor time. Notice however that only one execution of
the loop body can happen for every time slice of every other ready process in the
program. This means that whenever the program has anything to do, very little time
is consumed by the supervisor. The time overhead of running this code has been
measured in practice to be of the order of one percent.

Warnings

Although the code in the supervisor procedure 'looks and feels' like occam, this is
misleading. Correct execution of the supervisor relies on details of the implemen
tation of both the compiler and the transputer outside what is guaranteed by the
semantics of the language. For example, in occam is is the case that

PAR
P

SKIP
is the same as the process P, but the correct execution of the supervisor relies on
the compiler not optimising the former by compiling code only for the latter.

The supervisor, as written, cannot be used to measure performance over periods
longer than about two thousand seconds; otherwise there will be an arithmetic
overflow (assuming thirty- two bit INTs). The calculation of the return value could be
done in floating point, if necessary, but eventually the problem arises of representing
an idle. count bigger than the biggest integer.

In the code given here, idle. count is incremented by the cyclic addition, PLUS, to
avoid causing an arithmetic overflow if the supervisor runs for a very long time. I
make no attempt to check that the count has not exceeded the largest representable
integer. This means that it is safe to leave a supervisor running indefinitely, although
its calculated result can only be trusted for start/stop pairs that are not too long
apart.

Similarly, in a program with a vast number of ready processes it might be that
the high-priority clock would count through half its range of ticks in the time taken
to schedule and execute a time slice for each ready process~s. The idle loop counter
would mistakenly count this as an idle cycle, because now MINUS then would be
negative and so less than threshold. Because this would happen very infrequently
- no oftener than half the clock's maximum cycle time - it is unlikely to make a
significant difference to the accuracy of the calculated result.

64

Acknowledgement

occam user group newsletter

Tel: +44 865 273851
geraint.jones@uk.ac.oxford.prg

The idea of a process that continually put itself on the back of the low-priority
queue came from Andy Rabagliati, at INMOS Colorado Springs in 1987; the clean
separation into a pair of process communicating over channels was suggested to me
independently by Michael Goldsmith and Klaus Zeppenfeld; and the experiments
were done for me by Klaus, who also explained to me what the real transputer
scheduler does. (I really did not understand Andy's code when I first saw it.) Any
failure to understand which might manifest itself in errors in the program or the
article is of course entirely my own..

Geraint Jones
Programming Research Group
11 Keble Road
Oxford OXl 3QD
United Kingdom

IMPROVEMENTS(?) TO OCCAM
G. A. Wilson, Department of Computer Science, Sheffield University

In this short note we show how the functionality of the occam IF construct can easily
be achieved with the more general ALT construct, and suggest that this encourages
a more parallel mode of thinking.

Additionally, we suggest that extending abbreviations to datatypes and literals
will save much laborious typing, and also provides a simple named type facility.

ALT instead of IF (and CASE)

REMOVE CASE CONSTRUCTS from the language, by transforming into the equiv
alent IF:

CASE e IF
vi e = vi

pi pi
v2 * e = v2

p2 p2
ELSE TRUE

p3 p3

The degenerate cases (i.e. with no conditions at all) are both the same (the process
behaves like STOP).

REMOVE IF CONSTRUCTS from the language, by transforming into a PRI ALT:

IF
bi

pi
b2

p2
TRUE

p3

PRI ALT
bi & SKIP

pi
b2 & SKIP

p2
TRUE & SKIP

p3

N912 January 1990 65

Again, the degenerate PRI ALT behaves like STOP. To save typing, the extra & SKIP
component can be made implicit by the compiler, in a similar manner to that
currently implemented for TRUE &, i.e. 'Guards which do not have a boolean conjunct
to them have TRUE & added' [33].

EFFICIENCY need not be compromised, since the compiler can be extended to recog
nise IF-equivalent or CASE-equivalent constructs, and efficiently compile them as
before.

OBJECTIONS? One point raised by a member of our group is 'when I see an IF, I
do not need to enter the (folded) body of the construct to determine if there may be
any communication with other concurrent processes'. True, but does this matter?

Extending abbreviations ...

· .. TO DATATYPES. Implicit abbreviations currently exist for integers. Making
these explicit might help alleviate the problems encountered when creating programs
of mixed T2/T8 processors, where only INT types have been specified. A suggested
syntax is INT IS INT32 for the T8, and INT IS INT16 for the T2.

· .. TO LITERALS. A string of digits is currently implicitly of type INT. The abbre
viations REAL IS REAL32, or REAL IS REAL64 might similarly introduce a default
type for any numeric literal of 'real' form (e.g. 1.2, 3. E4 etc.), and enable us to
avoid the infuriating 1. (REAL32) syntax.

· .. AS SIMPLE USER-DEFINED TYPES. An article by this author [34] shows some
implementations of a Set datatype using bits within integers. Usage would be
much clearer and more convenient if the implementation of the set could be hidden
by an abbreviation e.g. SET IS INT32. Note that such an abbreviation might be

-implemented in two ways:

simple - the textual instances of each new type are simply substituted by the text
of the abbreviation;

complex - each abbreviation is a new datatype, and variables of the new type are
not compatible with those of the abbreviated type.

References

[33] Section 6.10.3 of: Inmos Ltd, Transputer instruction set - a compiler writer's
guide, Prentice Hall, 1988.

[34] G. A. Wilson, Comparative timings of three set implementations in occam,
SoftwaTe: Practice and Experience, 19(3), 273-281, March 1989.

G. A. Wilson ac1gaw@uk.ac.sheffield.primea
Department of Computer Science
Sheffield University
Sheffield 810 2TN
United Kingdom

66 occam user group newsletter

TRANSPUTER AND OCCAM BASED CONTROL SYSTEMS IN
ELECTRONIC CONTROL OF MACHINES

Martin Torngren, The Royal Institute of Technology, Stockholm

This paper is a partial translation of the original paper Transputern och Occam,
applikationer i Datorstyrd M ekanik, writt~n in Swedish, which discusses the use of
the transputer and occam in electronic control of machines.

The transputer is considered as an interesting component because of the following
facts:

l> Multi-transputer systems are easily built and programmed.
l> The transputer concept is a step towards integration of hardware, operating

system and software.
In this paper aspects on using the transputer and occam in a real-time control

system are presented. The first part describes limitations in the transputer design
which either makes the design of a transputer system difficult, such as few priority
levels; or may introduce non-deterministic behaviour into the system, such as in
structions with a variable execution time. The second part describes transputer If0
interfacing. The reader is assumed to have a basic knowledge of the transputer and
its scheduler.

Real-time properties - transputer based control systems

A control system generally has to handle both periodic and aperiodic tasks. A control
system controlling the motion of a mechanical structure has to behave deterministi
cally, i.e. it has to solve the periodic tasks and at the same time guarantee that the
response times for some important aperiodic tasks are fulfilled. This should be done
with a high processor utilization. To be able to construct such a control system a
detailed knowledge of its components (hardware, operating system and software) and
their characteristics concerning response times, time measurement and scheduling
algorithm is needed.

When constructing a transputer based control system two solutions are available:
Use of a bare transputer. This requires knowledge of the transputer scheduler and

the transputer hardware. The limitations in the transputer design presented
below has to be dealt with.

Use of a real-time operating system executing on the transputer. This real-time op
erating system could be coded as a high priority transputer process and control
application processes working at low priority level, possibly manipulating with
process queues. The real-time operating system should use scheduling algorithms
more suited for real-time applications than the algorithm used by the transputer
scheduler.

Two priority levels - a clear limitation in a control system

With few priority levels the response times are dependent on other processes' execu
tion times. The following example of a system consisting of the following processes
demonstrates this:

l> Process 1 (for example a control algorithm), executing periodically at 1 kHz.

N912 January 1990 67

[> Process 2 (for example data sampling), executing periodically at 10 kHz.
[> Process 3 (for example emergency stop), an aperiodic process.

With three priority levels the assignment of priorities to processes would be simple:
process 1 - lowest priority; process 2 - medium priority; and process 3 - highest
priority. The response time for process 3 would not be dependent on the execution
time of the other processes.

With only two priority levels the assignment of priorities to processes is more
difficult: process 1 and process 2 cannot both be given low priority if the execution
time of process 1 exceeds 100 itS. If process 2 and process 3 are assigned high priority ,
the response time for process 3 will be dependent of the execution time of process 2.
Code changes in process 2 which increases the execution time might result in an
unacceptable response time for process 3.

The response time for a low priority process is nondeterministic

The response time for a process with low priority in a program with n low priority
processes and no high priority processes is given in reference [35] to be 2 X TB/ice X

(n - 1), where Ta/ice is the fixed time slice period that the scheduler uses. If a
low priority process has executed for this time the scheduler will deschedule it.
This can however only be done at certain instructions, namely the following: timer
input, channel communication (internal end external) and the jp and lend (loop end)
instructions [36].

The actual response time is 2 X Ta/ice X (n -1) + T?, where T? is the time it takes
the process to get to the next descheduling point. Most program contains lots of
descheduling points. But you cannot be sure of that, for example when using an
optimizing compiler.

The response time for a process with high priority is determinable but is de
pendent of the execution times of other high priority processes. If there is only
one process with high priority the response time has a determinable upper bound
dependent of the transputer model, execution-frequency and use of on-chip RAM.
On a T414-20 transputer this time is about 3 Its. Let this time be denoted by Tschedu/e

and the execution time for process i by Texec(i)' The worst case response time for
process (i + 1) in a system with two high priority processes becomes 2 X Tachedu/e +
Texec(i) .

Priority inversion

The priority inversion problem arises when a high priority process wants to perform
synchronized communication with a low priority process. It may then become blocked
if the low priority process is not ready for communication meaning that another
low priority process can be allowed to execute. As the high priority process is
blocked and a low priority process is executing this phenomenon is referred to as
priority inversion. The priority inversion problem can be avoided by using a dynamic
priority scheduling algorithm [38]. In reference [37] modifications to the transputer's
schedule.r to incorporate this algorithm are presented. Priority inversion is often
solved by inserting high priority occam processes as buffers. This alternative however

68 occam user group newsletter

demands verification every time the system is changed and also increases the response
time for other high priority processes.

The unfairness of the ALT construction

The ALT construction is, in current occam compilers, implemented in the same way
as the PRI ALT. Both ALT constructs can cause starvation for processes waiting
for communication. In the PRI ALT the programmer explicitly assigns priorities
to alternatives. One could argue that the scheduler should take into account the
priority of the communicating processes. In a real-time system the PRI ALT can be
used, but has to be carefully designed to prevent starvation. In a less time-critical
system the same degree of care has to be exercised with pure ALT constructs.

Execution time of the ALT and timer input instructions

Execution of an ALT in a process PA involves the following steps: All components
of the ALT are enabled. Process PA is descheduled. When PA starts executing
again, the components of the ALT are polled to detect which component is ready for
communication. This means that both the setup time and the polling after scheduling
are dependent of the number of components in the ALT and lead to variable execution
time.

When a process executes a timer input instruction the process can be descheduled.
An example in occam code (declarations are omitted):

clock ? time Reading actual time
clock ? AFTER time PLUS period -- Delaying the process =>

-- descheduling of the process
Descheduling means sorting the process onto the the appropriate timer queue. This
sorting obviously depends on the number of processes already waiting on that timer
queue and thus the execution time of the timer input instruction is variable.

Execution of a program on one or several transputers

One of the major advantages of the transputer is the ability to develop a program for
a multi-transputer system on one transputer. Any external hardware and external
systems can simulated as software processes. The program can then be moved to a
transputer network by adding configuration statements. The question is, does the
program behave in the same way?

In a real-time application there are two sources for different behaviour. The first
is the true parallelism inherent in executing a program on more than one transputer.
Even though the synchronization points (channel communication is synchronized)
between processes will be the same, and so the synchronization graph of the program
still will be the same, the execution of processes will now have other timing relations
with each other. This is important when dealing with the outer world as in the case
of control systems.

The second is the implementation of the ALT construct. As described above
the ALT consists of a number of transputer assembler instructions. Firstly each
component of the ALT is enabled and then the ALT process is descheduled. Secondly

N912 January 1990

PRI ALT
c2 ?

kod2
ci ?

kodi
ca ?

kodO

Figure 24: process PA

PAR
PO
Pi
PA

Figure 26: first transputer

PAR
PO
Pi
PA
P2

Figure 25: one transputer

P2

Figure 27: second transputer

69

when the process is scheduled it searches through its channel components to see
which one is ready for communication. The possibility of different behaviour follows
from the fact that channel communication between processes on different transputers
can be done in parallel with execution because the links work in parallel with the
processors. In a one processor system internal channel communication is sequential
with execution.

The following example shows different program behaviour, due to the ALT con
struct, when one process is moved to another transputer. The example program has
four processes: Po, PI and P2 are processes that each have one channel, called Co,

Cl, and C2 respectively, to the fourth process called PA (figure 24), which contains a
PRI ALT construction with three components. All four proce.sses are supposed to be
executed repeatedly, perhaps in a WHILE loop.

Firstly the program is executed on one transputer (figure 25) and secondly on two
transputers (figures 26 and 27) where process P2 is moved to the other transputer.
The following details a possible execution scenario of the program. Executing the
program on one transputer:

l> Po executes and is descheduled when it starts communication with PA,
l> PI executes and is descheduled when it starts communication with PA,
l> PA executes its PRI ALT instruction so kodl will execute,
l> PA executes its PRI ALT instruction so kodo will execute,
l> P2 executes and is descheduled when it starts communication with PA,

l> Po executes and is descheduled when it starts communication with PA,
l> PI executes and is descheduled when it starts communication with PA,
l> PA executes its PRI ALT instruction so kod2 will execute,

and so on. Executing the program on two transputers (P2 is moved to another
transputer):

l> Po executes and is descheduled when it starts communication with PA,
l> P2 executes in parallel with Po and is descheduled when it starts communication

with PA ,

l> PI executes and is descheduled when it starts communication with PA,

70 occam user group newsletter

[> PA executes its PRI ALT instruction so kod2 will execute. P2 starts executing and
is descheduled when it starts communication with PA ,

[> PA executes its PRI ALT instruction so kod1 or kod2 , if P2 and the link already
has performed the communication, will execute,

[> PA executes its PRI ALT instruction so kodo, kod1 or kod2 will execute.

I/O interfacing

Very compact transputer 'calculation modules' can be constructed but the transputer
lacks I/O for applications in electronic control of machines. Interfacing can be
constructed by using the memory interface or the link-adaptor circuit.

MEMORY INTERFACE Fast I/O is possible four bytes transferred per three proces
sor cycles, provided zero wait-state memory is used. (On the T801 only two cycles
are needed.) The speed is not a continuous speed because the memory interface is
also used for instruction fetching. Communication with I/O is asynchronous.

LINK ADAPTOR Slower peak speed for I/O transfers than with the memory inter
face. The link speed of 20 Mbits / s implies about 1·74 Mbytes/ s (one way commun
ication) which can be sustained through a continuous transfer made by the link
unit. Four bytes can be transferred in about 2 ps. Interfacing fits very well into the
programming model. Communication with I/O is synchronous.

An appealing alternative that reduces the number of chips in the system is to
use something like a microcontroller as an I/O processor. An even better alternative
would be the appearance of a new transputer processor, a 'transputer embedded
controller' containing such I/O as ADC and digital ports on chip. After all, ref
erence [35] describes the transputer architecture as consisting of a core and an
application specific interface. The M212 is so far the only transputer to contain
an application specific interface on chip.

References

[35] Inmos Limited, Transputer reference manual, 1987.
[36] Inmos Limited, The transputer instruction set - a compilers writers guide,

1987.
[37] A. Burns and A. J. Wellings, Occam's priority model and deadline scheduling,

in OUG-7, ed. Traian Muntean, Parallel programming of transputer based
machines, lOS, 1987.

[38] Lui Sha, Ragunathan Rajkumar, John P. Lehoczky, Priority inheritance
protocols: an approach to real-time synchronization, 1987.

Martin Torngren Tel: +46-8-790 7849
Damek Research Group Fax: +46-8-723 1730
Department of Machine Elements martin@se.kth.damek
The Royal Institute of Technology
100 44 Stockholm
Sweden

N912 January 1990

GETTING ALONG WITHOUT WORKSTATIONS
Paul Healy, Computer Vision Group, Trinity College Dublin

71

We describe methodologies developed during the evolution of a parallel Virtual Image
System running on a network of transputers, hosted by a PC compatible computer.

The environment

Although a PC hosted transputer development system is probably the most common
variety found in research and industry, it is often looked down on as in some way
less capable or powerful, when compared with a Unix box such as a Sun workstation.
The purpose of this note is to highlight some of the more useful techniques and
tools that we utilised during almost two years working with our transputer vision
system VIS [39, 40]. While principally directed at users of the 3L Parallel C com
piler, many points have a wider applicability, and a large number can be applied
directly to one variety of occam program development using TDS. The commercially
available products that we make use of include: the 3L Parallel C compiler, TDS, the
Brief text editor, the Microsoft 80x86 C compiler (MSC) and finally the DESQview
multitasking system from Quarterdeck.

Program maintenance

Although Brief has facilities to allow you compile a file without exiting to an MSDOS
shell, we found it beneficial to produce a makefile. The MSC make utility is ~sed

to compile and link our transputer vision system VIS. The batch file which starts
the make also preloads the compiler, saving repeated loads if there are many files
which need to be recompiled. This batch file checks for a successful make, and can
optionally change directory, load our vision system or restore the last edit session
depending on the result. The compiling and linking process is done on a RAM-disk
to speed up the process by up to thirty percent. Finally in order to maximise general
file i/o to the transputer, a file cache facility is used.

Accessing host facilities from the transputer

We have extended the alien file server protocol [41] in a number of directions. The
first facility, has been found useful to monitor the activity of an apparently dead
program in the moments leading up to its locking up. This takes the form of a debug
option on the afserver command line, which when enabled causes information from
strategic areas of the alien file server to be echoed to the user. This has proved
invaluable in writing transputer programs to control PC hosted frame grabbers. An
optimised fast console put string command has resulted in a speed increase of about
six, as compared with the standard transputer C output library routine. Routines to
implement non-buffered input from the console and serial port access have also been
used successfully. We are at present using a facility to provide an image display with
sixty-four grey levels on a colour or monochrome VGA monitor. A fast file transfer
utility, from host to host, using transputer links is also in use. The command to send
a group of files down link 1 is simply 'tsend 1 *. *'. Our occam programming is by

72 occam user group newsletter

necessity done to conform to the the alien file server arrangement. Very simply, we
need to have direct access to the PC hardware, something that TDS on its own does
not give us. As a fortunate byproduct of this state, we have a common platform on
which to build resources which can be used by either C or occam. Then finally we
now have windows.

Windows and multitasking with DESQview

We have recently added three new commands to the alien file server. We can
now open, write to and close DESQview windows [42, 43] while running transputer
VIS from within the DESQview environment. This support is available from the
transputer while running C, or while using occam TDS programs written to use the
alien file server protocol. The C function to open a DESQview window is:

int new_window (name , length, depth, x, y)

char *name;
int length, depth, x, y;

This function opens a window called 'name', with dimensions 'length' and" 'depth'
and at screen position 'x', 'y'. It returns a handle to the window which is used on
future operations to the window. The C function to write to a window is:

void win_puts(win, str)
int win;
char *str;

This function writes the character string 'str' to the window 'win', where 'win' is the
handle returned by the new_window function.

Finally the C function to close a window is:
void win_free(win)
int win;

This function closes the window 'win' , where 'win' is the handle returned by the
new_window function.

This facility is used to allow multiple processes access to screen resources in a
relatively sane manner. Overlapping windows behave as expected, with underlying
windows being automatically restored when occluding windows are closed. A debug
facility allows the traffic though windows to be written to files for later inspection.
Each item written to a file is time-stamped, in order to make comparisons of progress
through a program. An equivalent set of routines has been written, and used
successfully for the occam TDS, when using the alien file server protocol. We have
also used the DESQview facility for screen management to switch between a program
text screen and a sixty-four grey level VGA graphics screen with a resolution of
320 X 200.

A very obvious manner to scale our system lies in the ability of transputer
development boards to reside at different addresses on the PC bus. The Inmos
B008 TRAM motherboard can for example be used at three different addresses. Up
to three alien file servers can be run in different windows to provide a very simple
manner of run time debugging.

We intend to investigate other simple usages for the DESQview multitasking
resources. This includes running transputer applications such as a make or VIS in
the background, while continuing to edit in the foreground.

N912 January 1990 73

phealy@cs.tcd.ie
Tel: 0001-772941 x1765
Fax: 0001-772204

Telex: TCD 93782 El

We are also looking at the feasibility of using DESQview's mouse input facilities
to provide input to VIS, and also a way for the user to select and move transputer
created windows.

Conclusion

Some very innovative software tools are available for the PC, which can be used with
a little effort to expand the capabilities of transputer based software.

References

[39] D. Vernon and G. Sandini, VIS: a virtual image system for
image-understanding research, Software: Practice and Experience, Vol. 18(5),
395-414, May 1988.

[40] P. Healy and D. Vernon, Very coqrse granularity parallelism: implementing
3-D vision with transputers, in Proceedings of Image Processing '88, London,
1988.

[41] 3L Ltd, File service protocol definition, 3L Technical Note N93, 02703 May 16
1988.

[42] DESQview API C Library, Quarterdeck, 1988.
[43] DESQview API Reference, Quarterdeck 1988.

Paul Healy
Computer Vision Group
Department of Computer Science
Trinity College
Dublin 2
Republic of Ireland

DE VERMIBUS (ON WORMS)
Tony Fisher, Department of Computer Science, The University of York

In Inmos's terminology, a worm is a program which propagates through a network of
transputers, determining the topology as it goes. I had thought that occam worms
were a recent invention; but the following passage from the writings of William of
Occam shows that our patron knew something about transputer worms:

... Sol producit vermem cum verme et sine verme. .. Hoc patet: Quia vermis
generatus per propagationem et putrefactionem sunt eiusdem speciei, mani
festum estj et tamen vermis productus per propagationem producitur ab om
nibus .causis essentialiter ordinatis simulj vermis autem productus per putre
factionem producitur a sole sine actione vermis. . ..

Quaest. in lib. I Physicorum Q. cxxxiv

... The sun can produce a worm both with and apart from a worm. .. This
is clear: Worms generated by propagation and by putrefaction are of the
same kind, as is manifest. Nevertheless, the worm produced by propagation
is produced by all the essentially ordered causes together, whereas a worm

74 occam user group newsletter

produced by putrefaction is produced by the sun without the action of a
worm.

Tel: +44 904 432738
fisher@uk.ac.york.minster

Note the reference to the Sun-based TDS.
The current Inmos worm programs are clearly of the 'propagation' type. Has

Inmos investigated worms produced by putrefaction, as suggested by William of
Occam?

Tony Fisher
Department of Computer Science
The University of York
York YOl 5DD
United Kingdom

REVIEWS

TRANSPUTER DEVELOPMENT SYSTEM
Inmos Limited, pub. Prentice Hall, July 1988,
pp. xx+491, pb. £25·95, ISBN 0 -13 928995 X

This substantial tome is the authoritative documentation on the D700D (D800D) re
lease of Inmos' Transputer Development System, replacing the large-format preprints
which early customers received. Unlike some of the other titles in the Prentice
Hall series on transputer technology, which betray their origins as compilations of
former technical notes and data-sheets, this volume appears to have been written as
a coherent whole. It will no doubt prove indispensable to all users of the TDS; most
of the material is (very properly) so specific to the particular software package that
it is not likely to prove of great interest to those who are not, at least in prospect,
users.

The book is divided into two major sections: the first quarter is devoted to
a 'User Guide' which gives an overview of the system and a descriptive account
of the user's interactions' with the folding editor, the compiler and filer utilities,
running programs and using the debugger. Included in this part are several examples,
which are generally helpful in illustrating the point in question, and also more
specialised sections for those who will be using the TDS to develop stand-alone
embedded systems or need to step outside the occam model of concurrency to
handle communication faults and other operating system concerns. It is the authors'
intention that the relevant chapters of this section should be read by any user before
starting to use the system. I believe that those who do so, who work through the
editor tutorial file supplied with the software and who obtain a good text for learning
the occam 2 language, should be reasonably prepared to develop simple programs
using the TDS.

The bulk of the book is taken up by a 'Reference Manual', which provides terser
reminders of much of the material in the User Guide, more detailed descriptions of the
user interfaces to the utilities, to the various libraries supplied with the distribution,
to the software tools, and to the host system. As its title suggests, this part is

N912 January 1990 75

intended more for looking things up in than for reading through from start to finish;
it is supplemented by a number of appendices, tabulating such data as the names
defined by the software, values of system constants, file formats and a glossary.
Finally, there is a reasonably comprehensive index to both parts, something which
was sorely missed by users of the preprint version.

The criteria by which to judge software documentation are necessarily different
from those against which other technical writing is measured; for instance, fidelity
to what has actually been implemented must override abstract notions of technical
elegance, and it is unrealistic to expect a manufacturer to be too overtly critical
of his own product. Given this, overall I was quite favourably impressed by the
way the novel features of the folding-editor-based integrated development system
are described for an audience to most of whom they might be disturbingly unlike
previous experience.

There are a couple of areas I would single out for adverse criticism: in one or
two places the user guide prescribes what should be done to avoid problems, but
gives no help in how to get out of the difficulties if human fallibility leads you to
break that rule. For instance, if you use the ISUSPEND TDS Ikey to return to DOS,
both the user guide and the reference manual caution that you should ensure that
the working directory is changed back to the value it had at the time the TDS was
suspended before returning to the TDS with a DOS exit command; neither gives
any advice on what to do if you don't. (I believe you can get away without any ill
effects if you immediately I SUSPEND TDS 1again and change to the correct directory;
if you do any editing, then you find some filed folds in one directory and some in the
other - there must be a reasonably straightforward recovery procedure that someone
with access to the source could work out.) Similarly, the user guide gives the dire
warning that if you edit the contents of a filed fold which has been marked with
IWRITE PROTECT I, then the TDS 'will be unable to write back the changes'; you
have to turn to the reference section to discover that you have not just wasted an
hour's work, and that you get the fold back, but unfiled. Indeed, a general discussion
of the TDS filing system, the advantages and disadvantages of IATTACH/DETACH I
making multiple references to the same DOS file (I can find no explicit warning that
deleting a fold which is one of several to whlch a file is attached deletes the physical
file, unless write protected), and the interactions between the TDS idea of the file
system and DOS manipulations of it (what happens if you use I SUSPEND TDS 1 and
copy files over ones the TDS knows about?) would have been a useful addition.

The library mechanism has some infelicities, and the documentation does not
always help "as much as it could. There is apparently no way to make a 'header'
library (one containing only constant and protocol definitions) depend on constants
declared in another: a '#USE' directive within the library causes a compilation
error in the program which uses it; only experimentation or word-of-mouth reveals
that, as validation actually makes no checks at all on such libraries, they need not be
self-contained, but may have 'free' occurrences of other constants, which are resolved
in the scope current at the place of the '#USE'. We are told that there is no real
distinction between 'header' and 'code' libraries, but that 'in practice it is useful to
separate them out'; that this is because any separately compiled units in the library
are totally unable to refer to the header declarations (for the se fold delimits the
scopes that can be seen inside it, and the library cannot be referred to unless it is

76 occam user group newsletter

validated, and cannot be validated without compiling the SC) is left to us to discover.
We are told that libraries must be compacted if they are to be used from a directory
other than the one it was developed in, because 'the compiler is unable to read filed
folds nested within a file in another directory'; this is, in general, false - the problem
lies with resolving filenames given relative to the current directory, and giving an
absolute path from the root to the source files results in the descriptor and code files
having an absolute name too, and the compiler is then quite happy. (Unfortunately,
the debugger seems to have difficulty locating to a line within such libraries in some
circumstances, so the workaround is not perfect!)

As the relatively petty nature of these criticisms may suggest, I don't find any
thing very seriously wrong with this book. IT you have (or intend to have) a TDS,
and you cannot get Inmos to give you one for nothing, it is well worth buying.

Michael Goldsmith, Programming Research Group, Oxford University

COMMUNICATING PROCESS ARCHITECTURE
Inmos Limited, pub. Prentice Hall, October 19S5,

pp. xii+170, pb. £20·95, ISBN 0 13 629320 4

TRANSPUTER TECHNICAL NOTES
Inmos Limited, pub. Prentice Hall, December 19S5,

pp. xiv+246, pb. £20·95, ISBN 0 13 929126 1

The two books Communicating Process Architectures and Transputer Technical
Notes, which were published by Inmos this year, hold few surprises for anybody who
has been working with transputers and occam over the last few years - they consist
of papers previously published in the Inmos Technical Reports series. Although one
may have assumed that Inmos would have taken this opportunity to review the
material and bring common parts together, this has unfortunately not been the case.

Communicating Process Architectures includes a fairly comprehensive description
of the main parts of the occam 2 language with some justification for its current form
(e.g. why recursion was not included and why pointers are not feasible). A number of
the papers describe how occam is implemented on the transputer, how it can be (and
was) used to go from parallel algorithms to microcode in a mathematically rigorous
way (for example in the design of the FPU of the IMS TSOO), and how it can be
compiled into silicon, and these are used to demonstrate how a language with simple
semantics can be an advantage. There is a useful paper on real-time programming
with the transputer and another on the IMS TSOO architecture, and these are followed
by a number of applications of concurrency to a number of graphics based tasks.

Transputer Technical Notes is more hardware orientated than Communicating
Process A rchitectures; unfortunately, it includes several papers which contain too
much technical information for a general reader (for example, the crosstalk on long
link connections) but not enough for a system designer (who is referred by Inmos to
the Transputer Reference Manual for more information). The book does, however,
contain what is probably the most useful paper for those who are interested in achiev
ing the best performance from the transputer (Performance Maximisation) with
detail on how to write occam in such a way to make best use of the hardware. A paper

N912 January 1990 77

to encourage those who doubt the power of the transputer is the honestly named
Lies) Damned Lies and Benchmarks which shows how the transputer compares to a
number of other chips while casting doubt on the amount of importance that should
be given to these figures. Other topics covered are use of the IMS C004 crossbar
switch (with a very dubious CSP 'model' which bears only a minimal resemblance to
the actual operation of the chip), a number of papers on link usage (how to explore
a network of transputers, how to recover from failed communications and how to
connect links over long distances), a couple of very similar papers on the transputer
based navigation system and an interesting paper on a distributed graphics display.

The main criticism of both of these books is the amount of duplication. For
example, in Communicating Process A rchitectures we have the basic process blocks
of occam described briefly six times; it would seem to require very little editorial time
to replace five of these entries by references to an earlier section. One also wonders
why it is necessary to show the block diagram of the transputer quite so many times.
A further annoying feature of both books is in the way in which they are typeset;
they are printed using a ridiculously small sans-serif font which after the first ten
pages becomes irritating, and which after a hundred and fifty becomes painful.

If Inmos had spent only a little longer on the typesetting and structure of these
books I would be pleased to recommend that people who are (or want to be)
interested in occam or the transputer should consider buying these books. As it
is, I would suggest asking your library to buy them as a better alternative than
having lots of loose bound technical reports, and for you to buy a magnifying glass.

Phil Richards) Programming Research Group) Oxford University

PROGRAMMING IN OCCAM2
Geraint Jones and Michael Goldsmith,

pub. Prentice Hall, August 1988,
pp. x+317, pb. £16·95, ISBN 0 13 730334 3

When considering a new book, the sympathetic reviewer must be wary of sparing the
author's blushes at the expense of misleading the reader. If the author (or co-author)
is also the editor of the publication in which the review is to appear, then the effort
must be doubled. Fortunately, for this reviewer and this book the task is easy -

• Programming in occam2 is to be whole-heart,edly recommended.
The book's fundamental strength is that its contents match its title. There are

no sections on the transputer or parallel architectures. There is no discussion of the
relative complexities of various parallel algorithms for solving problems on different
machines. Instead, the reader is introduced to occam 2 in the context of programming
tasks for which its features make it especially suitable. We are shown that thoughtful
use of concurrent processes and channels with appropriate protocols can lead to clear
and clean solutions to traditionally tricky problems.

My own favourite example is in the section on formatting output. Initially, we
are invited to tut disapprovingly at Pascal's write and C's printf and their slackness
in allowing an arbitrary number of parameters. Then, we see that the same effect
can be achieved without resort to such ad-hoc tactics, by passing the string (with
embedded placeholders, in the printf style) to the new write process directly and

78 occam user group newsletter

concurrently passing the corresponding items (to be embedded in the string) into
the process over a discriminated protocol channel. Later, we find our old friend
parallel merge sort introduced not as end in itself, but as a framework upon which to
demonstrate the suitability of the occam model in programming software monitors
(in the sense of observing behaviour).

Elsewhere we find the concurrent programmer's traditional diet of interrupt han
dling, synchronisation and buffering as well as Huffman coding and Conway's Life.
All the examples are carefully developed with plenty of explanatory prose and ex
amination of a variety of solutions. The complete programs are gathered together
at the end of the book although, as the authors acknowledge, reading a substantial
occam program on the page can never be as convenient as exploring it with a folding
editor.

The main chapters on the examples are preceded by an introduction to the basic
building blocks of occam 2, with great attention paid to detail. For my liking, there
is a little too much concentration here on the detailed meaning of various bit level
operations and numeric data types. On the other hand, this material is only a very
small part of the whole book, and certainly no-one having read these sections could
complain that they had not been told! The occam 2 notation is usefully summarised
in its own twenty-five page chapter.

Finally, there is a short annotated bibliography with tempting explanations as to
why we should be rushing to the nearest research library to follow up the referenced
works.

Regular readers of the oug newsletter will not be surprised to discover that the
style is both lucid and entertaining throughout.

Murray Cole} Department of Computing Science} Glasgow University

DIGITAL SIGNAL PROC·ESSING
Inmos Limited, pub. Prentice Hall, August 1989,

pp. xvi+266, pb. £19·95, ISBN 0 13 212804 7

This volume of Prentice Hall's INMOS documentation series contains both the full
data sheets for a number of the INMOS digital signal processing chips and support
products, and a number of documents that have previously appeared as application
notes.

The data sheets on the A100, A110, A212 are indeed full, and quite long: 'engi
neering data' is the description in the introduction. This includes an algorithm-level
description, a logical signal specification, as well as the details of electrical and timing
specifications of the signals, and packaging details. There are also a few lines on
possible applications for each of the chips, although the application note chapters
are more use for this. These chips are principally intended to be resident in the
address space of - and be configured by - a transputer or similar microprocessor.

The A100 is thirty-two stage one-dimensional t;ransversal filter, the sort of thing
you might use for convolution, filtering, Fourier transforms in communications or
radar applications; although more remarkable suggested applications are as a matrix
multiplier co-processor, or a programmable waveform generator.

The A110 is a significantly more complicated device containing a configurable

N912 January 1990 79

array of multiply accumulators and long shift registers, apparently intended to be
thought of as 'naturally' being divided into three; together with a back-end processor
whose complexity defeated me at first reading. This device is intended for real-time
image processing applications, capable of two-dimensional convolutions and a variety
of the sorts of data transformation of the sort that are found in image understanding
and image enhancement applications.

The Al21 is a more specialized device capable of calculating the discrete cosine
and similar transforms on an eight by eight block of twelve-bit signed numbers, and
doing this at signal rates of 20 MHz.

The B009 data sheet is a very brief description of a PC add-in TRAM mother
board carrying four AIOOs and a T2, intended for experimenting with the AIOO. The
D703 data sheet is an equally brief description of a development system - actually
an add-on to a D700 transputer development system - capable of controlling AIOO
applications and containing amongst other things an occam 2 emulation of the AlOO
and of the B009, as well as a driver for a B009.

The remaining two-thirds of the book consists of application notes

t> Digital filtering with the IMS AIOO

t> Discrete Fourier transform with the IMS AIOO

t> Correlation and convolution with the IMS AIOO

t> Complex (I&Q) processing with the IMS AIOO

t> Hardware considerations with the IMS AIOO

t> Image processing with the IMS AIOO

t> Cascading the IMS AIIO

t> The IMS AIIO back-end processor

These abound in examples of the uses of the DSP products and abound in specific
examples.

Some of the longer notes, those about particular transforms and filtering al
gorithms, are principally about the algorithms that you might use these chips to
implement. For example the Fourier transform note explains the discrete Fourier
transform, and some way that particular size transforms would be factorised into
parts that could be implemented by AIOOs. It does not, however, tell you in any
sort of detail how to get the parameters into a system of AIOOs, or how to plug them
together.

There are other notes which do things just the other way. In fact the Hardware
considerations chapter, the tenth in the book, turns out to be what I would have
called the user manual of the AIOO. I might have been less surprised by it, had it
had been next to the data sheet rather than nine chapters away!

This book is an interesting collection of material about the INMOS DSP chips,
but it is clearly just that: a collection of material. No thought seems to have been
given to indicating which parts of the book are about DSP, and which parts are
about the INMOS products. Neither, apparently, have any changes been made to
the contents of the application notes; for example the references in one chapter will be
to application notes by their numbers, rather than page or chapter numbers, giving
no hint that these very notes appear elsewhere in the same volume.

Man/red Maurenbrecher

80 occam user group newsletter

THE HELlOS OPERATING SYSTEM
Perihelion Software Limited, pub. Prentice Rall, April 1989,

pp. xii+510, pb. £19·95, $35·95, ISBN 0 13 386004 3

To design a reliable multiuser, multiprogrammed, multiprocessor operating system
for a chip with no support for memory protection or relocation, no 'privileged'
execution mode, and no mechanism for handling internal exceptions other than
halting the processor, presents a daunting challenge. To choose the right set of
primitive operations - rich enough to build into real applications, yet simple and
predictable enough that writing software can be a creative act rather than a struggle
through a thicket of complexity - is a challenge of a higher order. The Relios system,
described here by its joint authors at Perihelion Software Ltd, is an impressive
attempt at meeting these challenges, only partly subverted by the dubious wish
to present itself as yet another Unix lookalike.

The book is in three parts, providing an introduction and command language
guide for users, a system library reference for software developers, and a technical
description of some of the internals of the system to fill in details glossed over in the
other two sections.

The first section begins unpromisingly with a description of the Relios command
processor. This is a reimplementation of the egregious Berkelix 'C shell', taking
pains to duplicate baroque and idiosyncratic features like the history list (surely an
anachronism in an era of bitmapped windows and on-screen editing), but leaving out
a few simple and useful ones like reverse-quote command substitution. The stated
intention is 'for Unix users to feel at home'; but the list of commands in the next
chapter suggests that experienced Unix users will find themselves not so much at
home as in a rather sparsely furnished flat. Aside from commands built in to the
shell, a total of 30 Unix-(almost-)compatible utilities are provided, plus another 15
which are specific to Relios. (Compare this with the 135 commands listed in the
1979 Seventh Edition Unix manual, or the 356 commands - at last count - found in
the standard directories of a recent SunGS release.)

The second part of the book becomes more interesting, starting with an overview
of the real system behind the Unix mask. Relios is described as a 'software backplane'
for a network of transputers, providing a distributed infrastructure for dynamically
managing hardware resources (processors, memory, and links) and software objects
(semaphores, access capabilities, message ports, streams, etc.), loading and con
trolling tasks (groups of processes sharing a memory address space), and mediating
intertask communication. A network-wide tree-structured name space gives names to
processors, loaded programs and active tasks as well as to files and devices. The filing
system is implemented by distributed server tasks - as indeed are all the operating
system services above the message-passing level.

This section introduces one of the novel contributions of Relios: the Component
Distribution Language (CDL) which is used to describe the configuration of 'task
forces' (collections of tasks on one or more processors, connected by communication
streams). An elegant generalisation of the Unix shell pipeline syntax permits the
specification of trees of tasks as well as linear chains, without explicit naming and
assignment of channels; and other high-level constructors provide for common id
ioms such as subordination, and farming of replicated tasks. The Relios shell can

N912 January 1990 81

accept CDL scripts and pass them to the Task Force Manager, which automatically
assigns tasks to available processors using heuristics (unspecified) to match stream
connections to the actual topology of the network.

There follows a list of the routines in the 'resident library' (the Helios equivalent of
system calls), giving for each the C language calling sequence and a brief description
of its purpose. In theory this should be enough for programmers to make use of all the
facilities of the system; but the functional descriptions are sufficiently sketchy that
they. will need to turn frequently to the third part of the book, which gives details
of the implementation of many system components, and defines the data structures
they work with. Fortunately there is an excellent and thorough index, which should
enable diligent and determined readers to find answers to most of their questions
without recourse to the source code. They will also be assisted by the example
programs (five pages of C code) which illustrate simple uses of Helios routines
although a lot more (and more legible) examples would have been welcome.

There is a similar list of the routines in the 'Unix compatibility' library, which
implements functions 'largely compatible with the proposed Posix standard'. Those
wishing to 'port' Unix software would have liked to see a concise list of divergences
from the standard; in its absence they will need to read between the lines and guess
at the features which would be awkward or impossible to simulate within the Helios
programming model.

Who will want to read this book? It will be essential for Helios users and
.programmers, since it comprises the main documentation for the system (necessary
but not sufficient - it fails to mention, for example, how to create home directories
and passwords for new users). As a user manual, it is no worse than most and
considerably better than many. The book will also hold some interest for students
of operating system design. For them it will not be easy reading; since much of it
consists of alphabetical lists of commands or library routines, .abounding in forward
references to other chapters, it is pretty much necessary to read all of the book before
properly understanding any of it.

Richard Miller) Programming Research Group) Oxford University

PARALLEL PROCESSING: TECHNOLOGY AND
APPLICArIONS

ed. H. Neishlos, pub. IOS B.V., 1989,
pp. viii+141, pb. Dfl.l00, about $55, ISBN 90 5199 021 9

These slim proceedings contain most of the papers presented at a symposium held in
Johannesburg in October 1988 by the University of the Witwatersrand with the IFIP
Committee of the Computer Society of South Africa and the South African Section
of IEEE. I was surprised to find that the first four papers' authors had American
addresses, but as you might expect I later found that with the solitary exception of
a paper from Inmos Bristol the other two thirds of the papers quoted South African
addresses.

It will not surprise anyone at all familiar with current research in this field that
hypercubes appear often in the American paper; nor sadly that the bulk if not all of
the references to transputers are in the other papers. One of the signs that the field

82 occam user group newsletter

is not yet mature is the number of papers that one sees proposing architectures for
more or less general purpose parallel machines, and this collection is no exception.
The same is - unsurprisingly - true of ways of designing parallel programs, and this
collection talks about a number of radically different paradigms and techniques for
implementing them. There are, gratifyingly, also papers about real applications: one
as real as the control of induction motors. It turns out that what I had expected
to dismiss as heavy electrical engineering is something that requires a deal of real
time computation; and that calculations which might otherwise have used a number
of special-purpose digital signal processing chips and floating point processors can
reasonably be handled by a couple of transputers. That's what we like to' hear.

Inevitably, in a collection as diverse as this, there are unlikely to be a great
number of papers that will appeal to any particular reader, but going by what has
been presented in the past about a half of these papers fall within the subject area
of occam user group meeting technical meetings. The Inmos paper, by the way,
is Atkin and Ghee's description of A Transputer Based Multi-user Flight Simulator
which looks remarkably like the Inmos technical note of the same title, which appears
in the Communicating process architecture book.

A small thing for which I thank the editors and the authors of one of the papers
is a delightful typographical error in the name of the T@!@ transputer.

Manfred Maurenbrecher

SERVICES AND ANNOUNCEMENTS

INMOS MARKETING UPDATE
Mark Jones, Inmos, Bristol

As those of you who attended the last OUG meeting in Edinburgh will have seen,
Inmos has seen some important changes and made significant progress in 1989.

In September 1989, together with Pasquale Pistorio the President and CEO of
SGS-Thomson, we started a worldwide press tour to promote the transputer. This
has been backed up by a worldwide advertising campaign totalling a million dollars
over the last three months. To date, this has generated over 5000 direct enquiries
and increased the profile of the transputer worldwide.

Our messages of 'Multi-processing Made Simple' and low cost 32 bit processors,
have broken down a lot of the barriers and overcome the misconceptions that were
held about the transputer family. The 1990s will see the transputer become one of
the major microprocessor families and an industry standard.

Some of the highlights of the launch are detailed below.

T400 - the lowest cost 32 bit microprocessor!

The T400 was launched in September at $2 per MIPS. It is the lowest cost 32 bit
microprocessor on the market at under $100 even for one-off quantities.

We launched the T400 to enable new users to evaluate the transputer and to

N912 January 1990 83

demonstrate that multiprocessing is cost effective. As a device for mass production,
there are no longer any reasons for not choosing the transputer.
. The T400 is available now in a ceramic PGA package and will be produced in

surface mount PLCC and QFP packages too. It is software- and pin-compatible with
the T425 and T800 and comes in a single speed version of 20 MHz.

The T400 has 32 bit CPU, 2 kbytes on-chip memory, timers, 4 Gbyte external
memory interface and two serial links.

This device has opened up many new applications in the embedded application
arena and attracted interest from users of 8 bit and 16 bit microprocessors.

HI - the next generation

HI, as it is code-named, is the next generation transputer. We have pre-announced
this product to demonstrate Inmos's commitment to the future and intention to
remain at the forefront of technology.

At this stage, we have declared the major features of the HI:
[> a single processor with over 100 MIPS and 20 MFLOPS performance on a single

chip,
[> code compatible with existing T800 transputers,
[> large on-chip cache,
[> increased link bandwidth of 80 Mbytes/sec; there will be a new protocol and

conversion devices for communication to existing products,
[> hardware support for message passing and virtual channels.

HI will be available in 1991 and further details will be published in 1990.

iQ Systems - a new business

Based on the success of the TRAM and motherboard concept, Inmos has launched a
separate business venture called iQ systems to market board level products and soft
ware. The hardware includes motherboards, computational TRAMs and application
TRAMs such as a Vector processing module, Ethernet and SCSI interfaces.

Software development will concentrate on joint third party developments such
as an Ada compiler and Postscript interpreter from Harlequin. Inmos has set up a
strategic alliance program called STRAP to encourage developments in this area
and if you are interested in any further details, then contact your Inmos sales
representative or contact Inmos directly.

New TRAM modules

B411
B415
B416
B417
B418
B419
B420
B421

T800 with 1 Mbyte DRAM, size 1
Differential link TRAM, size 1
T222 with 64 kbyte SRAM, size 1
T800 with 4 Mbytes DRAM, size 4
T222 with 256 kbyte FLASH ROM, size 2
G300 based graphics TRAM, size 6 (see figure 28 on page 112)
vector processing TRAM, size 4 (1 k FFT under 2 ms)
IEEE488 GPIB interface TRAM, size 4

84 occam user group newsletter

B422 SCSI interface TRAM, size 2

D700E - Occam TDS

The next revision of the TDS, D700E, will be available lQ90. It includes:

t> occam compiler updated to D705 software toolset revision,
t> new Iserver included,
t> editor includes new functions such as multiple keystroke macros,
t> supports new processor types e.g. T425,
t> new tools to create files for EPROMs.

Contact your sales representative or distributor for availability.
Mark Jones
Inmos Limited
1000 Aztec West
Almondsbury
Bristol BS12 4SQ
United Kingdom

OCCAM PROMOTION INITIATIVE
Michael Poole, Inmos Limited

Inmos is considering embarking on an initiative to promote the occam language in
its own right in addition to reinforcing its current position as the preferred language
for transputer systems.

In addition to its support for concurrency, important attributes of the language
which make it worthy of promotion include its simplicity and consequent ease of
learning, its unambiguous semantics and hence appropriateness for reasoning about
programs, and the ability to construct compilers which maximise compile time check
ing and hence minimise development time.

In addition to projects where concurrency is of the essence, important application
areas include numerical computations and safety critical systems.

For a language to be acceptable in such systems it is necessary for there to be an
internationally accepted standard, and possible routes to such standardisation are
being investigated. Any standard will need to be accompanied by rigorous acceptance
procedures for new implementations. It is hoped that formal definition methods will
contribute significantly to such a process.

In addition to standardisation activity, which will inevitably include the con
sideration of possible language enhancements, the initiative would encourage new
implementations of the language for targets other than transputers. Inmos has
already announced its intention to make available the source of an occam 2 compiler
written in C to people considering such implementations.

The placement of articles on occam in appropriate journals will be encouraged.
Any members who would like to write such articles, or to get actively involved in any
other promotion activities are invited to make themselves known to me. The more
enthusiasts there are outside the company the easier it will be to get the necessary

NC? 12 January 1990

support from Inmos management and elsewhere.
help to ensure the future of occam.

Michael P oole
Inmos Limited
1000 Aztec West
Almondsbury
Bristol BS12 4SQ
United Kingdom

85

Do not miss this opportunity to

Tel: +44 454 616616
mdp@uk.co.inmos

Further Details

Length & Cost
Dates

OCCAM 2 AND TRANSPUTER ENGINEERING COURSE
Computing Laboratory, University of Kent at Canterbury

Course Objectives To acquire technical knowledge, insight and practical experience
of parallel system design using occam and transputer networks.
Harnessing the potential processing power of transputer networks
requires the development of a fluency in parallel systems design
equal to our traditional skills for sequential logic. Occam is a
simple, small but powerful language which enables such fluency.
Software engineering principles, load-balancing techniques, real
time applications and various embedded and super-computing
issues will be covered. The strengths, weaknesses and likely
future developments of occam and transputer technologies will
be discussed.

Course Members If you are thinking of using parallel computing to engineer high
performance high-security systems, this is the course for you. If
you have picked up basic occam syntax and semantics and are
wondering how best to exploit its power', come along. If you
have never seen any occam before, so much the better! Hardware
engineers are "especially welcome. C programmers beware - this
course will change your life!! [Since September 1986) this course
has attracted over 200 participants from Industry and Academia
worldwide.}

Course Methods Informal lectures with a large proportion of 'hands-on' experience
being provided through practical exercises and a 'mini-project'.
Practical work will be on the MEiKO Computing Surface and will
be supervised at the ratio of one tutor for every six attendees.
The MEiKO provides a multi-user multi-transputer development
and applications environment. Our system will support up to
30 simultaneous users, each with dedicated access to a private
network of transputers including at least two T800s. The full
system comprises over 131 transputers (including 97 T800s) with
a gigabyte distributed file store and three high resolution graphics
workstations.
Five days @ £450 (including lunches and light refreshments).
Course N914: 26-30 March 1990,
Course N915: 25-29 June 1990.

86 occam user group newsletter

Contact For a full syllabus, application forms, fees, special arrangements
and accommodation, please contact:
Professor P. H. Welch Tel: +44 227 764000 x7695
Computing Laboratory Fax: +44 227 762811
The University Telex: 965449 UKCLIB
Canterbury Email: phw@uk.ac.ukc
Kent CT2 7NF
England

EEC Recognition This course is one of the foundations for a series of courses and
technical workshops entitled' Training for Transputer Technolo
gies'. These are being developed under contract with the EEC as
part of the Communities Action Programme for Education and
Training for Technology (COMETT).

occam is a trade mark of the INMOS Group of Companies;
MEiKO and the Computing Surface are trade marks of Meiko Limited.

CODE A REVOLUTIONARY PLATFORM FOR LEARNING
OCCAM

Centre for Development of Advanced Computing, Pune, India

CODE is a tool for the scientific community to migrate seamlessly to the CSP
paradigm and overcome the reluctance and inertia in learning a new computing
paradigm. It is a full implementation of occam 2. It does not require any expensive
hardware and eliminates the need for any add-in transputer cards which are normally
required to execute an occam 2 program. CODE helps users learn occam by writing
programs, checking for errors and debugging during execution. All this at a price
that is absolutely unbeatable.

Key features

I> Requires no additional and expensive transputer hardware in the form of plug-in
cards (as IMS B004) to execute and occam program.

I> Integrated user-friendly environment with pull-down menus for user interface.
I> Full Inmos occam2 implementation and support.
I> A folding editor compatible with the Inmos TDS folding editor which naturally

helps users adopt a top-down approach for program writing.
I> Syntax checker to help the user in writing an error-free program.
t> Interpreter to enable program execution in the debug and non-debug optional

modes.
I> Extensive support for debugging unlike any other post-mortem debuggers; hence

helps check the program logic.
I> Assures deadlock detection and allows monitoring of the deadlock cause by setting

a watch on the channel.
I> Helps secure the trace information for the program.
I> Gives simulated 'compute and communication' times for any process.

N912 January 1990 87

[> Provides process status information like the number of waiting processes, the
current process status, etc.

[> Allows setting of break-points and program execution in either 'step-through' or
'step into' modes.

[> Lister for source listing of programs.

Operating environment

PC based MSDOS version 3.0 onwards. IBM PC-compatible machine with colour
monitor and a hard disk and floppy drive or two floppy drives.

Using CODE

CODE is an integrated environment for developing and learning occam. The user
can write an occam source code for a single transputer using the folding editor, check
it for syntax errors and later execute it.

A program can be executed in any of two optional modes - debug and non-debug
modes - when the logic is correct.

In the non-debug mode, the user can further select the trace ON/OFF facility
depending on whether it is required or not.

Components of CODE

Folding editor

Inmos TDS compatible folding editor which provides 'to write' and 'to edit' occam
programs using folds in CODE. The source file generated on this editor is Inmos
TDS compatible.

Syntax checker

It checks syntax errors in the occam code and reports the errors encountered. It is
responsible for generating the object file for the interpreter.

Interpreter and debugger

When executed in the debug mode, it helps the user to keep watch on variables and
channels and observe the process status, such as process waiting for input, output,
altinput, etc.

Lister

It helps to get the source line listing of a program with or without line numbers. It
opens all nested folds and lists the programs.

Ordering information

CODE version 1.0 is available on one floppy disk along with a user manual.
C-DAC reserves the right to make changes in specifications at any time and

without notice. The information furnished here is believed to be accurate. However,

88 occam user group newsletter

no responsibility is assumed for its use, nor for any infringement of patents or other
rights of third parties resulting from its use.

C-DAC, Centre for Development of Advanced Computing, is a Scientific Society
of the Department of Electronics, Government of India.

Centre for Development Tel: (0212) 332461, 332479
of Advanced Computing Fax: (0212) 337551

Pune University Campus Telex: 0145-615 CDAC IN
Ganeshkhind Road
Pune 411 007
Maharashtra
India

INMOS,IMS and occam are trade marks of the INMOS Group of Companies.
Copyright for CODE has been applied for.

PARALLEL PROCESSING AND THE TRANSPUTER
- A VIDEO TAPE

Microelectronics Educational Development Centre, Paisley, Scotland

The video provides a short introduction to the concept of parallel processing and the
Inmos transputer, hopefully answering some of the most common questions which
arise.

WHAT IS PARALLEL PROCESSING? The introduction examines the restrictions in
herent in existing computer architectures and introduces the concept of parallel
processing as a possible solution.

WHAT IS A TRANSPUTER? This segment introduces the architecture of the trans
puter family of microprocessors, highlighting the three main types of processors
available (T800, T414, T212). It also looks at the unique design features of the
chip: communication and memory.

How DO I PROGRAM THE TRANSPUTER? The software segment introduces the
occam programming language which provides the programming model for the design
of the transputer.

WHAT CAN I USE IT FOR? The application section of the video looks at two different
applications of transputer based systems: the first is the National Engineering Labo
ratory, East Kilbride, who have extensive experience and success using transputers in
the field of image processing; the second is the Edinburgh Concurrent Supercomputer
project based at the University of Edinburgh.

The video is produced jointly by the Microelectronics Educational Development Cen
tre, a Scotland-wide training agency for higher education and industry in microelec
tronics, micro computing and information technology, and the National Engineering
Laboratory, East Kilbride, a national body with an unrivaled reputation in applied
research.

N912 January 1990

Availability

89

Tel: +44 41 887 2158
Fax: +44 41 889 9755

Telecom Gold: 81:MECOOl
Telex: 778951 PCT LIB

The tape is available in VHS format, and lasts 18 minutes. It is aimed at the Further
and Higher Education sector in Scotland, and is distributed free of charge to these
institutions, but may also be of interest to others.

Unfortunately, funding does not permit free distribution outside the Scottish
education sector but surplus copies are available to academic institutions in Europe
at a nominal cost: £35 in the UK, £40 in the rest of Europe. All requests must be
accompanied by payment in Sterling.

Carol Higginson
MEDC
8/14 Storie Street
P aisley PAl 2BX
Scotland

MEGA-LINK TRANSPUTER BOARDS
Robert A. Sang, SANG-Computersysteme GmbH

MEGA-LinkOl plus, multi-transputer farm-card for PC

The MEGA-LinkOl plus is a farm-card to build up high performance networks,
consisting of four T425 or T800 transputers (20, 25 or 30 MHz), each with a local
RAM of 1, 2,4 or 8 megabytes.

The four transputers on the board are interconnected in a pipeline structure,
leaving at least two links of each transputer for manual configuration via cables or
electrical configuration with the MEGA-Link-Switch.

A fast DMA-interface (B008-compatible) combined with the optimized MEGA
server allows communication with the host computer at a rate of 300-400 kByte per
second.

Because of its extremely high packing density (up to four transputers and thirty
two megabytes of RAM into a single PC slot) and its flexible amount of memory the
MEGA-LinkOl plus is designated as a high-performance farm-card to build up large,
reconfigurable transputer networks.

Hosts IBM PCIAT and compatibles, Commodore Amiga 2000, Atari ST, or MEGA
Link-Station.

MEGA-Link02, high performance transputer graphics board

The MEGA -Link02 is the first commercially available board using the new Inmos
G300 Co~our Video Controller. It has been developed to allow the transputers a
powerful display of their graphics data. High resolution with few (256) colours and
true-colour display in TV-resolution can be readily realized.

The MEGA-Link02 is a PCIAT plug-in board, consisting of a T425 or T800
transputer (20, 25 or 30 MHz), with 1, 2, 4 or 8 megabytes of main memory plus 1 or
2 megabytes of dedicated dual-ported video-RAM, which the transputer can access
more than 95% of the time without any restriction.

90 occam user group newsletter

An fumos G300 Colour Video Controller manages the video RAMi and the gen
eration of the video signals. The G300 allows either a display of 16·7 million colours
simultaneously, or 256 out of a palette of 16·7 million colours.

Some of the possible resolutions are:
t> 1024 x 76S, 72 Hz non-interlaced, 256 out of 16·7 million colours,
t> 12S0 x 1 024, 67 Hz non-interlaced, 256 out of 16·7 million colours,
t> 640 x 4S0, 72 Hz non-interlaced, 16·7 million colours simultaneously.

A fast DMA-interface (BOOS-compatible) allows communication at a rate of 300
400 kByte per second between the transputer and the host computer. The links of
the transputer can be used to connect the MEGA-Link02 with other boards via
cables or the new MEGA-Link-Switch.

The application spectrum of the MEGA-Link02 ranges from a stand-alone trans
puter graphics board (e.g. to have a low cost station running Helios with X-windows)
to a high-performance graphics server in networks consisting of other MEGA-Link
boards.

Hosts IBM PC / AT and compatibles, Commodore Amiga 2000, Atari ST, or MEGA
Link-Station.

MEGA-Link03, transputer board
with from 1 up to 32 megabytes of DRAM

The MEGA-Link03 has been developed to cope with memory-hungry tasks using
transputer systems.

It puts a RAM which can range from 1 to 32 megabytes - depending on the users'
requirements - at the disposal of a T425 or TSOO (20, 25 or 30 MHz). Additional
memory will be supplied at the price-difference.

An unlimited number of transputer boards can be connected via the four links
including graphics output (MEGA-Link02), farm-cards (MEGA-LinkOl plus), elec
tronic configuration units MEGA-Link-Switch) or a very fast SCSI hard disk con
troller (MEGA-Link04, to be available October 'S9).

The fast DMA-interface and the new MEGA-Server allows data transfer rates of
300-400 kByte per second with the host computer.

The MEGA-Link03 can be used as an inexpensive start into the 'transputer
world' as well as a front-end board in powerful, reconfigurable transputer farms.

Hosts IBM PC/ AT and compatibles, Commodore Amiga 2000, Atari ST, or MEGA
Link-Station.

MEGA-Link-Switch, PC board with programmable crossbar switch

The MEGA-Link-Switch is a short plug-in card featuring an fumos C004 programm
able crossbar switch with thirty-two link connectors and a control link, allowing the
user to change dynamically his network topology (e.g. pipelines, arrays, trees).

An unlimited number of transputer boards can be connected using the MEGA
Link-Switch in any topology you will need.

Hosts IBM PC/AT and compatibles, Commodore Amiga 2000, Atari ST, or MEGA
Link-Station.

N912 January 1990

MEGA-Link-Interface,
interfaces to Commodore Amiga 2000 and Atari ST

91

The MEGA-Link-Interface boards for the Commodore Amiga 2000 and Atari ST
allow the users of these computers to use the power of the MEGA-Link series of
transputer boards.

Included with the interfaces is the modified version of the MEGA-Server, allowing
it to use Parallel C, Parallel Fortran and Parallel Pascal compilers from 3L and the
OCS and Toolset from Inmos.

The server software needed for the Helios operating system is currently under
development.

Hosts Commodore Amiga 2000 or Atari ST.

Robert A. Sang
SANG-Computersysteme GmbH
Am Wuennesberg 13
4300 Essen 1
West Germany

Tel: +49-201-71 01 191
Fax: +49-201-71 04 10

THE TOPEXPRESS TRANSPUTER LIBRARIES
F. W. Wray, Topexpress Ltd

Over recent years the demand for high performance computing has risen dramatically.
This has been particularly so in the area of scientific and engineering computing
where hardware has rapidly advanced to satisfy that demand. In parallel with these
improvements in hardware has come the development of routines that solve standard
numerical problems. These routines have been highly optimised and are usually
written in a high level language, such as Fortran, to guarantee portability. Many
libraries of such routines are now available. Most sacrifice performance for portability
by failing to take advantage of specific features of the hardware. This is particularly
important in the case of the transputer where for routines involving floating point
operations, sections of code written in assembler can often outperform equivalents
written in Fortran or occam by a factor of two or more.

The Topexpress Parallel Processing Group, a highly skilled team of professional
programmers and mathematicians, has realised the need for high performance nu
merical algorithms to run on transputer systems. In response to this requirement,
Topexpress has successfully executed the following design strategy: firstly, we have
written a set of highly optimised assembler primitives which achieve maximum
numerical performance on a single processor; secondly, we have written a library
of well understood numerically efficient algorithms, running on a single transputer
and making extensive use of the optimised primitives. Finally, we have converted
many of these single transputer routines to run efficiently on a fixed topology pipeline
of processors. The primitives, single and multi-processor routines are callable from
Fortran, C and occam and enable the non-specialist user to obtain the benefits of the
transputer's power whilst programming in a serial manner in a high level language.

92 occam user group newsletter

The Topexpress vector library (VecLib)

VMUL
VSMADD

The performance of scientific and engineering application programs can be dramati
cally enhanced by using the Topexpress Vector Library. The Library, which contains
over 100 single precision, double precision and complex vector primitives, is written
in optimised T800 assembler. VecLib routines are callable from Helios, Idris and 3L
languages and occam. The library has a well established user base and is supplied
with full documentation. Included with the library is an executive which maximises
performance by dynamically loading library code into on-chip RAM. As an example
of the typical performance increases the library can offer, the following megafiop
rates are for a single precision vector multiply (VMUL) and for a single precision
vector scalar multiply and add (VSMADD). The operand and result vectors are all
off-chip. Performance figures are given for a T800-20 with four-cycle RAM.

FORTRAN VecLib
0.18 0.65
0.33 1.05

The VecLib peak Megafiop rates for other important routines, under the same
conditions as above are:

Vector dot product 1.52
Vector sun of elements 1.67
Vector magnitude squared 1.77
Vector scalar multiply 0.82
Vector add 0.73
Vector scalar add 0.84
Vector square 0.77
Vector divide 0.56
Vector maximum element 0.64
Complex vector multiply 1.27
Complex vector divide 1.33
Complex vector scalar multiply 1.34

Typically, with an nl/2 of less than 10, vectors of length 25 are operated on at 75%
of peak performance, those of length 50 at more than 95% of peak performance.
Routines are available both for contiguous vectors and for vectors with non-unit
stride.

The Topexpress mathematical procedure library (MathLib)

The Topexpress Mathematical Procedure Library comprises over 50 numerical algo
rithms important for many scientific and engineering applications. The procedures
are numerically efficient, have been optimised for the T800 transputer using assembler
where necessary, and are available in single and double precision versions. The library
is available for Helios, Idris and 3L languages and occam. Included in the library
is an executive which can maximise performance by dynamically loading code into
on-chip RAM. This library has a well established user base, full after-sales support,
and is supplied with detailed documentation.

The library contains the following:

N912 January 1990 93

100
905

3180
23850

8192
752
677

8000
604

60
225
809

5590

2048
163
145

4000
278

30
39

131
912

512
34
30

2000
127

10
3
8

47

128
7
6

1000
57

EQSLV
INVERT
EVSPD

Transform Size
CFT (without lookup tables)
CFT (with lookup tables)

Sort Length
IMSORT

l> general matrix procedures,
l> sparse matrix solvers,
l> Toeplitz matrix procedures,
l> symmetric positive definite matrix procedures,
l> eigenvalue/eigenvector procedures,
l> fast Fourier transforms,
l> Bessel, gamma, Legendre and error functions,
l> sorting procedures,
l> optimisation procedures,
l> curve fitting procedures,
l> polynomial root finding procedures.

As an example of the performance of the library routines, the following timings
are for the solution of a set of linear equations using Gaussian elimination with
partial pivoting (EQSLV), the inversion of a matrix (INVERT), the calculation of all
the eigenvalues/eigenvectors of a symmetric matrix by the QR method (EVSPD), a
complex to complex fast Fourier transform (FFT), and an integer merge sort. All
timings,in milliseconds, have been made on a T800-20 with four-cycle RAM using
single precision versions of the routines

Matrix Dimension

The Topexpress parallel library (ParLib)

The Topexpress Parallel Library contains a set of concurrent numerical algorithms
optimised to run efficiently on an array of T800 transputers. The procedures are
available in single and double precision versions and make use of assembler, where
necessary, to maximise performance. The library is supplied with an executive
which, on a call to a library routine by a user program, will load the appropriate
code and handle all subsequent data input/output. The simple and effective user
interface permits the processing power of transputer networks to be harnessed whilst
programming in a sequential manner. The library, available for Helios, Idris and 3L
languages and occam, includes the following:

l> fast Faurier transform routines,
l> general matrix routines,
l> eigenvalue/vector routines,
l> symmetric matrix routines,
l> sparse matrix routines,
l> iterative equation solvers,
l> sorting routines.

94 occam user group newsletter

As an example of the performance of the library routines, the following timings
are for the solution of a set of linear equations with partial pivoting for a single right
hand side (GAUSSP), the inversion of a general matrix using the same procedure
(GAUSSP), the solution of a symmetric positive definite matrix equation with a
single right hand side (CHLSLP), the calculation of all the eigenvalue/eigenvectors
of a symmetric matrix by Sturm sequences (STURMP), a two-dimensional real to
complex fast Fourier transform (R2DFTP) and an integer sort routine (ISORTP).
All timings, in milliseconds, have been made on an array of four T800-20s with
four-cycle RAM, 20 Mbit/s links using single precision versions of the routines, and
include time for transfer of data to and results from the array

Matrix Dimension 50 100 200
GAUSSP (lRHS) 84 372 2057
GAUSSP (inversion) 147 855 5601
CHLSLP 26 115 697
STURMP 579 3160 18493

Transform Size 64x64 128x128 256x256
R2DFTP 49 194 757

Sort Length 2048 4096 8192
ISORTP 38 85 183

These routines are highly parallel and run on an array of any number of transputers.
Whilst MathLib and ParLib do not compare in size with large well-established

numerical libraries, they already include most commonly used algorithms, and are
growing rapidly. Furthermore, in many cases, their performance is a factor of two or
more times better than that of other libraries. This is particularly so in the case of
the Parallel Library whose performance is better than that of its competitors by a
substantial margin. For further information telephone or write to:

Kate Ramsey Tel: +44 223 462121
Topexpress Ltd
Poseidon House
Castle Park CB3 ORD
United Kingdom

CONCURRENCY: PRACTICE AND EXPERIENCE·
an international journal from John Wiley and Sons, for users and designers of

concurrent applications, hardware and software

Readership

Primarily, Concurrency: Practice and Experience aims to be a forum for cross
fertilisation of ideas on developing algorithms and software from users and designers
of concurrent machines.

Concurrency: Practice and Experience will be a major attraction for computer
scientists who are involved in the design of concurrent computers and the associated
languages and systems software.

N912 January 1990 95

The practical approach will appeal strongly to people from a wide variety of
scientific disciplines - amongst them physicists, molecular biologists, and chemists
who are applying the technology in their field.

Aims and goals

Recent developments in technology have stimulated the development of concurrent
computers. These machines consist of a collection of processors connected in a
network - or alternately a collection of processors sharing access to a common
memory. These include both general purpose MIMD and SIMD architectures and
special purpose systems such as neural networks. Optical and dataflow hardware can
be expected in the future. There are now several commercially available concurrent
computers and an increasing number of microprocessor chips specifically designed to
permit the construction of parallel computers varying in size from PC add-in boards
with a few processors to 64000 processor supercomputers.

These machines are being successfully applied in a wide range of application
areas especially in science and engineering. This is producing a substantial amount
of practical experience in those problems which parallelize well and the features of
hardware and systems software needed to use concurrency effectively. There are also
new computational methods, such as cellular automata and massively parallel neural
networks, which are particularly suited to concurrent execution. At present, there is
no journal that brings this work together. Results, if published at all, are scattered
through specialized technical journals.

This journal will therefore focus on practical experience with concurrent -ma-
chines, especially:

l> Concurrent solutions to specific problems
l> Concurrent algorithms and computational methods
l> Programming environments, operating systems, and tools
l> New languages
l> Performance design, analysis, models and results

Note for contributors

We encourage papers from a broad range of authors and points of view and will
attempt to choose referees who will judge papers on quality and not approach. If
you are interested in submitting a paper please contact an editor. Full notes for
contributors will appear in each issue and are available from the editors and the
publisher.

Editor

Geoffrey C. Fox
California Institute of Technology
Mail Code 206-49
P asadena, California 91125
United States of America

ARPANet: gcf@hamlet.caltech.edu
BITNet: gcf@caltech
Tel: +1 818 356-3765
Fax: +1 818 584-5917

96 occam user group newsletter

Associate editors

Paul Messina
California Institute of Technology
Mail Code 158-79
Pasadena, California 91125
United States of America

Tony Hey
Department of Electronics

and Computer Science
University of Southampton
Southampton S09 5NH
United Kingdom

ARPANet: messina@zephyr.caltech.edu
BITNet: messina@caltech

Tel: +1 818 356-3907

Tel: +44 703 559 122 x2029

International editorial board

Dr Donald M. Austin, Department of Energy, Washington; Dr J acob Barhen, Jet Propul
sion Laboratory; Professor Enrico Clementi, IBM, New York; Dr Erik DeBenedictis, .A..nsoft
Corporation, Pittsburgh; Dr Dennis Duke, Florida State University, Tallahassee; Dr W. M.
Gentleman, National Research Council of Canada, Ottowa; Dr Milton Halem, Goddard
Space Flight Centre; Professor Per Brinch Hansen, Syracuse University, New York; Pro
fessor Ken Kennedy, Rice University, Houston; Professor H. T. Kung, Carnegie Mellon
University, Pittsburg; Dr Lennart Johnsson, Thinking Machines Corporation, Cambridge,
Massachusetts; Dr David May, INMOS Ltd, Bristol; Professor Oliver McBryan, University
of Colorado, Boulder; Dr Raul Mendez, Institute for Supercomputing Research, Tokyo;
Dr Steve Otto, University of Southampton, England; Dr George Paul, IBM Thomas
J. Watson Research Centre, New York; Professor Dan Reed, University of illinois, Ur
bana; Professor Joel Salz, NASA Langley Research Centre, Virginia; Professor Martin
Schultz, Yale University, Connecticut; Dr Danny S0rensen, Argonne National Laboratory,
illinois; Professor D. J. Wallace, University of Edinburgh, Scotland; Dr Andy White, Los
Alamos National Laboratory, New Mexico; Dr Daniel F. Wiener 11, University of Virginia,
Charlottesville; Dr Hans Zima, Universitat Wien, Osterreich.

COMMERCIAL PARALLEL PRODUCTS USE EXPRESS
Larry Lesser, ParaSoft

The EXPRESS parallel environment has been used to create parallel versions of:
[> COSMOS finite element program, developed by Structural Research Corporation

of Santa Monica, California
[> NeuralWare Professional Works 11 by NeuralWare of Pittsburg, Pennsylvania

Also, the Strand88 parallel language has been ported to EXPRESS and will be
available wherever the EXPRESS system is available.

The parallelization of COSMOS and NeuralWare Professional Works 11 was done
as joint efforts between ParaSoft and the software authors, while AI Ltd, the author of
Strand88 did the porting to EXPRESS with essentially no assistance from ParaSoft.

Performance characteristics for each product are better than expected. As these
are all commercial products available for sale, performance was critical. The success
ful use of an environment, EXPRESS, should help end some of the concerns about

N912 January 1990 97

Tel: +1 714 380-9739
Fax: +1 714 380-9739

overheads that may be associated with such systems, though EXPRESS provides
the fastest performance with the least overhead and is being chosen over alternative
systems when performance is an issue.

P araSoft provides tools at each stage of the parallelization process to help create
completed applications as easily as possible. The typical steps are:

I> Parallelization - EXPRESS provides global functions, automatic data distribu
tion, scalability and load balancing.

I> Debugging - ParaSoft has created NDB a parallel source level debugger that is
similar to SUN's dbx.

I> Performance - ParaSoft provides PM a parallel performance monitor to help find
where time is being wasted.
EXPRESS is available on most transputer systems, including PC, Mac or Sun

based products as well as NCUBE and Symult parallel computers. Questions on
EXPRESS or the other products can be addressed to

Larry Lesser
ParaSoft
27415 Trabuco Circle
Mission Viejo, CA 92692
United States of America

VIDEOPAINT SOFTWARE
USING TRANSPUTER IMAGE PROCESSING

Peter Kruger, Digithurst Ltd

A highly effective video paint package, DHPAINT, has been developed by Digit
hurst Ltd for use with its Transputer-based MicroEye TC image grabbing and pro
cessing board for PC-AT and compatible computers.

DHPAINT is to be supplied with MicroEye TC, giving users a means of becoming
quickly familiar with the board's exceptional capabilities and functions, and as a
valuable tool for image capture, retouching, presentation and output .

.. DlIPAINT works with images of 720 X 512 pixels, with 24 bit (16· 7 million) colour
information, and supports VGA display format.

The package is operated from an easy to learn graphic icon menu using a mouse,
digitising tablet or other pointing device. It allows users to grab an image, and then
to modify or retouch it in virtually any way conceivable, while displaying the effect
as the work is done. The transputer processor ensures that flood, shading (vignette)

. and pattern fills occur very quickly indeed.
DHPAINT has a full complement of freehand, line, Bezier curve, polygon, rect

angle, circle and text drawing tools with 32 preset brush shapes, and the ability to
modify a brush to any 32 x 32 pixel pattern. Colours can be picked from the screen,
from a palette, or mixed by the user from Hue, Saturation, Intensity or Red, Green,
Blue values. There are 11 logic modes available when drawing, including Tint and
Blend, achieving a huge variety of possible effects and textures.

The resulting display can be 'colour balanced' under user control by graphically
programming the way that pixel values held on the MicroEye TC actually map onto
the colours displayed. This makes it possible to achieve anything from selective

98 occam user group newsletter

Tel: +44 763 242955
Fax: +44 763 246313

lightening, darkening or intensifying of colours in a grabbed image when retouching .
a photograph, to a complete rearrangement of the colours giving 'psychedelic' or
pseudo-colour effects on a moving image. Pattern drawing, spraying or fill is possible
by selecting a pattern area from the screen image. When a pattern is generated from
an area of a grabbed photographic image, it allows the creation of completely realistic
retouching effects, output from which is difficult to distinguish from the quality of
the original video image.

A cut-out function allows an arbitrary-shaped area of the image to be picked and
saved, and then repositioned, resized and redrawn on the same, or another, image.
This is essential for applications such as photofit and hair-styling, where a library of
standard images can be quickly called up from disk, and tried in position until the
desired effect is achieved.

One of the most exciting and powerful features of DHPAINT is a sophisticated
stencil, or masking, function. By using the two picture stores on the MicroEye TC
board, the stencil function offers a variety of image effects by combining the two
images.

For example, store and X-ray image of a hand in the reference store, and grab a
real image of a hand into the first store. An outline stencil can be cut in the 'real'
hand, and filled with the same portion of the X-ray hand, to achieve the effect of a
cut-away showing the bone structure below the flesh. Alternatively, the X-ray image
can be sprayed onto the 'real' hand to achieve a ghostly effect of the bones showing
through the hand. This powerful technique has many uses in creating cut away and
exploded views from real objects, or visualisation, or combinations of the two to
show, for example, the effect of a new development on the landscape.

DHPAINT is a valuable image processing tool for creating picture libraries,
graphic designs and visualisations, storyboards and so on. Digithurst have also
modified the package for vertical market applications such as hair-styling, landscape
gardening, architectural visualisation and photofit, where a more specific user inter
face is needed. DHPAINT will load and save images in TIFF and TGA formats, for
compatibility with other applications such as slide making and electronic publishing
software.

For further information, contact:
Peter Kruger, Managing Director
Digithurst Ltd
Newark Close
Royston, Herts 8G8 5HL
United Kingdom

MEIKO IN-SUN COMPUTING SURFACE HARDWARE

The computing surface is a scalable, multi-process distributed memory architecture.
Individual processors execute sequential threads of application programs within their
own dedicated memory systems. They co-operate when required by exchanging
information via high performance inter-processor message links. Embedded micro
code schedulers manage task synchronisation while threads co-operate.

Processors are used independently for sequential applications, or in groups for

N912 January 1990 99

parall~l applications. The Computing Surface message link switch allows the opti
mum network topology to be used for every application. The message link switch,
constructed with proprietary VLSI routing chips, enables high speed, low latency
message paths to be established between co-operating processors under software con
trol - effectively allowing application software to determine its own parallel machine
architecture.

The scalability of the Computing Surface architecture has allowed hundreds of
machines to be constructed, ranging in size from a few processors, yielding super
mini performance of a few megaflops, to hundreds of processors with gigabytes of
distributed random access memory able to sustain supercomputer performance in
the gigaflops region.

l> The In-Sun Computing Surface provides a range of board level alternatives for
ready integration within Sun Workstations and servers. (Parts MK200, MK201,
MK202 are illustrated on the front cover.) Multiple boards may be combined
utilising the expansion slots of these industry standard host machines. Further,
unlimited expansion is achieved by attaching Computing Surface modules to the
external interfaces of In-Sun boards.

l> The individual processors are Inmos T800 transputers, each delivering fi..~e VAX
MIPS sustained performance. They are purpose built for distributed memory
message passing multi-processor construction.

l> Transputer message passing links are connected under application software con
trol using Meiko's proprietary low latency message switch. Total flexibility in
parallel application topologies giving optimum match of machine to problem.

l> System health monitoring and run-time diagnostics are directly supported by
Meiko's proprietary System Supervisor VLSI chip incorporated with each indi
vidual processor.

l> High performance interfacing to the Sun windows and fileserving environment is
ensured by the use of further dedicated T800 transputers with dual ported shared
memory in the Sun VME address space.

Meiko Scientific
650 Aztec West
Bristol BS12 4SD
United Kingdom

Tel: +44 454 616171
Fax: +44 454 618188

M212 TRAM BASED DISC SUBSYSTEM
Centaur Computer Systems

Centaur computer systems announce the launch of an ST506/412 disc driver.
This size 4 TRAM offers a 100 MIPS M212 16 bit transputer and 64kbytes of

SRAM for program storage or sector buffering.--
The CTDM2-20 is designed to control four drives in any combination of floppies

(3!" or 5~") and Winchesters, utilising either mode 1 or mode 2 operation.

100

For more information, contact:
Paul Esmail
Centaur Computer Systems
Triona House
London Road
Bracknell, Berkshire RG12 5AB
United Kingdom

occam user group newsletter

Tel: +44 344 423695

IF/PROLOG ON THE TRANSPUTER
Oskar Bartenstein, InterFace Computer Japan Ltd

InterFace Computer GmbH, Miinchen, West Germany and InterFace Computer
Japan Limited, Tokyo, Japan are pleased to announce that IF/Prolog V3.4.4 is
now available for the INMOS transputer IMS T414 and IMS T800 family of parallel
RISC processors.

IF/Prolog is an industrial grade implementation of the Artificial Intelligence
programming language Prolog.

It offers a complete programming and testing environment with exception han
dling, floating-point arithmetic, module concept and screen oriented debugger. An
incremental compiler allows interpreter and compiler to call each other.

Designed as an open system, IF/Prolog features a bidirectional interface to the
C language, supporting all Prolog data types, unification, and control structures
including cut, fail, and backtracking.

Complementing the system programming languages 'C' and 'occam', IF/Prolog
is probably the first compiler based very high level programming language sup
ported worldwide for PCs, UNIX machines and mainframes that is available for
the transputer in a fully compatible version.

The following gives an overview of IF/Prolog on the INMOS transputers T414
and T800.

Software requirements

IF/Prolog can be used on any environment which is supported by 3L Parallel C V2.0.
IF/Prolog is available for both the T414 and the T800.

IF/Prolog comes with its full functionality as on UNIX workstations. However,
since there is no shell available on the transputer you cannot invoke operating system
commands.

Hardware requirements

Each transputer processor in a system supports its own IF/Prolog process. IF/Prolog
can be used in single transputer add-on boards and on multi-processor systems.

Minimum memory recommended is 2 Mbyte for each transputer, so IF/Prolog
can be used on TRAM modules also. IF/Prolog object size is about 200 kbyte.

IF/Prolog is available for IBM PC and NEC PC hosts, distribution media is
5" 2HD floppy disks. We recommend use of a hard disk if you intend to do serious

N912 January 1990 101

work. IF/Prolog itself does not require the use of a hard disk. A system that is
hosted by a Sun is under preparation.

Special features on the transputer

IF/Prolog is delivered compatible with IF/Prolog for workstations and minicomput
ers. You can use all communication facilities of the transputer via IF/Prolog's C
language interface using 3L Parallel C V2.0, as far as they are supported by Parallel
C.

Each IF/Prolog process runs on one transputer, with its own unshared Prolog
data base. Thus there is no communication overhead unless explicitly requested by
the programs.

Performance

On aIMS T800 we measured 8·2 kLIPS for the execution of the naive reverse
benchmark. This is slightly better than the performance of a MicroVAX 11 for the
same application.

IF/Prolog on the transputer

For embedded systems and mass products, InterFace Computer offers the ROM based
version of IF/Prolog. We can also assist with system integration.

Applications

IF/Prolog is a general purpose programming language and the transputer is a fairly
general purpose machine, so lots of different applications are to be expected.

There are several distinct types of typical IF/Prolog-on-transputer configurations.
The most spartan one is the use of IF/Prolog on an add-on board in an IB,M PC,

NEC PC or compatible, mainly for two purposes:

l> evaluation of the transputer technology,
l> speed within a low cost hardware system and within MS-DOS, but without MS

DOS memory limitations.

The second major configuration consists of few transputers running concurrently,
each supporting a time independent process. For example in an embedded real time
expert system one processor each for the user interface, for the inference process and
for the sensor/actuator interaction. This is an example for large grain parallelization.
The actual system can still be configured on an add-in board on a PC. Products to
be announ~edby INMOS in the near future will allow run time systems to be burned
into ROM, e.g. for volume products or for very rough environments.

The third type of configuration is the large processor array. This kind of system
is used for brute force computational tasks and for pure research e.g. on neural nets
or parallel computing.

The first IF/Prolog supplied for the transputer was delivered to the College of
Engineering of The University of Tokyo, for a machine consisting of eight T800 and

102 occam user group newsletter

sixty-four T414 transputers. IF/Prolog on this machine is used for advanced robotics
and intelligent vision research.

Further information

Request information on IF/Prolog on the transputer from either

Dr Oskar Bartenstein
InterFace Computer Japan Limited
205 Righ City Rongo 3-23-5 Rongo
Bunko-ku, Tokyo, 113, Japan

Tel +81 3-818-5826
Fax +81 3-818-5829

Annette Kolb
InterFace Computer GmbR
Garmischer Strafie 4
D-8000 Miinchen 2
West Germany

Tel +49 89-510-8655
Fax +49 89-510-8628

FAST9 UPGRADE MAINTAINS QUINTEK EDGE

Maintaining its commitment to leading edge, high performance parallel processing,
Quintek Limited of Bristol has now upgraded the established FAST9 transputer
board to include the latest technology and processing power.

With up to 4 Mbyte of DRAM on each of the nine processors, the FAST9 is
designed to fit in a single slot on IBM PCs or compatibles. The latest FAST9
provides greater than 100 MIPS of total processing power (200 MIPS peak) and,
using the Inmos T800-25 floating point transputer, greater than 32 MFLOPS peak.
For the future, the FAST9 will also be able to use the Inmos T800-30 transputer
when available. For users who may wish to extend the processing power, the FAST9
can be supplied initially with just four processors and later upgraded to nine.

Flexibility has remained the keynote of the FAST9 since its introduction in 1988,
now both in terms of memory, where 1 Mbyte or 4 Mbyte can be supplied on each
processor and in the number of transputers initially fitted. A particularly useful
configuration is one with 4 Mbyte on the master transputer and 1 Mbyte on each of
the eight slaves. Similarly, there is flexible software control of link configurations
using the C004 link exchange, with a number of boards being easily connected
together to provide large parallel processing resources.

The FAST9 is established as an extremely reliable and cost-effective product,
used in large numbers throughout the world. It is also particularly versatile, capable
of operating with a variety of standard languages including Fortran 77, C, Pascal,
Occam, and Ada with their associated debugging, profiling and vectorizing tools. The
FAST9 can provide the central processing resource for the Relios Unix-style parallel
operating system with X-windows. Applications where the FAST9 is providing high
performance parallel processing include:

[> image processing,
[> fingerprint recognition,
[> signal processing,
[> parallel searching and sorting,
[> computational fluid dynamics,

N912 January 1990 103

Tel: +~4 223 420787
Fax: +44 223 420572

t> optical design optimisation,
l> finite elements and difference software,
t> many applications through the SERC/DTI Load Pool.

These latest enhancements ensure that for existing applications and for new products
or research, the FAST9 - one of the family of FAST boards from Quintek - remains
at the forefront of innovation and performance.

INDUSTRIAL I/O FOR TRANSPUTER SYSTEMS
Cambridge RISC Machines Limited

The Cambridge RISC Machines CRM402H - the first in a range of I/O boards for
transputer systems - is a digital input/output board in the standard (3U, non
extended) Eurocard format. It provides sixteen input and sixteen output lines,
arranged as eight-bit ports. Each port may be configured for handshake or free
running operation, and appears to the software as a single channel, communicating
over an Inmos link at up to 20 Mbits/s.

The buffered signals can be conditioned by other boards via an industry-standard
Signal Conditioning bus. Off-the-shelf signal conditioning boards include opto
isolators, Darlington drivers, solenoid drivers and relays. Industrial quality screw
terminals are available for connection to plant.

Therange of I/O boards froms part of the Cambridge RISC strategy, which
aims to provide a complete service for the development of real-time control systems
based on the Inmos transputer. Complementary products already available from
Cambridge RISC include processor boards, an EPROM board, gateways to VME and
other standard buses, and fibre-optic industrial networking. All of these products
are in Eurocard format which facilitates the construction of rugged control systems.

Software support for PC and VMEbus OS-9/68k host systems is available from
Cambridge RISe. This consists of 3L's range of parallel compilers for C, Pascal, and
Fortran. Complete turn-key systems can be built by using 3L's ROM configurer,
blowing developed code into EPROM and running it on Cambridge RISC's hardware.

For further details contact:
Simon Roberts
Cambridge RISC Machines Limited
Unit 10
Cambridge Science Park
Milton Road
Cambridge CB4 4FG
United Kingdom

COMMERCIAL FORMAL METHODS AND TOOLS
Formal Systems (Europe) Ltd

Formal Systems Design and Development Inc., a US company which brings leading
edge academic research to the market-place, has just opened its European office in
Oxford, to specialise in applications of the theory of concurrency. Its staff is drawn

104 occam user group newsletter

Tel: +44 865 728460
Fax: +44 865 793165

largely from former members of the Oxford University Programming Research Group,
including a number of the original team responsible for the occam Transformation
System, and several current members of the group serve as directors and consultants.

As well as developing software tools for supporting occam programming - watch
future issues for product announcements! - the company offers collaboration and
consultancy on all aspects of parallel systems and formal methods, with p'articular
strengths in the formal development of very reliable concurrent systems. Short
courses can also be arranged, either off-the-peg or tailored to clients' specific needs,
in any of these areas,

For further details, request an information pack from:
Formal Systems (Europe) Ltd
Unit 7, The S.T.E.J>. Centre
Osney Mead
Oxford OX2 DES
United Kindgom

LINKEYE - AN INTERFACE FOR LINE-SCAN CAMERAS
Transputer Systems Group, SI, Oslo, Norway

The Transputer Systems Group at SI, Oslo, Norway has recently developed a new
building block for industrial vision systems.

Linkeye digitises the signal from a line-scan camera and multiplexes it line by line
onto a number of transputer-links. This means that any network of transputers can
be utilized at the link end of the interface. The multiplexer will work on any number
from one to sixteen links. At maximum the interface will handle 800 kpixels/s on
each link (1.6 Mpixels/s if Inmos ever supply link adapters with overlapped ack.)
With sixteen links this adds up to 12.8 Mpixels/s performance if your algorithms
and transputers are able to swallow the data.

Linkeye has many features to support debugging, fault tolerance and general ease
of use. Some of these are:

I> control of reset and various modes of the interface by the first transputer
I> event signalling of data overrun or new-line,
I> 10t8 of LEDs on front panel indicating state of the interface,
I> electronic aid for adjustment of aperture and focus,
I> adjustable gain and offset on video signal.

Linkeye should be well suited for applications with hard real-time demands like
industrial inspection and quality control systems. We have developed the board in
cooperation with SIUs Vision Systems Group and they will use it in their ongoing
development of industrial inspection systems. We are interested in cooperating with
and making Linkeye available to interested companies and research institutes.

Arne Sommerfelt Tel: +47 2 45 20 10
Senter for Industriforskning (direct) +47 2 45 27 97

(Centre for Industrial Research) Fax: +47 2 45 20 40
Box 124 Blindern sommerfelt@no.uninett.si
N-0314 Oslo
Norway

IMMEDIATE SOLUTION TO DATA STORAGE PROBLEMS
T2 Systems Ltd

N912 January 1990 105

Patrick Pope (T2 Systems Ltd)
+44 703 641276

Sandu Hellings (Rapid Silicon)
+44 494 442266

Contact:

Following the recent launch of their Paradise-1 SCSI/TRAM T2 Systems Ltd have
released version 0·00 of their 'I-connect' software module for this TRAM. I-connect
is so called because it allows the Paradise-l to be used as a general purpose SCSI
'initiator' able to access any SCSI peripheral device.

I-connect has been designed with four main requirements in mind:
t> It should be completely general purpose, able to execute any SCSI command.
t> It should offer a simple well defined user interface that can easily be incorporated

into any language or programming environment.
t> It should provide a very high speed data transfer rate.
t> Large data blocks should be transferred with a single command.

I-connect meets all these requirements giving a system which is easy to use, high
performance, and inherently upgradeable. Applications for the Paradise-1/I-connect
system include

t> File Servers
t> Image storage
t> High speed tape backup systems
t> Virtual Memory
t> Database support

T2 Systems Ltd
62 Longmead Avenue
Bishopstoke
Eastleigh, Hants S05 6ET
United Kingdom

SPLASH DISPLAY SUBSYSTEM APPLICATION
ACCELERATOR

Tektite Limited, Felixtowe

The Tektite SPLASH is an advanced applications accelerator and display system
for the IBM PC, PC-AT, and compatible computers. The SPLASH irnplements the
processing, drawing, and display functionaHty of a traditional workstation, while
comfortably exceeding the performance of all but the most advanced workstation
systems. SPLASH has the power needed to run advanced windowing and other
display software. Typical SPLASH applications include computer-aided design, high
performance windowing systems, publishing systems, and true-colour animation and
simulation.

t> Work~tation quality one million pixel display system - resolutions up to 1152 X 900
at 8 bits/pixel.

t> 17 MIP RISC processor (Inmos T425-17 transputer) with 2 Mbyte or 5 Mbyte
total memory.

t> Fully programmable display resolution, including interlaced or non-interlaced
displays. Fully compatible with all common analogue monitors. Video master
and video slave modes. Normal and tessellated (TV) syncs.

106 occam user group newsletter

Tel: +44 394 672117
Telex: 987458 TKTITE G

I> Palette allows display of 256 colours from a selection of over 16 million.
I> True colour mode (24 bits/pixel) allowing all 16 million colours to be displayed.
I> Two standard 20 Mbits/s expansion channels for attaching additional processors

for compute-intensive applications.
I> -Fully equipped for expansion into a multiprocessor system as either the system

master or a slave. Multiple SPLASH boards can be installed in a single PC.
I> IBM PX-XT half-card size with a standard PC-AT edge connector.
I> Outstanding price-performance ratio.

In an IBM PC form factor, SPLASH provides a unique combination of Sun screen res
olution, a 17 MIP general-purpose processor with 1 Mbyte or 4 Mbyte of workspace,
and 24 bit/pixel (true colour) capability.

Typical non-interlaced display resolutions include 512 x 512 X 24, 640 x 480 x 8
and 1152 x 900 X 8. All these resolutions can be selected under software control.

TT300-A models of SPLASH incorporate an Inmos G300-A colour controller.
TT300-B m~dels incorporate a G300-B with the extra features of gamma correction
in 24 bit/pixel mode, tessellated sync pulses, and the ability to slave to external
video. Tektite can upgrade TT300-A cards to the TT300-B model.

For more information call
Andrew Talbot
Tektite Limited
PO Box 5
Felixtowe
Suffolk JP11 7LW
United Kingdom

THE YARC PROTRAN™ SYSTEM
a higher-performance PCIAT plug-in transputer system

Yarc Systems designs and manufactures co-processor systems for Macintosh, PCIAT
and PS12 personal computers, using AMD 29000 and Motorola 68020168030 proces
sors. At the second NATUG conference Yarc introduced its first parallel processing
product: the PROTRANTM system, which uses the INMOS T800 transputer.

The PROTRAN™ board is currently available for the AT bus. In addition to
the C012 host interface, the board can accommodate a maximum of four transputers,
operating at either 25 MHz or 20 MHz. A 30 MHz version of the board will be offered
soon.

The first transputer (the root) can be equipped with 1, 2, 4, 8 or 16 Mbytes of
RAM; the other three with 1, 2, 4 or 8 Mbytes. The most powerful configuration
thus has four transputers with 40 Mbytes of RAM. Every transputer on the board
has a full subsystem implementation, and can be individually reset and analyzed.

The PROTRA~Msystem retains full compatibility with the INMOS B004 inter
face, and therefore runs all standard PC transputer software. In addition it features
a high-speed interface mode that makes use of the string 110 instructions on the 286
processor. This high speed interface is 5 to 8 times faster than the B004 interface,
achieving a maximum sustained data rate of over 1 Mbytes/sec. This is close to the
highest data-rate possible with the C012 link adapter chip.

N912 January 1990 107

Tel: +1 818 889 4388
Fax: +1 818 889 2658

To interconnect different transputers, the PROTRANTM system combines all
interconnection signals (including subsystem, reset and analyse) on a proprietary
pin-field array. In production a pre-configured header would be used to determine the
interconnections. In the development stage they can be made either with jumpers,
jumper cables or wire wrapping. Inter-board connections are achieved with one or
two standard :fiat cables, neatly positioned at one end of the boards.

The PROTRAN™ uses the same memory technology that Yarc developed for
their RISC 29000 products. Wait states are only generated when needed, giving the
transputer an external memory access between three and four cycles. Even with
standard DRAM this makes the PROTRAN™ system between 10% and 25% faster
than boards that use a fixed number of wait states. A very important additional
advantage of this memory subsystem is its reliability. All PROTRAN™ boards are
extensively tested at 60° Celsius prior to shipping.

Yarc offers a version of the Logical Systems C Toolkit that has been modified to
take advantage of the high-speed host interface. A version of TopExpress Fortran
will soon be available.

Although Yarc is a relatively new name in the transputer world, the people behind
the PROTRAN™ System are not. The board was designed by Trevor Marshall,
chief engineer of Yarc. Trevor originated the Definicon Transputer board, back in
1987. Bernt Roelofs, Yarc's parallel processing product manager, has a Master's
degree from Twente University in the Netherlands, with over four years of transputer
hardware and software experience.

Yarc is currently considering applying its Microchannel and Nubus design ex
perience to developing transputer products for these pratforms. We welcome any
comments or suggestions.

For more information, contact:
Yarc Systems Corporation
27489 West Agoura Road
Agoura Hills, CA 91301
United States of America

REFERENCE

There is no list of new members in this issue of the newsletter because (at least at
the time of going to press) it is intended that a consolidated list of members should
be distributed as a separate publication in the same mailing.

BIBLIOGRAPHY UPDATE

Articles authored by INMOS personnel

Image compression using a discrete cosine transform image processor, D. J. Bailey
and N. Birch, Electronic Engineering, July 1989.

109 occam user group newsletter

Porting to the Transputer, Andy Hamilton, .EXE Magazine 4(3), August 1999.
OCCAM et le transputer: Le parallelisme au present, Jego, Bruno, Minis & Micros,

N9322/15 Mai 1999 (pp. 45-50).
Le Transputer et la qestion du temps reel (I), Jego, Bruno & Hersemeule, Richard,

Minis & Micros, N9327/1g Sept 1999.
Software simulation on the transputer, Ray Knagg, Microsystem Design,

July/August, 1999.
The influence of VLSI technology on computer architecture, David May, Phil.

Trans. R. Soc. Lond., A326, pp. 377-393 (19gg).

Articles authored by others

Transputer arrays for solving partitioned systems of linear equations, Al-Turaigi, M.,
Afifi, M., El-Azhary, 1., Excell, P., Int. J. Electronics, 1999, Vol. 66 (5), 7g9-g00.

On implementing parallel GI{S, Arnold, D. B. & Hinds, M. R., Computer Graphics
Forum, g(l), pp. 13-19, 1999.

Analogue I/O strategies for transputers, Barlow, M. I., Konnanov, P. & Burge,
S. E., Microprocessors & Microsystems, 13(6), July/August 1999.

The Future of High Performance Computers in Science and Engineering, Bell,
Gordon, Communications of the ACM, 32(9), September 1999.

Parallel Object System on Tratisputer-Based A rchitectures, Ciampolini, Anna;
Coradi, Antonio; Leonardi, Letizia, Microprocessing and Microprogramming,
27, pp. 339-346, 1999.

A n Environment for Developing Concurrent Software for Transputer-based Image
Processing, Crookes, D.; Morrow, P. J.; Sharif, B.; McClatchey, 1.,
Microprocessing and Microprogramming, 27, pp. 417-422, 1989.

An array processing language for transputer networks, Crookes, D.; Morrow, P. J.;
Milligan, P.; Kilpatrick, P. L.; Scott, N. S., Parallel Computing, 8, pp. 141-148,
1989.

A Survey of Synchronization Methods for Parallel Computers, Dinning, Anne,
Computer, July 1999, pp. 66-76.

Very-high-performance multiple-instruction multiple-data applications, Elliott,
C. J., Phil. Trans. R. Soc. Lond. A326, pp. 471-479 (19g8).

Parallel computing comes of age: supercomputer level parallel computations at
Caltech, Fox, Geoffrey C., C,oncurrency: Practice and Experience, 1(1),63-103,
September 1999.

Transputer-based implementation of the Radon transform, Hall, G.; Terrell, T. J.;
Senior, J. M.; Murphy, L. M., Microprocessors and Microsystems, 13(7),
September 1989.

Phase 1 of the Development and application of a low cost high performance
multiprocessor machine, Harp, J. G.; Jesshope, C. R.; Muntean, T.;
Whitby-Strevens, C., Esprit 'g6: Results and Achievements, Directorate
General XIII (Editors), Elsevier Science Publishers, pp. 551-562, 1987.

The use of a methodology in control applications of Transputers, Hasnain, S. B.;
Linkens, D. A., lEE Colloquium on Recent Advances in Parallel Processing for
Control, 7/1-10, 1999.

Real- Time System Implementation - the Transputer and Occam Alternative, Hull,
M. Elizabeth C.; Zarea-Aliabadi, Adib, Microprocessing and
Microprogramming, 26, pp. 77-84, 1989.

Transputers and switches as objects in OCCAM, Jesshope, Chris, Parallel
Computing, 8, pp. 19-30, 1988.

Transputer based digital signal processing unit for a 3-D vision system, Jokitalo, P.;
et al., Microprocessing and Microprogramming, 27, pp. 143-146, 1989.

A Flexible Transputer Network for Numerical Applications, Luo, J.; Bruggeman, F;
Reijns, G. L., Microprocessing and Microprogramming, 27, pp. 405-412, 1989.

Study of Dynamic Routing Algorithms using a High-Speed multiprocessor,
simulator, Nichols, S. J.; Clarke, R. T.; Mars, P., Second lEE National
Conference on Telecommunications, pp. 161-166, 1989.

The TTansputer: T414 Instruction Set, Nicoud, Jean-Daniel; Tyrrell, Andrew
Martin, IEEE Micro, pp. 60-74, June 1989.

TLS: a System for Building and Controlling Transputer Networks, van Peursem,
M. A.; Knoppers, P.; van der Goor, A. J., Microprocessing and
Microprogramming, 27, pp. 739-746, 1989.

Occam 11, Pountain, Dick, Byte, pp. 279-284, October 1989.
Parallel Processing in Machine Automation, Rautiola, Kyosti; Nayha, Tuomo;

Kaarela, Kari, Microprocessing and Microprogramrning, 27, pp. 723-730, 1989.
Synchronous Operations as First-class Values, Reppy, J. H., Proceedings of the

SIGPLAN '88 Conference on Programming Language Design and
Implementation, Atlanta, Georgia, June 22-24, 1988 (pp. 250-259).

Acceleration of Circuit Simulation on a Parallel Transputer Workstation, Reus,
Thomas, Microprocessing and Microprogramming, 27, pp. 731-738, 1989.

Translating from PARLOG to occam 2: a methodology, Scott, Robert B.; Trehan,
Rajiv, Concurrency: Practice and Experience, 1(1), pp. 105-134, September
1989.

Hardware voter for fault-tolerant transputer systems, Standeven, J., Colley, M. J.,
Lyons, D. M., Microprocessors and Microsystems, Vol. 13 (9), November 1989,
588-595.

Scheduling and Parallel Operations on the Transputer, Tyrrell, A. M.; Nicoud,
J. D., Microprocessing and Microprogramrning, 27, pp. 175-185, 1989.

Computers for Symbolic Processing, Wah, Benjamin W.; Lowrie, Matthew B.; Li,
Guo-Jie, Proceedings of the IEEE, 77(4), April 1989 (pp. 509-540).

Parallel tracks to standard processing, Watts, Susan, New Scientist, 12 August
1989 (pp. 44-47).

Textual and chemical information processing using parallel computer hardware,
Willett, Peter, Journal of Information Science, 15, pp. 223-236, 1989.

N912 January 1990 109

In languages other than English

Occam: maitriser le parallelisme, Cosnuau, Alain, Micro-Systemes, Juillet/Aout,
pp. 161-165, 1989.

Le transputer passe du laboratoire a l'industrie, Catier, Eric, Electronique
Industrielle, N9163/01-06-1989 (pp. 42-46).

110 occam user group newsletter

386 ou Transputer: Le choix d 'une solution pour le calcul scientifique, Gravier,
Gilles, Micro-Systemes, Oct 1989 (pp. 119-122).

Microprocesseurs: La grande glisse en parallele, No author given, Electroniques,
Techniques et Industries, N969, 19 Mai 1989 (pp. 30-41).

Prozessorientierte Programmierung: Occam, Baumann, Ruedi, Elektroniker, Nr.
6/1989 (pp. 97-103).

OCCAM 2 und ADA, Schabernack, J.; Schutt, A., Informatik Spectrum, 12(1), pp.
3-18, 1989.

Occam, Husken, V., Informatik Spectrum, 11(6), pp. 325-6, 1989.
Jezyk Occam (I & 11), Blaszcazak, Slawomir, Informatyka, Nr. 7 & 8, 1988.

CONTACTS FOR RELATED GROUPS

Australian Transputer and Occam User Group

John Hulskamp
Department of Communication

and Electrical Engineering
Royal Melbourne Institute of Technology
GPO Box 2476V
Melbourne 3001 Australia

Tel: +61 3 660 2453
Fax: +61 3 662 1060

rcojh@au.oz.rmit.gecko

French Transputer Users Working Group

Traian Muntean
IMAG-LGI
b.p. 68
38402 St Martin d'Heres CEDEX

France

traian@fr.imag.imag

Deutschen Occam-Interessengemeinschaft der Transputeranwender

and vice presidents are:
Frank Heinemann
c/o Fraunhofer-Institute
Kleiststrafie 23-26
1000 Berlin 30
West Ger~any

DO IT can be contacted through its secretary:
Heinz Ebert
Im Heidigen 3
5206 Neunkirchen-Seelscheid 2
West Germany

The president is:
Joachim Stender
c/o Brainware GmbH
Gustav-Meyer-Allee 25
1000 Berlin 65
West Germany

Peter Eckelmann
c/o Inmos GmbH
Danziger Strafie 2
8057 Eching b. Miinchen
West Germany

+49 89 319 10 28

N912 January 1990

Occam User Group Japan

111

Contact the Secretary:
Mr Kazuto Matsui
Technical Marketing, INMOS Division
SGS-Thomson Microelectronics K.K.
4F Nisseki-Takanawa Building 2-18-10
Takanawa Minato-ku Tokyo 108
Japan

Tel: +81 3 280-4125
Fax: +81 3 280-4131

The chairman is:
Prof. Tosiyasu L. Kunii
Department of Information Science
University of Tokyo
7-3-1 Hongo, Bunkyo-ku
Tokyo 113
Japan

+81 3 505 2840

Latin American Transputer Users' Group

For further information, contact the Chairman:
Rafael D. Lins
Av. Dr Jose Rufino 656
Estancia
50.781 - Recife - PE
Brazil

Tel: +55 81 251 0713
Fax: +55 81 326 4880

Tel: +64 71562889 x8204
Fax: +64 71384066

CSNet: i.graham@waikato.ac.nz
JANet: i.graham@nz.ac.waikato

New Zealand Transputer Users' Group

The NZTUG is still only a small organisation. The Chairman in Bob Hogson,
Professor of Production Technology at Massey University. Contact the secretary
and treasurer:

Dr Ian Graham
Department of Computer Science
University of Waikato
Private Bag
Hamilton, New Zealand

Swedish Transputer User Group

The purpose of STUG is to act as an information exchange forum for transputer
users in Sweden, and to stimulate discussion concerning related areas such as parallel
programming and parallel processor systems. STUG arranges seminars and publishes
a newsletter, supported by Gosta Backstrom AB, who represent INMOS in Sweden.

Martin Torngren Tel: +46-8- 790 7849
Maskinelement Fax: +46-8-723 1730
I<:ungl. Tekniska Hogskolan martin@se.kth.damek
100 44 Stockholm, Sweden

North American Transputer Users Group

NATUG have a permanent organization witl! a committee of about fifteen members,
which receives secretarial support from Inmos Colorado Springs. Contacts for this
group are: the Chair, Dyke Stiles; the Secretary of the North American Transputer

112 occam user group newsletter

Users Group, care of Mark Hopkins at Inmos Colorado; and the local agent for
newlsetter submissions, who is Lyle Bingham. Their addresses appear on page 114.

A WORD ABOUT NAMES AND NUMBERS

I have tried to be reasonably consistent about addresses and telephone numbers in
the newsletter. Human fallibility excepted, the telephone numbers are all given in
the international form: so for example a UK caller should replace the +44 of my
number by an initial nought, and in the USA you would just drop the +1 from Lyle
Bingham's number.

Would that electronic mail was as simple! Again I have tried to be reasonably
consistent: UK addresses are quoted big-end first, but in other parts of the world
geraint . j ones<Ouk. ae. oxford. prg for example, would be given little-end first as
geraint . j onesCOprg . oxford. ae .uk and in the UK they prefer American addresses
like esaCOadam. byu . edu the other way, in this case as esa<Ousa. edu .byu . adam. If
you can tell whether you need to reverse any address from this newsletter, then you
are an expert; but if you cannot, I am afraid you will need the help of an expert.

I have been told that if you are at a BITNET site, turning a big-endian address
around does not work for all UK addresses, and in particular that it does not work for
addresses at uk. co. inmos. It ought to be the case that all UK commercial domain
addresses are known at Canterbury - uk. ae . uke - so you may be able to render, for
example oug<Ouk. co. inmos, as oug%uk. co . inmos<Ouke. ae. uk. gJ

Figure 28: IMS B419 - a size 6 G300 based graphics TRAM which carries a T800-20,
2 Mbytes DRAM and 2 Mbytes VRAM.

SPECIAL INTEREST GROUP CHAIRMEN

ATtificial intelligence

Note a change of chairman

Joachim Stender
c/oBrainware GmbH
Gustav-Meyer-Allee 25
1000 Berlin 65
West Germany

Environments

Gordon Manson
Department of Computer Science
University of Sheffield
Sheffield S10 2TN
United Kingdom

+44 742 768555 x5580

Formal methods

Image processing and vision

Neil Carmichael
KSEPL - Shell Research
Volmerlaan 6
2288 GD Rijswijk ZH
The Netherlands

Tel: +31 70 11 39 11
Fax: +31 70 11 39 10

Education and training

Roger Peel
Department of Electrical Engineering
University of Surrey
Guildford
Surrey GU2 5XR
United Kingdom

+44 483 509284
roger@uk.ac.surrey.ee

Bob Stallard
Racal Milgo Ltd
Bartley House
Station Road
Hook
Hants RG29 9PE
United Kingdom

+44 25 672 3911
Numerical methods

Derek Paddon
Department of Computer Science
University of Bristol
University Walk
Bristol BS8 ITR
United Kingdom

+44 272 303030 x4336
derek@uk.ac.bristol.compsci

Hardware

Denis Nicole
University of Southampton
Department of Electronics

and Computer Sci~ce

The University
Highfield
Southampton S09 5NR
United Kingdom

+44 703 787167
dan@uk.ac.soton.ecs

Graphical program development
tools

Mike Roberts
Centre for Information Engineering
City University
Northampton Square
London ECIV ORB
United Kingdom

M.ROBERTS@uk.ac.city

NATUG STEERING COMMITTEE

Dyke Stiles
Electrical Engineering Department
Utah State University
Logan, UT 84322-4120

Linda Pollard
Regis McKenna Inc.
220 NW 2nd, #1150
Portland, OR 97209

+ 1 503 222 7080

Gerald C. Johns
Computer Systems Laboratory
Washington University
724 S. Euclid Avenue
St. Louis, MO 63110

Chair

+1 801 750 2806
dyke@opus.ee.usu.edu

Mark Hopkins
INMOS Corporation
PO Box 16000
Colorado Springs, CO 80935-6000

Secretary

+ 1 719 630 4000

Lyle Bingham
Computer Systems Architects
950 N. University Avenue
Provo, UT 84604

Gordon Harp
RSRE
St Andrews Road
Great Malvern
Worcs WR14 3PS
United Kingdom

+ 1 314 362 3123
gerald@wuibc.wash.edu

+44 684 894824
jgh@rsre.mod.uk

Newsletter contributions

+1 801 374 2300
csa@adam.byu.edu

Jim Newhouse
FMC Advanced Systems Center
1300 South Second Street
Minneapolis, MN

Jim Favenesi
clo SPARTA, Inc.
4901 Corporate Drive
Huntsville, AL 35805

+ 1 205 837 5282

Ernest Miller
Computer Science Dept.
East Stroudsburg University
East Stroudsburg, PA 18301

+1 717 424 3447

John Board
Electrical Engineering Dept.
Duke University
Durham, NC 27706

+1 919 684 3123
jab@dukee.egr.duke.edu

+ 1 612 337 3242

David L. Fielding
Cornell University
265 0 lin Hall
Ithaca, NY 14853

+ 1 607 255 8686
fielding@tcgould.tn.comell.edu

Colin Whitby-Strevens
INMOS Limited
1000, Aztec West
Almondsbury
Bristol BS12 4SQ
United Kingdom

+44 454 611500
colin@inmos.co.uk

Paul Smith
University of California at San Diego
Center for Research Language
CRL-C-008
La Jolla, CA 92093

+ 1 619 534 2695
Paul@amos.VESD.edu

PSSmith@UCSD.bitnet

Gerd Beckmann
Rensselaer Polytechnic Institute
Associate Director
Center for Manufacturing
110 8th Street
Troy, NY 12189

+ 1 518 276 6010

INFORMAL OCCAM USER GROUP COMMITTEE

Peter Welch
Computing Laboratory
The University
Canterbury
Kent CT2 7NF

Roger Peel
Department of Electrical Engineering
University of Surrey
Guildford
Surrey GU2 5XH

Chairman

+44 227 764000 x3629
phw@uk.ac.ukc

+44 483 509284
roger@uk.ac.surrey.ee

Andre Bakkers
University of Twente
PB 217
7500 AE Enschede
The Netherlands

+31 53 892790
elbscbks@henut5.earn

Richard Beton
Plessey Electronic Systems Research Ltd
Roke Manor
Romsey
Hants 805 OZN

Michael Poole
Inmos Limited
1000 Aztec West
Almondsbury
Bristol B812 48Q

Simon Turner
MEiKO Limited
650 Aztec West
Almondsbury
Bristol B812 48D

Secretary

+44 454 616616
oug@uk.co.inmos

+44 454 616171

+44 742 768555 x5580
ac1jmk@uk.ac.sheff.primea

Geraint Jones
Programming Research Group
Oxford University Computing Laboratory
11 Keble Road
Oxford OX1 3QD

Newsletter editor

+44 865 273851
geraint.jones@uk.ac.oxford.prg

Jon Kerridge
Department of Computer Scieftce
University of Sheffield
Sheffield 810 2TN

+44 392 264048

+44 794 833339

Program exchange

+44 684 894728
hcw@uk.mod.rsre

Hugh Webber
RSRE
St Andrews Road
Great Malvern
Worcs WR14 3P8

Colin Upstill
Plessey Electronic Systems Research Ltd
Roke Manor
Romsey
Hants 805 OZN

Stephen Turner
Department of Computer Science
University of Exeter
Prince of Wales Road
Exeter EX4 4PT

+44 794 833433

0684 894824
jgh@uk.mod.rsre

Gordon Harp
RSRE
St Andrews Road
Great Malvern
Worcs WR14 3P8

Derek Paddon
Department of Computer Science
University of Bristol
University Walk
Bristol B88 1TR

+44 272 303030 x4336
derek@uk.ac.bristol.compsci

John Wexler
Edinburgh University Computing Service
The King's Buildings
Edinburgh EH9 3J Z

+44 31 667 1081 x2635
J.Wexler@uk.ac.edinburgh

· .. continued from front cover

SPECIAL INTEREST GROUPS
Education and training
Hardware
Formal methods
Graphical program development tools

TECHNICAL CONTRIBUTIONS
Safety first
David May on Draft Military Standard 00-55
An optimal topology for multicomputer systems
An experiment in parallelizing edge-detection
Really efficient multiple buffering in occam
Two implementations of semaphores in occam
Measuring the busyness of a transputer
Improvements(?) to occam
Transputer and occam based control systems
Getting along without workstations
De vermibus

REVIEWS
Transputer development system
Communicating process architecture
Transputer technical notes
Programming in occam2
Digital signal processing
The Helios operating system
Parallel processing: technology and applications

PRODUCTS, SERVICES AND ANNOUNCEMENTS
Inmos marketing update
Occam promotion initiative
Occam 2 and transputer engineering course _
CODE - a revolutionary platform for learning occam
Parallel processing and the transputer - a video tape
MEGA-Link transputer boards
The Topexpress transputer libraries
Concurrency: Practice and Experience
Commercial parallel products use EXPRESS
Vi.deoPaint software using transputer image processing
Meiko In-Sun Computing Surface hardware
M212 TRAM based disc subsystem
IF/Prolog on the transputer
FAST9 upgrade maintains Quintek edge
Industrial I/O for transputer systems
Commercial formal methods and tools
Linkeye an interface for line-scan cameras
Immediate solution to data storage problems
SPLASH display subsystem application accelerator
The Yarc PROTRAN™ system

REFERENCE

18
18
19
20
21
22
22
27
31
39
42

49
57
64
66
71
73
74
74
76
76
77
78
80
81
82
82
84
85
86
88
89
91
94
96
97
98
99

100
102
103
103
104
105
105
106
107

Facilities to prepare this newsletter were provided by Oxford University Computing Laboratory;
printed and distributed on behalf of the Occam User Group courtesy of INMOS Limited.

