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A B S T R A C T   

Plant extract and essential oils are gaining application in aquaculture, but data about their environmental impact 
are limited and their potential effects on aquatic organisms are largely unknown. For this study, ecotoxicity tests 
were performed under standardized conditions on fish feed supplemented with 3 % w/w of a basil supercritical 
extract (F1-BEO; substance A), F1-BEO extract (substance B), and fish feed without F1-BEO extract (substance C) 
on three model species of different trophic levels (bacteria, primary producer, primary consumer) considered 
representative for freshwater (Aliivibrio fischeri, Raphidocelis subcapitata, Daphnia magna) and marine (A. fischeri, 
Phaeodactylum tricornutum, Paracentrotus lividus) ecosystems. Ecotoxicological response was largely comparable 
within the same trophic level (whichever the ecosystem). EC50 was not calculable in the concentration range here 
tested (3.9–500 mg/L) for freshwater and marine microalgae, suggesting that none of the substances were toxic 
for primary producers. Reduction of A. fischeri bioluminescence at the tested concentration (0.5–10 mg/L) was 
observed only for substance A (EC50 9.53 mg/L and 9 mg/L for freshwater and marine ecosystems, respectively). 
Notably, in P. lividus embryotoxicity was higher for substances A (EC50 1.80 mg/L) and C (EC50 4.6 mg/L) than 
for substance B (EC50 7.10 mg/L), suggesting a toxic effect due to feed dissolution. In contrast, substance B was 
more toxic (EC50 0.34 mg/L) in D. magna than substances A (EC50 3.98 mg/L) and C (EC50 5.50 mg/L). Based on 
the Globally Harmonized System of Classification and Labelling of Chemicals, all substances were categorized 
Acute 2, except for substance A which was categorized Acute 1 for D. magna. Overall, the substances were found 
to be potentially toxic for an aquatic ecosystem, especially for primary consumer. Further study of plant extract 
and essential oils is needed to better understand their effects and fate on the aquatic environment.   

1. Introduction 

The ever wider use of antibiotics in human and veterinary medicine 
has led to an increase in the circulation of antibiotic-resistant bacteria 
(Amarasiri et al., 2020; Serwecińska, 2020). In veterinary medicine, 
antibiotics have long been used in therapy and animal production 
(Sicuro et al., 2020; Palma et al., 2020). The World Health Organization 
(WHO) has stated that antimicrobial resistance is a global concern for 
the 21st century (Talebi Bezmin Abadi et al., 2019). In addition to 
measures to improve surveillance and diagnosis of infection and pro-
mote rational antibiotic use (Ben et al., 2019; Bui et al., 2022), 

strengthened and coordinated actions are needed to achieve successful 
results. 

In this context, plant extracts (PEs) and essential oils (EOs) could 
play a key role as natural antimicrobials (Yu et al., 2020; El-Tarabily 
et al., 2021). Such compounds are a liquid, volatile, rarely coloured, 
and lipid-soluble mixture of terpenes and terpenoid that are bio-
synthesized by aromatic plants for attractive or defensive purposes 
(Mohammedi et al., 2020). EOs for example typically have 20–60 con-
stituents, of which two or three are major compounds (20–70 % of total 
amount) and the other components occur in traces (Ferraz et al., 2022a). 

PEs and EOs have traditionally been used for their antimicrobial 
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activity in folk medicine (Stefanello et al., 2011). Scientific studies 
demonstrating this property are relatively recent, however, and in most 
cases concern pathogens that affect humans (Ahmad et al., 2021). The 
use of PEs and EOs in veterinary medicine for pet animals and livestock 
holds interest since they could offer an alternative to synthetic antimi-
crobials (Ebani and Mancianti, 2020; Sicuro et al., 2020) against infec-
tion and improve production quality (i.e., meat, eggs, milk, honey, 
seafood), without the residues of conventional drugs in food (Evangel-
ista et al., 2021). 

Essential oils are volatile liquids obtained by distillation of any part 
of a plant or mechanical extraction from the epicarp of a citrus fruit at 
room temperature (van Beek and Joulain, 2018). Hydrolates can be 
obtained as a by-product of distillation to extract EOs (ISO, 2013a). The 
International Organization for Standardization (ISO) defines a hydrolate 
as the distilled water that remains after distillation and is typically rich 
in water-soluble essential oil components (ISO, 2013a; Bicchi and Jou-
lain, 2018), whereas an extract is “a product obtained by treating a 
natural raw material with a solvent and then, after filtration, removing 
the solvent by distillation, unless a non-volatile solvent is used” (ISO, 
1997). 

Supercritical fluid extraction (SFE) of plant materials with solvents 
such as carbon dioxide (CO2) is gaining popularity. SFE allows plant 
material to be processed at low temperatures, limiting thermal degra-
dation, without the use of toxic solvents (Khajeh et al., 2004). Currently, 
SFE is used primarily for large-scale decaffeination of coffee and tea and 
the production of hop extracts. It is attracting growing interest for other 
industrial applications at various scales of operation (Babova et al., 
2016). SFE with CO2 can extract natural compounds, especially those 
unstable at high temperature. It is the most widely used method in the 
food and pharmaceutical industry as the extracts contain no organic 
residues (Wang et al., 2021). Furthermore, extraction can be carried out 
at low temperature and moderate pressure (Yang et al., 2020). 

Despite the growing interest in EO and PE in livestock, the scientific 
community has paid far less attention to their potential environmental 
impact (Ferraz et al., 2022a). One explanation for this lack of research is 
the general belief that plants, and their components are generally nat-
ural and safe. Some plants, however, produce highly toxic metabolites 
(Zárybnick et al., 2018; Falkowski et al., 2020), necessitating assessment 
of their potential toxic effects on non-target organisms. 

The number of drugs authorized in aquaculture is limited and the 
spread of antibiotic resistance has significantly reduced current options 
for treating fish diseases (Santos and Ramos, 2018). Several EOs and PEs 
from aromatic plants are known to have biological activity (Radünz 
et al., 2019). Basil (Ocimum basilicum), for instance, one of the world’s 
most popular aromatic herbs, has been shown to be an effective anti-
oxidant, antimicrobial, insecticidal, nematocidal, and fungistatic agent 
in aquaculture (Brum et al., 2018; El-Ekiaby, 2019; Amor et al., 2021; 
Magara et al., 2022). 

Two recent studies assessed the long-term changes in serum blood 
biochemical parameters and biomarkers of antioxidant stress in rainbow 
trout (Oncorhynchus mykiss) fed with a commercial fish diet supple-
mented with a basil supercritical extract (F1-BEO) up to 3 % w/w 
(Magara et al. 2022; Pastorino et al., 2022). Its ecotoxicity profile in 
aquatic ecosystems has not been assessed to date, however. For the 
present study, ecotoxicity tests with F1-BEO extract, fish feed supple-
mented with 3 % w/w F1-BEO and fish feed without F1-BEO extract 
(comparison condition) were performed on three species of different 
trophic levels and considered representative for freshwater (Aliivibrio 
fischeri, bacterium; Raphidocelis subcapitata primary producer, Daphnia 
magna, primary consumer) and marine ecosystems (Aliivibrio fischeri, 
bacterium; Phaeodactylum tricornutum, primary producer; Paracentrotus 
lividus, primary consumer) (Parvez et al., 2006; Baudo et al., 2011). 
Ecotoxicological bioassays on three species at different levels of bio-
logical complexity and ecological niches can yield information about the 
effects of contaminants on community and ecosystems (Baudo et al., 
2011). The use of assay batteries for evaluation of the ecotoxicity of 

chemical substances was introduced in European legislation by the 
REACH Regulation, which refers to the OECD protocols for the choice of 
the most suitable methods and indicators for acute and chronic toxicity 
tests (Parvez et al., 2006; Oliva et al., 2021). 

2. Material and methods 

2.1. Chemical profile of basil supercritical fluid extract (F1-BEO) 

The basil supercritical fluid extract (F1-BEO) was the same as that 
used in previous studies (Magara et al., 2022; Pastorino et al., 2022). F1- 
BEO was extracted by Exenia Group s.r.l. (Pinerolo, Italy) from dried, 
clean sweet basil leaves (size 0.3 to 0.5 cm; residual humidity 10 %) 
using a supercritical fluid extractor (SCF-100; Separeco s.r.l, Pinerolo, 
Italy). Spectrophotometric analysis showed that the F1-BEO contained 
bioactive compounds, total polyphenol content and total flavan-3-ol 
content of 32.97 ± 1.63 mmol gallic acid equivalent (GAE) per 100 g 
of fresh weight and 21.21 ± 1.04 mmol A2-type proanthocyanidin 
content equivalent (A2-PACE) per 100 g of fresh weight, respectively. 
Several polyphenolic compounds were identified in the F1-BEO extract 
by HPLC-ESI-MS/MS (Fig. 1). The F1-BEO also contained several volatile 
organic compounds, mainly linalool (25.29 %), α-bergamotene (19.34 
%) and estragole (18.79 %) (Table 1). The F1-BEO fraction was 
composed of about 10 % fats: palmitic acid, linoleic acid, and oleic acid 
accounted for 77 % of the total fatty acid content (GC–MS and GC-FID 
analysis). 

2.2. Ecotoxicity bioassay of substances 

Ecotoxicity bioassays were performed on: commercial feed (Alterna 
Eel, Skretting; ingredients: fish meal, fish oil, wheat red dog, wheat 
gluten, blood meal from poultry, a soya bean protein concentrate, swine 
haemoglobin, whey powder; proximate composition: protein 48 %, lipid 
11 %, ash 8 %, fibre 1 %) supplemented with 3 % w/w F1-BEO (sub-
stance A) which is the feed with the higher basil extract inclusion by 
weight used by Magara et al. (2022) and Pastorino et al. (2022); the F1- 
BEO extract (substance B); a commercial feed (Alterna Eel, Skretting) 
without F1-BEO supplement (substance C). 

Substances A and C (3 % w/w F1-BEO and feed without F1-BEO, 
respectively) were prepared following the protocol proposed by Mag-
ara et al. (2002). Briefly, for the preparation of the substance A, the F1- 
BEO derived from the supercritical fluid extraction of basil was added to 
the commercial feed flour in the proportions of 3 % w/w (3 g of F1-BEO 
in 100 g of feed flour). A control diet without F1-BEO (only feed flour 
Alterna Eel, Skretting) was also made (substance C). Then, the mixture 
was subsequently mixed to obtain a suitable material for pellet prepa-
ration. The pellets were obtained using a 4.0 mm die meat grinder and 
dried at 30 ◦C for 48 h. Substances A and C were then powdered with a 
pestle and stock solutions of 500 mg/L were prepared with 0.5 % 
dimethyl sulfoxide (DMSO) as solvent (Ferraz et al., 2022b). The solu-
tions were treated by sonication at 40 Hz for 20 min to disaggregate the 
clusters. Toxicity of the 0.5 % DMSO solution was also tested as negative 
control to minimize any possible effects of the solvent on the results 
(OECD, 2019). 

Exposure concentrations were determined by pilot testing to define 
the correct range of dilutions and based on relevant literature (Ferraz 
et al., 2022b): 0.5–10 mg/L (A. fisheri), 3.9–500 mg/L (R. subcapitata), 
0.01–100 mg/L (D. magna), 3.9–500 mg/L (P. tricornutum), 0.5–10 mg/L 
(P. lividus). 

2.3. Toxicity bioassay: Freshwater organisms 

Tests were performed on three species of different trophic levels and 
considered representative for freshwater ecosystems: Aliivibrio fischeri 
(Gram-negative bacteria; ISO, 2019); Raphidocelis subcapitata (algae; 
ISO, 2012), Daphnia magna (Cladocera; ISO, 2013b). 
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Briefly, the endpoint for Aliivibrio fischeri was inhibition of bacteria 
when exposed to the sample. Bioluminescence was measured using a 
luminometer set at 430 nm. The test was performed in triplicate at 15 ±
1 ◦C for 30 min. The initial bacterial concentration was 106 cells, and the 
maximum testable concentration of the sample was 90 %. 

Growth inhibition was the endpoint for the freshwater algae Raphi-
docelis subcapitata. The alga, which was in the exponential growth phase, 
was exposed to the samples and placed under continuous light for 72 h to 

stimulate rapid growth. The samples were shaken every 24 h and 
measured using a spectrophotometer at a wavelength of 670 nm. The 
test was performed in triplicate at 20 ± 2 ◦C. The initial concentration of 
the samples was 104 cells, and the sample concentration was 100 %. 
Nutrients (four stock solutions) were added to each sample according to 
UNI EN ISO 8692:2012 (ISO, 2012). The test was considered valid if the 
algal concentration in the negative controls was 16 times the initial 
concentration after 72 h and if the EC50 of the positive controls was 1.19 
± 0.27 mg/L. 

Five juvenile Daphnia magna aged less than 24 h were exposed to 
different concentrations of the substances at 20 ± 2 ◦C and a photope-
riod of 16 h of light and 8 h of dark for 48 h. At the end of the test, the 
number of immobilized specimens was counted. Four replicates were 
performed for each sample. The criteria in the UNI EN ISO 6341:2013 
guideline (ISO, 2013b) were followed to meet the test validity criteria. 
All tests were performed under standardized conditions using negative 
and positive controls for each batch of analyses (Table 2); results were 
within the range of acceptability reported by the specific testing method 
(Table 2). 

Fig. 1. Polyphenols in F1-BEO identified via HPLC-ESI-MS/MS (Magara et al., 2022).  

Table 1 
Formulae, identification, and chemical abstracts service identification number 
(CAS ID) of volatile organic compounds with quantification (in percentage; %) in 
the F1-BEO extract.  

Formula Compound CAS ID Percentage (%) 

C10H18O 1,8-Cineole 470-82-6 9.33 ± 0.45 
C10H18O Linalool 78-70-6 25.29 ± 0.81 
C10H12O Estragol 140-67-0 18.79 ± 0.78 
C10H12O2 Eugenol 97-53-0 4.49 ± 0.12 
C10H10O2 Methylcinnamylate 103-26-4 8.71 ± 0.15 
C11H14O2 Methyleugenol 93-15-2 6.58 ± 0.08 
C15H24 b-Caryophyllene 87-44-5 7.47 ± 0.29 
C15H24 α-Bergamotene 17699-05-7 19.34 ± 1.09  
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2.4. Toxicity bioassay: Marine organisms 

The tests were performed on three species of different trophic levels 
and considered representative for marine ecosystems: Aliivibrio fischeri 
(ISO, 2019), Phaeodactylum tricornutum (ISO, 2017), Paracentrotus lividus 
(ISPRA, 2017). Growth inhibition was the endpoint for P. tricornutum 
(ISO, 2017). Algae in the exponential growth phase were placed under 
continuous light for 72 h to stimulate rapid growth. The samples were 
shaken and measured with a spectrophotometer at a wavelength of 670 
nm every 24 h. The tests were carried out in triplicate at 20 ± 2 ◦C. The 
initial concentration of the samples was 104 cells. Except for the nega-
tive controls (the algal culture medium was already nutrient rich), 
specific nutrients (S1 + S2 + S3; Piccardo et al., 2021) were added to 
each sample in accordance with ISO (2017). Positive controls (n = 3) 
with potassium dichromate were set up. The test was considered valid if 
the algal concentration in the negative controls after 72 h was 16 times 
the initial concentration and the EC50 of the positive controls was 20.1 
± 5.3 mg/L. 

The larval development of the sea urchin P. lividus after 72 h of 
exposure was the endpoint of this study (Piccardo et al., 2021). Eggs 
were fertilized with sperm, and the fertilized eggs were exposed to the 
solutions for 20 min. Each sample was added with 2–3 drops of Lugol’s 
fixative to stop cell division at 72 h, and the results were examined under 
microscopy. Fertilized eggs reached the pluteus larval stage at 72 h of 
normal development: 100 plutei were counted per replicate to determine 
the percentage of abnormal larvae. Larvae were considered abnormal if 
their development was halted, arms were absent or of different length, 
there were extra arms or cross-lateral rods, body width was asymmet-
rical or displayed other abnormalities according to the literature (ISPRA, 
2017). Tests were performed in triplicate. Artificial sea water was used 
as a negative control and copper (II) nitrate as a positive control 
(Table 2). Tests were considered valid when the negative control had 
more than 80 % normally developed larvae and the EC50 of the positive 
control was between 22.60 and 68.34 g/L Cu2+ (Table 2). 

2.5. Statistical analysis and toxicological categorization 

Concentrations that induced the endpoint in 50 % (EC50), 20 % 
(EC20), and 10 % (EC10) of the exposed samples were calculated by 
statistical interpolation from experimental data using the US EPA 
Toxicity Relationship Analysis Program (TRAP version 1.30), with a 
Gaussian distribution and logarithmic transformation of exposure vari-
ables sized for ecotoxicological tests. Principal component analysis 
(PCA) was performed to check for trends in ecotoxicological response 
(EC50, EC20, percentage of effects, maximum concentration, percentage 
of effects at minimum concentration) between the freshwater (Aliivibrio 

fischeri, Raphidocelis subcapitata, Daphnia magna) and the marine (Alii-
vibrio fischeri, Phaeodactylum tricornutum, Paracentrotus lividus) model 
organisms of different trophic roles (bacteria, primary producers, pri-
mary consumers) after exposure to the three substances (A, B, C). The 
PCA results were plotted using open-source data analysis software 
RStudio® (RStudio, Inc.). 

Solution toxicity was classified according to the Globally Harmo-
nized System of Classification and Labelling of Chemicals (GHS) adopted 
by the United Nations (UN, 2019). The system consists of three short- 
term (acute) categories based on acute toxicity data (mean EC50): 
Acute 3 in the range of 10–100 mg/L; Acute 2 in the range of 1–10 mg/L; 
Acute 1 when EC50 ≤ 1 mg/L (UN, 2019). 

3. Results 

3.1. Freshwater 

Ecotoxicological response to the substances is reported in Table 3. 
Effects at the maximum concentration were observed only for Daphnia 
magna in all substances tested, with higher effects (100 %) noted for 
substance B (F1-BEO extract), whereas effects at the minimum concen-
tration were observed for substance A (feed with 3 % F1-BEO). EC50 was 
calculated only in A. fisheri (9.53 mg/L) exposed to substance B and in 
D. magna in all substances tested, with EC50 values ranged from 0.34 
mg/L (substance B) to 5.50 mg/L (substance C; feed without F1-BEO). 
Finally, EC20 was calculated only for substance B in A. fisheri (5.40 
mg/L) and D. magna (0.05 mg/L). EC10 was never calculable at the 
concentrations in any of the freshwater organisms. 

3.2. Marine organisms 

Ecotoxicological response to the substances is reported in Table 4. 
Effects at the maximum concentration were observed only in P. lividus 
for all substances tested, with higher effects (100 %) noted for substance 
A, followed by substances B (95.7 %) and C (90 %). Effects at the min-
imum concentrations were observed for all substances in P. lividus (12 %, 
18.3 %, and 17 % effect for substances B, C, and A, respectively). EC50 
was calculated only in A. fisheri (9 mg/L) exposed to substance B and in 
P. lividus for all tested substances, with EC50 from 1.8 mg/L (substance 
A) to 7.1 mg/L (substance B). Finally, EC20 was calculated only in 
P. lividus for substance A (1.3 mg/L), substance B (5.3 mg/L), and sub-
stance C (1.5 mg/L). EC10 was never calculable at the tested concen-
trations in any of the marine organisms. 

3.3. Principal component analysis 

Eigenvalues revealed that the first two principal components (PC1 
and PC2) accounted for a significant portion of total variance (94.6 %), 
while the two other components (PC3 and PC4) accounted for a much 
smaller portion of variance (5.4 %). Interpretation of the principal 
components (PCs) was evaluated using eigenvalues (only PCs with ei-
genvalues greater than one were retained). The biplot of loadings 
(variables) and scores (observations) shows which trophic roles are 
closest to them (Fig. 2). The scores of each trophic role are distinguished 
by a different symbol and colour (largest symbol denotes average value). 
Almost all variables moved to PC1 because they were more related to it. 
The bacteria (A. fisheri) and the primary producers (R. subcapitata and 
P. tricornutum) are located in the right part of the plot in relation to 
higher EC20 and EC50 (fewer sensitive species), whereas primary con-
sumers (D. magna and P. lividus) are located in the upper left quadrant in 
relation to higher percentage effects due to exposure to tested substances 
(more sensitive species). 

3.4. Toxicological categorization 

Table 5 presents the toxicity category according to the Globally 

Table 2 
Positive and negative controls performed on the species of different trophic 
levels and considered representative of freshwater and marine ecosystems. 
Negative controls are not available for Aliivibrio fischeri. CV denotes coefficient 
of variation.  

Species Negative 
control 

Value Positive 
control 

Value 

Aliivibrio 
fischeri 

Artificial 
seawater 

– 3,5- 
dichlorophenol 
(3.4 mg/L) 

20–80 % of 
inhibition 

Raphidocelis 
subcapitata 

culture 
medium 

CV% (µ): 
max 5 % 

K2Cr2O7 EC50: 1.19 ±
0.27 mg/L 

Daphnia magna standard 
ISO 
freshwater 

percentage 
of 
immobility: 
max 10 % 

K2Cr2O7 EC50: 
0.6–2.1 mg/L 
(24 h) 

Phaeodactylum 
tricornutum 

culture 
medium 

CV% (µ): 
max 5 % 

K2Cr2O7 EC50: 20.1 ±
5.3 mg/L 

Paracentrotus 
lividus 

Artificial 
seawater 

– Cu(NO3)2 22.60–68.34 
µg/L Cu2+.  
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Table 3 
Ecotoxicological response to substances (A - feed with 3% F1-BEO; B - F1-BEO extract; C - feed without F1-BEO) in freshwater organisms. LCL and UCL are 95% 
confidence lower-level concentration and upper-level concentration intervals associated with EC20 and EC50, respectively. NC denotes not calculable; SD standard 
deviation; %E (max conc) percentage of effect at the maximum concentration; %E (min conc) percentage of effect at the minimum concentration. Data are expressed as 
mg of substance per litre of solution (mg/L).  

Species Sample % E 
(max conc) 

SD % E (min conc SD EC50 95 % LCL 95 % UCL EC20 95 % LCL 95 % UCL 

A. fischeri 
(10–0.5 mg/L) 

A  − 0.5  0.0  − 10.5  0.1 NC NC NC NC NC NC 
B  50.5  0.7  − 21.0  0.2 9.53 8.41 10.80 5.40 4.55 6.41 
C  − 7.4  0.7  − 27.8  0.4 NC NC NC NC NC NC 

R. subcapitata (500–3.9 mg/L) A  − 11.2  0.3  − 9.4  1.2 NC NC NC NC NC NC 
B  − 17.8  6.7  − 10.2  0.8 NC NC NC NC NC NC 
C  − 10.8  2.1  − 10.3  0.8 NC NC NC NC NC NC 

D. magna 
(100–0.01 mg/L) 

A  80.0  0.0  50.0  34.6 3.98 NC NC NC NC NC 
B  100.0  0.0  35.0  10.0 0.34 0.12 1.01 0.05 0.01 0.37 
C  65.0  10.0  10.0  11.5 5.50 NC NC NC NC NC  

Table 4 
Ecotoxicological response to substances (A - feed with 3% F1-BEO; B - F1-BEO extract; C - feed without F1-BEO) in marine organisms. LCL and UCL were 95% 
confidence lower-level concentration and upper-level concentration intervals associated with EC20 and EC50, respectively. NC denotes not calculable; SD standard 
deviation; %E (max conc) percentage of effect at the maximum concentration; %E (min conc) percentage of effect at the minimum concentration. Data are expressed as 
mg of substance per litre of solution (mg/L).  

Species Sample %E 
(max conc) 

SD % E 
(min conc) 

SD EC50 95 % 
LCL 

95 % 
UCL 

EC20 95 % 
LCL 

95 % 
UCL 

A. fischeri 
(10–0.5 mg/L) 

A  − 6.5  0.1  − 13.5  0.8 NC NC NC NC NC NC 
B  53.6  0.7  − 16.0  1.5 9.0 8.0 10.2 NC NC NC 
C  − 5.4  0.7  − 20.6  1.8 NC NC NC NC NC NC 

P. tricornutum 
(500–3.9 mg/L) 

A  − 12.1  0.6  − 13.3  0.3 NC NC NC NC NC NC 
B  − 13.5  0.6  − 13.0  0.6 NC NC NC NC NC NC 
C  − 12.9  0.2  − 12.9  0.2 NC NC NC NC NC NC 

P. lividus 
(10–0.5 mg/L) 

A  100.0  0.0  18.3  0.6 1.8 1.6 1.9 1.3 1.0 1.5 
B  95.7  2.5  12.0  2.6 7.1 6.8 7.5 5.3 4.8 5.8 
C  90.0  1.0  17.0  5.2 4.6 2.8 4.5 1.5 0.0 4.5  

Fig. 2. Biplot of loadings (variables) and scores (observations) in the principal component analysis. The scores of each trophic role are denoted by a symbol (largest 
symbol denotes average value); each trophic role has a different colour (red for bacteria, blue for primary producer, green for primary consumer). 
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Harmonized System of Classification and Labelling of Chemicals (GHS). 
All substances resulted Acute 2 in the freshwater and the marine 
ecosystem for bacteria (A. fischeri) and primary consumers (D. magna 
and P. lividus), except for substance B (F1-BEO extract) categorized as 
Acute 1 for D. magna. The GHS classification is not reported for algae 
(R. subcapitata and P. tricornutum) since the EC50 was not calculated in 
the concentration range tested (3.9–500 mg/L). Thus, it can be 
concluded that none of the three substances were toxic for primary 
producers. 

4. Discussion 

The available data on the toxicity of EOs and other PEs in model 
aquatic organisms are very scarce (Ferraz et al. 2022a). For this study, 
we report the ecotoxicological response of freshwater and marine model 
organisms exposed to F1-BEO basil extract and fish feed supplemented 
with 3 % w/w of F1-BEO. The ecotoxicity of fish feed without F1-BEO is 
reported for comparison. Despite the difference in ecosystem (fresh-
water or marine), the ecotoxicological response was generally compa-
rable for the same trophic level, with higher sensitivity noted in primary 
consumers. 

Aliivibrio fischeri lives as a free-living (planktonic) organism or a 
mutualistic symbiont that colonizes the light-producing organ (photo-
phore) of squids and fish, imparting luminescence for camouflage or 
prey attraction by the host (Kaeding et al., 2007). Through the electron 
transport chain, bioluminescence is directly linked to respiration and 
thus reflects cellular metabolic status as a determinant of xenobiotic- 
mediated toxicity (Girotti et al., 2008; Abbas et al., 2018). Exposure to 
toxic substances reduces the production of luminescence: bacterial 
metabolism is inhibited by the decrease in light emittance that corre-
sponds to the toxicity level of the substance (Abbas et al., 2018). In the 
present study, a reduction in A. fischeri bioluminescence at the tested 
concentrations (0.5–10 mg/L) was observed only for the F1-BEO extract 
(mean EC50 9.53 mg/L and 9 mg/L for freshwater and marine ecosys-
tems, respectively). Shukla et al. (2020) investigated the effects of 
linalool and eugenol (major components of the F1-BEO extract) and 
found that both compounds could reduce the bioluminescence of 
A. fischeri even at very low concentrations. In contrast, no inhibition of 
bioluminescence was observed for the other two substances (A and C) 
tested here. 

Microalgae inhabit the world’s oceans and seas where they occupy a 
key trophic level in aquatic ecosystems as primary producers at the base 
of the marine food chain (Mucha et al., 2003). Because phytoplankton 
are at the bottom of the aquatic food chain, they are vital to the entire 
ecosystem; however, very few studies to date have examined the toxic 
effects of PEs and EOs (papaveraceae, pinaceae, fabaceae, malvaceae, 
cupressaceae) on microalgae (mainly Raphidocelis subcapitata, Chlorella 
vulgaris, Scenedesmus quadricauda, Chlamydomonas reinhardtii) (Jančula 
et al., 2007; Duringer et al., 2010; Oliveira et al., 2016; Pino-Otín et al., 
2019; Ferraz et al., 2022b). In the present study, the EC50 for freshwater 

and marine microalgae was not calculated at the tested concentrations, 
suggesting no acute toxic effects on microalgae growth. For the F1-BEO 
extract (substance B), we may note that linalool was highest in 
composition percentage, followed by α-bergamotene and estragol. In a 
previous study, linalool toxicity was tested in Scendedesmus subspicatus 
(growth inhibition test; 96-h period), with an EC50 of 141.4 mg/L (Api 
et al., 2015), confirming the low toxicity of the compound on 
microalgae. 

Unfortunately, the literature offers no data on basil extract toxicity 
for comparison. With regard to other PEs and EOs, however, Duringer 
et al. (2010) assessed the ecotoxicity of steam-extracted oils derived 
from western juniper foliage (Juniperus occidentalis) and Port Orford 
cedar heartwood (Chamaecyparis lawsoniana) on R. subcapitata; the EC50 
for J. occidentalis EO was 1.7 mg/L at 96 h and was considered moder-
ately toxic to R. subcapitata. After exposure to EO from C. lawsoniana, the 
EC50 for algal cell growth was reported to be higher than 5 mg/L, leading 
to the conclusion that the release of C. lawsoniana EO into the aquatic 
environment had no expected acute toxic effects on microalgae. The 
aqueous extracts from the roots of five papaveraceae plants were tested 
for their effects on R. subcapitata (Jancula et al., 2007); the extracts from 
Dicranostigma lactucoides and Sanguinaria canadensis were found to be 
the most toxic to microalgae after 96 h of exposure (EC50 of 21.27 and 
23.90 mg/L, respectively) (Jancula et al., 2007). 

As regards the toxicity of substances A and C on microalgae, fish feed 
is a known primary source of waste with the greatest environmental 
impact in aquaculture. The quantity and quality of waste excreted by 
fish are determined by dietary intake, digestion, and metabolism (Bu-
reau and Hua, 2010). There is also a link between feed quality, feeding 
strategy, and waste production (Schneider et al., 2005). Aquacultural 
waste can be divided into solid and dissolved waste; unused and/or 
spilled feed by the fish, as well as excreted faeces are the main sources of 
solid waste, while dissolved waste is nutrient (mainly phosphorus and 
nitrogen) disintegration/suspension from the solid waste fraction. The 
increase in organic loading from fish feed into waters may influence the 
structure, composition, dominance, and biomass of phytoplankton 
communities (San Diego-Mcglone et al., 2008). 

In the present study, dissolution of fish feed in the algal media 
enhanced the growth of the microalgal species tested with no toxic ef-
fects. Differently, the primary consumers in the freshwater and the 
marine ecosystem displayed acute toxicity in response to all three sub-
stances. Daphnia magna exposed to F1-BEO (substance B) showed the 
lowest EC50 (0.34 mg/L) compared to the EC50 in response to exposure 
to feed supplemented with F1-BEO (3.98 mg/L) and feed without basil 
extract (5.50 mg/L). Such findings are corroborated by the chemical 
composition of the F1-BEO extract as previously stated. A D. magna 
immobilization test (48 h) performed using linalool reported an EC50 of 
20 mg/L. Eugenol (4.49 % in F1-BEO) was found to be highly toxic at 
low concentrations for D. magna (EC50 0.70 mg/L) (Gueretz et al., 2017). 
Estragol (18.79 % in F1-BEO) is reported to be toxic for houseflies 
(Palacios et al., 2009), fruit flies (Cheng et al., 2009), and house dust 
mites (Lee, 2004), but no data on aquatic organisms are available. 
Although the toxic effects of PEs and EOs on crustaceans such as Daphnia 
magna, Daphnia pulex, Scapholeberis kingi, and Artemia salina have been 
studied (Andreu et al., 2018; Seremet et al., 2018; Ishimota et al., 2019; 
Pavela et al., 2020), only one study (Ferraz et al., 2022b) reported 
toxicity data for basil extract. O. basilicum hydrolate (Ferraz et al. 
2022b), composed mainly of 52.5 % eugenol and 38.3 % linalool, 
showed no acute toxic effects on D. magna up to very high concentra-
tions (8000 mg/L). The study did not mention whether the solution was 
sonicated and had solubilization issues, however. 

Daphnia magna was sensitive to fish feed dissolution, with higher 
toxicity in response to fish feed supplemented with F1-BEO compared to 
the control fish feed, most likely due to the synergic effect of feed 
powder and basil extract. The reason for the toxicity was probably due to 
the solid waste (also known as particulate organic matter) that causes 
oxygen depletion and ammonia toxicity when it decomposes. 

Table 5 
Substances (A - feed with 3 % F1-BEO; B - F1-BEO extract; C - feed without F1- 
BEO) tested in freshwater and marine model organisms and their toxicological 
categorization (EC50) according to the Globally Harmonized System of Classi-
fication and Labelling of Chemicals (GHS). Acute 3: 10–100 mg/L; Acute 2: 1–10 
mg/L; Acute 1: EC50 ≤ 1 mg/L.  

Environment Species Substance EC50 (mg/L) GHS classification 

Freshwater A. fischeri B  9.53 Acute 2 
D. magna A  3.98 Acute 2 

B  0.34 Acute 1 
C  5.50 Acute 2 

Marine A. fischeri B  9.0 Acute 2 
P. lividus A  1.8 Acute 2 

B  7.1 Acute 2 
C  4.6 Acute 2  
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Furthermore, suspended solids (feed powder) floating in the water col-
umn can cause gill irritation to D. magna, also filling the intestinal tract 
(Capper, 2006). 

Likewise, Paracentrotus lividus showed acute toxicity to all substances 
tested here: a higher percentage of abnormal larvae compared to con-
trols and greater sensitivity to feed supplemented with F1-BEO, followed 
by feed without basil extract. Paracentrotus lividus is a key marine species 
with larval and adult populations inhabiting planktonic and benthic 
marine ecosystems, respectively. P. lividus has been demonstrated to be 
highly sensitive to various compounds, and it is widely used to assess the 
toxicological effects and the environmental impact of a variety of pol-
lutants. The embryos are a highly duplicative cell system; exposure to 
chemicals has an adverse effect on delicate embryo development (Pic-
cardo et al., 2021; Gharred et al., 2022). As reported for D. magna, the 
dissolution of fish feed probably caused the release of particulate 
organic matter that altered the water’s physiochemical characteristics, 
making it toxic to P. lividus embryos. Changes in the physicochemical 
parameters of seawater (e.g., total organic content, nitrate, turbidity) 
could be indicators of eutrophication and have a negative impact on sea 
urchin embryo-larvae development and animal growth (Ternengo et al., 
2018). Zúñiga et al. (1995) found that exposure to organic-waste dis-
charges caused embryotoxicity in the sea urchin Arbacia spatuligira. 

Finally, no data are available for comparison of acute toxicity of F1- 
BEO to P. lividus embryos. Novaes Simões et al. (2017) evaluated the use 
of Lippia alba EO (composed mainly of linalool [48.69 %] and eucalyptol 
[10.51 %]) as a sedative in the sea urchin Echinometra lucunter and found 
that a concentration of 150 ppm is sufficient to induce anaesthesia in 
adult specimens, with possible adverse effects on sea urchin embryos. 

5. Conclusions 

For this study, the effects of a basil extract (F1-BEO) as-is and sup-
plemented in a commercial fish feed (based on the effectiveness 
observed in fish [Magara et al., 2022; Pastorino et al., 2022]) were 
assessed using model organisms for marine and freshwater ecosystems. 
Our findings suggest that the ecotoxicological responses were compa-
rable in the freshwater and the marine ecosystem for organisms at the 
same trophic level. The substances appear to be safe for microalgae, 
whereas they caused toxic effects on primary consumers (D. magna and 
P. lividus), particularly the F1-BEO as-is in D. magna. The widespread 
belief that plant-based products are green and safer alternatives to their 
chemical counterparts lacks empirical data to support this claim. Hence 
there is an urgent need to assess the safety of other PEs and EOs to better 
understand their effects on ecosystems. 
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ISO, 2013b. UNI EN ISO 6341:2013. Qualità dell’acqua - determinazione dell’inibizione 
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Serwecińska, L., 2020. Antimicrobials and antibiotic-resistant bacteria: a risk to the 
environment and to public health. Water 12 (12), 3313. 

Shukla, D. M., Bajwa, V., Gajic, D. Saxena, P. K., 2020. Quorum sensing inhibition in 
Vibrio fischeri: An efficient system to assess antibacterial properties of medicinal 
plants and their volatile compounds. https://www.oatext.com/quorum-sensing- 
inhibition-in-vibrio-fischeri-an-efficient-system-to-assess-antibacterial-properties-of- 
medicinal-plants-and-their-volatile-compounds.php. 

Sicuro, B., Pastorino, P., Barbero, R., Barisone, S., Dellerba, D., Menconi, V., Righetti, M., 
De Vita, V., Prearo, M., 2020. Prevalence and antibiotic sensitivity of bacteria 
isolated from imported ornamental fish in Italy: A translocation of resistant strains? 
Prevent. Veterinary Med. 175, 104880. 
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