Electronic Journal of Differential Equations, Vol. 2008(2008), No. 118, pp. 1-14. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

AMBROSETTI-PRODI TYPE RESULTS IN A SYSTEM OF SECOND AND FOURTH-ORDER ORDINARY DIFFERENTIAL EQUATIONS

YUKUN AN, JING FENG

Abstract

In this paper, by the variational method, we study the existence, nonexistence, and multiplicity of solutions of an Ambrosetti-Prodi type problem for a system of second and fourth order ordinary differential equations.

1. Introduction

Lazer and McKenna [1] presented the following (one-dimensional) mathematical model for the suspension bridge:

$$
\begin{align*}
& y_{t t}+y_{x x x x}+\delta_{1} y_{t}+k(y-z)^{+}=W(x), \quad \text { in }(0, L) \times \mathbb{R}, \\
& z_{t t}-z_{x x}+\delta_{2} z_{t}-k(y-z)^{+}=h(x, t), \quad \text { in }(0, L) \times \mathbb{R} \\
& y(0, t)=y(L, t)=y_{x x}(0, t)=y_{x x}(L, t)=0, \quad t \in \mathbb{R} \tag{1.1}\\
& z(0, t)=z(L, t)=0, \quad t \in \mathbb{R}
\end{align*}
$$

Where the variable z measures the displacement from equilibrium of the cable and the variable y measures the displacement of the road bed. The constant k is spring constant of the ties.

When the motion of the cable is ignored, the coupled system (1.1) can be simplified into a single equation which describes the motion of the road bed of suspension bridge, as follows

$$
\begin{align*}
& y_{t t}+y_{x x x x}+\delta y_{t}+k y^{+}=W(x, t), \quad \text { in }(0, L) \times \mathbb{R}, \\
& y(0, t)=y(L, t)=y_{x x}(0, t)=y_{x x}(L, t)=0, \quad t \in \mathbb{R} . \tag{1.2}
\end{align*}
$$

This Problem have been studied by many authors. In [2, 3, 4, the authors, using degree theory and the variational method, investigated the multiplicity of some symmetrical periodic solutions when $\delta=0$ and $W(x, t)=1+\epsilon h(x, t)$ or $W(x, t)=\alpha \cos x+\beta \cos 2 t \cos x \epsilon$. In [5], the similar results for 1.2) are obtained in case of $\delta \neq 0$ and $W(x, t)=h(x, t)=\alpha \cos x+\beta \cos 2 t \cos x+\gamma \sin 2 t \cos x$. Those results give the conditions impose on the spring constant k which guarantees the existence of multiple periodic solutions, especially the sign-changing periodic

[^0]solutions in the case of $W(x, t)$ is single-sign. It is notable that the functions $\cos x, \cos 2 t \cos x, \sin 2 t \cos x$ are the eigenfunctions of linear principal operator of (1.2) in some function spaces.

When we consider only the steady state solutions of problem (1.1), we arrive at the system

$$
\begin{gather*}
y_{x x x x}+k(y-z)^{+}=h_{1}(x), \quad \text { in }(0, \pi), \\
-z_{x x}-k(y-z)^{+}=h_{2}(x), \quad \text { in }(0, \pi), \\
y(0)=y(\pi)=y_{x x}(0)=y_{x x}(\pi)=0, \tag{1.3}\\
z(0)=z(\pi)=0
\end{gather*}
$$

This problem has little been studied in [12, 13. In [6, 15, the analogous partial differential systems have been considered when the nonlinearities $k(y-z)^{+},-k(y-$ $z)^{+}$are replaced by general $f_{1}(y, z), f_{2}(y, z)$. And also, in recently, literature [16] studied the system

$$
\begin{gather*}
y_{x x}+k_{1} y^{+}+\epsilon z^{+}=\sin x, \quad \text { in }(0, \pi), \\
z_{x x}+\epsilon y^{+}+k_{2} z^{+}=\sin x, \quad \text { in }(0, \pi), \tag{1.4}\\
y(0)=y(\pi)=0, \\
z(0)=z(\pi)=0
\end{gather*}
$$

Where $u^{+}=\max \{u, 0\}$, the constant ϵ is small enough such that the matrix

$$
\left(\begin{array}{cc}
k_{1} & \epsilon \\
\epsilon & k_{2}
\end{array}\right)
$$

is a near-diagonal matrix and the positive numbers k_{1}, k_{2} satisfy

$$
m_{1}^{2}<k_{1}<\left(m_{1}+1\right)^{2}, m_{2}^{2}<k_{2}<\left(m_{2}+1\right)^{2} \quad \text { for some } m_{1}, m_{2} \in \mathbf{N} .
$$

This is a first work in the direction of extending to systems some of well-known results established on nonlinear equation with an asymmetric nonlinearity. Meanwhile in [16] there are two open questions to be interesting:

Question 1. Can one obtain corresponding results if the second-order differential operator is replaced with a fourth-order differential operator with corresponding boundary conditions?

Question 2. Can one replace the near-diagonal matrix with something more general and use information on the eigenvalues of matrix?

Following the above works and questions, we consider the system

$$
\begin{gather*}
-u^{\prime \prime}=f_{1}(x, u, v)+t_{1} \sin x+h_{1}(x), \quad \text { in }(0, \pi) \\
v^{\prime \prime \prime \prime}=f_{2}(x, u, v)+t_{2} \sin x+h_{2}(x), \quad \text { in }(0, \pi) \\
u(0)=u(\pi)=0, \tag{1.5}\\
v(0)=v(\pi)=v^{\prime \prime}(0)=v^{\prime \prime}(\pi)=0,
\end{gather*}
$$

where t_{1}, t_{2} are parameters and $\left(f_{1}, f_{2}\right):[0, \pi] \times \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is asymptotically linear.
On the other hand, the second order elliptic systems as follows

$$
\begin{gather*}
-\Delta u=f_{1}(u, v)+t_{1} \varphi_{1}+h_{1}(x), \\
-\Delta v=f_{2}(u, v)+t_{2} \varphi_{1}+h_{2}(x), \tag{1.6}\\
u=v=0, \quad \text { on } \Omega \Omega
\end{gather*}
$$

have been widely studied. Here we mention the papers [7, 8, 9, 10] and the references therein. If $\left(f_{1}, f_{2}\right): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is asymptotically linear and the asymptotic matrixes at $-\infty$ and $+\infty$ are

$$
\left(\begin{array}{ll}
\underline{a} & \underline{b} \\
\underline{c} & \underline{d}
\end{array}\right), \quad\left(\begin{array}{ll}
\bar{a} & \bar{b} \\
\bar{c} & \bar{d}
\end{array}\right)
$$

Under some growth conditions on $\left(f_{1}, f_{2}\right)$, in those papers, the Ambrosetti-Prodi type results for 1.6 have been given respectively.

We remind that let $g \in C^{\alpha}(\bar{\Omega} \times \mathbb{R})$ be a given function such that

$$
\limsup _{s \rightarrow-\infty} \frac{g(x, s)}{s}<\lambda_{1}<\liminf _{s \rightarrow+\infty} \frac{g(x, s)}{s}
$$

uniformly in $x \in \Omega$, where λ_{1} is the first eigenvalue of the Laplacian on a bounded domain Ω under the Dirichlet condition and φ_{1} is the associated eigenfunction. The Ambrosetti-Prodi type result in a Cartesian version states that for a given $h \in C^{\alpha}(\bar{\Omega})$ there exists a real number t_{0} such that the problem

$$
\begin{gathered}
-\Delta u=g(x, u)+t \varphi_{1}+h, \quad \text { in } \Omega \\
u=0, \quad \text { on } \partial \Omega
\end{gathered}
$$

(i) has no solution if $t>t_{0}$;
(ii) has at least two solutions if $t<t_{0}$.

With different variants and formulations this problem has been extensively studied.
Inspired, we consider the Ambrosetti-Prodi type problem for system 1.5). This paper is organized as follows: in Section 2, we prepare the proper variational framework and prove (PS) condition to the Euler-Lagrange functional associated to our problem. In Section 3, we prove the main theorem. Finally, a piecewise linear problem is considered as an example in Section 4.

2. PRELIMINARIES

In this section, we prepare the proper variational frame work for 1.5 , that is

$$
\begin{gathered}
-u^{\prime \prime}=f_{1}(x, u, v)+t_{1} \sin x+h_{1}(x), \quad \text { in }(0, \pi) \\
v^{\prime \prime \prime \prime}=f_{2}(x, u, v)+t_{2} \sin x+h_{2}(x), \quad \text { in }(0, \pi) \\
u(0)=u(\pi)=0, \\
v(0)=v(\pi)=v^{\prime \prime}(0)=v^{\prime \prime}(\pi)=0 .
\end{gathered}
$$

Where t_{1}, t_{2} are parameters, $h_{1}, h_{2} \in C[0, \pi]$ are fixed functions with $\int_{0}^{\pi} h_{1} \sin x=$ $\int_{0}^{\pi} h_{2} \sin x=0$.

We shall need some assumptions on the nonlinearities, which are necessary to settle the existence or not of solutions in the case of the Ambrosetti-Prodi type problem and to establish (PS) condition.

Let us order \mathbb{R}^{2} with the order defined by

$$
\xi=\left(\xi_{1}, \xi_{2}\right) \geq 0 \Longleftrightarrow \xi_{1}, \xi_{2} \geq 0
$$

and denote $W=(u, v)$ and $F(x, W)=\left(f_{1}(x, u, v), f_{2}(x, u, v)\right)$.
We will use the following hypotheses in this article.
(H1) $F=\left(f_{1}, f_{2}\right):[0, \pi] \times \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is locally Lipschitzian function respect to u, v, and there exists a function $H:[0, \pi] \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that

$$
\nabla H(x, u, v)=\left(\frac{\partial H}{\partial u}, \frac{\partial H}{\partial v}\right)=\left(f_{1}(x, u, v), f_{2}(x, u, v)\right)
$$

(H2) For $\xi=\left(\xi_{1}, \xi_{2}\right)>0$ large enough,

$$
\begin{equation*}
F(x, \xi) \geq 0 \tag{2.1}
\end{equation*}
$$

(H3) F satisfies

$$
\begin{equation*}
|F(x, \xi)| \leq c\left(\left|\xi_{1}\right|+\left|\xi_{2}\right|+1\right), \quad \forall \xi \in \mathbb{R}^{2}, x \in(0, \pi) \tag{2.2}
\end{equation*}
$$

where $c>0$ is constant.
(H4) For $\xi=\left(\xi_{1}, \xi_{2}\right) \in \mathbb{R}^{2}$ and $x \in(0, \pi)$ there holds

$$
\begin{equation*}
F(x, \xi) \geq \underline{A} \xi-c e \tag{2.3}
\end{equation*}
$$

for some constant $c>0$. Where $e=(1,1)$ and the matrix $\underline{A}=\left(\begin{array}{ll}\underline{a} & \underline{b} \\ \underline{c} & \underline{d}\end{array}\right)$ satisfies

$$
\begin{gather*}
\underline{b}, \underline{c} \geq 0 \tag{2.4}\\
(\underline{A} \xi, \xi) \leq \underline{\mu}|\xi|^{2}, \quad \text { for some } 0<\underline{\mu}<1 \tag{2.5}
\end{gather*}
$$

(H5) For $\xi=\left(\xi_{1}, \xi_{2}\right) \in \mathbb{R}^{2}$ and $x \in(0, \pi)$ there holds

$$
\begin{equation*}
F(x, \xi) \geq \bar{A} \xi-c e \tag{2.6}
\end{equation*}
$$

for some constant $c>0$. Where $e=(1,1)$ and the matrix $\bar{A}=\left(\begin{array}{ll}\bar{a} & \bar{b} \\ \bar{c} & \bar{d}\end{array}\right)$ satisfies

$$
\begin{gather*}
\bar{b}, \bar{c} \leq 0 \tag{2.7}\\
(\bar{A} \xi, \xi) \geq \bar{\mu}|\xi|^{2}, \quad \text { for some } \bar{\mu}>1 \tag{2.8}
\end{gather*}
$$

(If not mentioned, c will always denote a generic positive constant.)
Remark 2.1. With a simple computation it is easy to show that 2.4$)-(2.5)$ and (2.7)-2.8) imply, respectively,

$$
\begin{align*}
& (1-\underline{a})(1-\underline{d})-\underline{b c}>0, \quad \underline{a}, \underline{d}<1 \\
& (\underline{A}-I)^{-1} \xi \leq 0, \quad \forall \xi \in \mathbb{R}^{2}, \xi \geq 0 \tag{2.9}
\end{align*}
$$

and

$$
\begin{align*}
& (1-\bar{a})(1-\bar{d})-\bar{b} \bar{c}>0, \quad \bar{a}, \bar{d}>1 \tag{2.10}\\
& (\bar{A}-I)^{-1} \xi \geq 0, \quad \forall \xi \in \mathbb{R}^{2}, \xi \geq 0
\end{align*}
$$

where I is the identity matrix.
Let $X=H_{0}^{1}(0, \pi) \times\left(H_{0}^{1}(0, \pi) \cap H^{2}(0, \pi)\right)$ be Hilbert space with the inner product

$$
\langle W, \Psi\rangle=\int_{0}^{\pi}\left(u^{\prime} \psi_{1}^{\prime}+v^{\prime \prime} \psi_{2}^{\prime \prime}\right), \quad \forall W=(u, v), \Psi=\left(\psi_{1}, \psi_{2}\right) \in X
$$

and the corresponding norm

$$
\|W\|_{X}^{2}=\int_{0}^{\pi}\left(u^{\prime 2}+v^{\prime \prime 2}\right)
$$

Consider the second-order ordinary differential eigenvalue problem

$$
\begin{gathered}
-u^{\prime \prime}=\lambda u, \quad \text { in }(0, \pi), \\
u(0)=u(\pi)=0,
\end{gathered}
$$

and the fourth-order ordinary differential eigenvalue problem

$$
\begin{gathered}
v^{\prime \prime \prime \prime}=\lambda v, \quad \text { in }(0, \pi) \\
v(0)=v(\pi)=v^{\prime \prime}(0)=v^{\prime \prime}(\pi)=0
\end{gathered}
$$

It is well known that $\lambda_{1}=1$ and $\varphi_{1}=\sin x$ are the positive first eigenvalue and the associated eigenfunction, respectively. Hence, it follows from the Poincare inequality that, for all $W \in X$,

$$
\begin{equation*}
\int_{0}^{\pi}|W|^{2} \leq\|W\|_{X}^{2} \tag{2.11}
\end{equation*}
$$

A vector $W \in X$ is a weak solution of 1.5 if, and only if, it is a critical point of the associated Euler-Lagrange functional
$J(W)=\frac{1}{2} \int_{0}^{\pi}\left({u^{\prime}}^{2}+{v^{\prime \prime}}^{2}\right)-\int_{0}^{\pi} H(x, u, v)-\int_{0}^{\pi}\left[\left(t_{1} \sin x+h_{1}\right) u+\left(t_{2} \sin x+h_{2}\right) v\right]$
It is standard to show that the functional $J(W)$ is well defined, $J(W) \in C^{1}(X, \mathbb{R})$ and $X \rightarrow \mathbb{R} ; W \rightarrow \int_{0}^{\pi} H(x, u, v)+\int_{0}^{\pi}\left[\left(t_{1} \sin x+h_{1}\right) u+\left(t_{2} \sin x+h_{2}\right) v\right]$ has compact derivative under the assumptions (H1) and (H3).

Lemma 2.2. Assume that (H1)-(H5) hold. Then J satisfies the (PS) condition.
Proof. Let $\left\{W_{n}=\left(u_{n}, v_{n}\right)\right\} \subset X$ be a sequence such that $\left|J\left(W_{n}\right)\right| \leq c$ and $J^{\prime}\left(W_{n}\right) \rightarrow 0$. This implies

$$
\begin{align*}
& \left|\int_{0}^{\pi}\left(u_{n}^{\prime} \psi_{1}^{\prime}+v_{n}^{\prime \prime} \psi_{2}^{\prime \prime}\right)-\int_{0}^{\pi}\left[\left(f_{1} \psi_{1}+f_{2} \psi_{2}\right)+\left(t_{1} \sin x+h_{1}\right) \psi_{1}+\left(t_{2} \sin x+h_{2}\right) \psi_{2}\right]\right| \\
& \leq \varepsilon_{n}\|\Psi\|_{X} \tag{2.13}
\end{align*}
$$

for all $\Psi=\left(\psi_{1}, \psi_{2}\right) \in X$, where $\varepsilon_{n} \rightarrow 0(n \rightarrow \infty)$. Then by the above discussion it suffices to prove that $\left\{W_{n}\right\}$ is bounded.
Step 1: Show the boundedness of $\left\{W_{n}^{-}\right\}$. Let $W_{n}^{-}=\left(u_{n}^{-}, v_{n}^{-}\right), w^{-}=\max \{0,-w\}$. Since h_{1}, h_{2} are bounded, there exists $M_{1}, M_{2} \geq 0$ such that

$$
\begin{equation*}
\left|t_{1} \sin x+h_{1}\right| \leq M_{1}, \quad\left|t_{2} \sin x+h_{2}\right| \leq M_{2} \tag{2.14}
\end{equation*}
$$

Moreover, from (2.3) and (2.4), we have

$$
\begin{aligned}
& f_{1}\left(x, u_{n}, v_{n}\right)\left(-u_{n}^{-}\right) \leq \underline{a}\left(u_{n}^{-}\right)^{2}+\underline{b} u_{n}^{-} v_{n}^{-}+c u_{n}^{-}, \\
& f_{2}\left(x, u_{n}, v_{n}\right)\left(-v_{n}^{-}\right) \leq \underline{d}\left(v_{n}^{-}\right)^{2}+\underline{c} u_{n}^{-} v_{n}^{-}+c v_{n}^{-} .
\end{aligned}
$$

Choosing $c>\max \left\{M_{1}, M_{2}\right\}$ and taking $\psi_{1}=-u_{n}^{-}, \psi_{2}=-v_{n}^{-}$in 2.13), then using the above inequalities and (2.5), we obtain

$$
\begin{aligned}
\left\|W_{n}^{-}\right\|_{X}^{2} & \leq \int_{0}^{\pi}\left(\underline{A} W_{n}^{-}, W_{n}^{-}\right)+\int_{0}^{\pi}\left(c u_{n}^{-}-M_{1} u_{n}^{-}+c v_{n}^{-}-M_{2} v_{n}^{-}\right)+c\left\|W_{n}^{-}\right\|_{X} \\
& \leq \underline{\mu} \int_{0}^{\pi}\left|W_{n}^{-}\right|^{2}+d \int_{0}^{\pi}\left(u_{n}^{-}+v_{n}^{-}\right)+c\left\|W_{n}^{-}\right\|_{X} .
\end{aligned}
$$

Where $d \geq \max \left\{c-M_{1}, c-M_{2}\right\}$ is constant. Using Hölder inequality and Poincare inequality, we get

$$
\begin{aligned}
& \int_{0}^{\pi}\left|u_{n}^{-}\right| \leq c\left(\int_{0}^{\pi}\left|u_{n}^{-}\right|^{2}\right)^{1 / 2} \leq c\left(\int_{0}^{\pi}\left|u_{n}^{-}\right|^{2}\right)^{1 / 2} \\
& \int_{0}^{\pi}\left|v_{n}^{-}\right| \leq c\left(\int_{0}^{\pi}\left|v_{n}^{-}\right|^{2}\right)^{1 / 2} \leq c\left(\int_{0}^{\pi}\left|v_{n}^{-\prime \prime}\right|^{2}\right)^{1 / 2}
\end{aligned}
$$

Then from these two inequalities and 2.11 we have

$$
(1-\underline{\mu})\left\|W_{n}^{-}\right\|_{X}^{2} \leq c\left\|W_{n}^{-}\right\|_{X}
$$

since $0<\underline{\mu}<1,\left\|W_{n}^{-}\right\|$is bounded.
Step 2: Show the boundedness of $\left\{W_{n}\right\}$. Suppose by contradiction that $\left\{W_{n}\right\}$ is unbounded, then there exists a subsequence (still denote $\left\{W_{n}\right\}$) such that $\left\|W_{n}\right\|_{X} \rightarrow$ $\infty \quad$ as $n \rightarrow \infty$. Setting $V_{n}=\left(x_{n}, y_{n}\right)=W_{n} /\left\|W_{n}\right\|_{X}$, then $\left\|V_{n}\right\|_{X}=1$ and there exists a subsequence such that

$$
\begin{gather*}
V_{n} \rightharpoonup V_{0}=\left(x_{0}, y_{0}\right), \quad \text { in } X, \tag{2.15}\\
V_{n} \rightarrow V_{0}, \quad \text { in } L^{2}(0, \pi) \times L^{2}(0, \pi), \tag{2.16}\\
V_{n} \rightarrow V_{0}, \quad \text { a.e. in }(0, \pi), \\
\text { with }\left|x_{n}(x)\right|,\left|y_{n}(x)\right| \leq h(x) \in L^{2}, x \in(0, \pi) . \tag{2.17}
\end{gather*}
$$

By step 1 we may assume that $V_{n}^{-} \rightarrow 0$ in $L^{2} \times L^{2}$ and $V_{n}^{-} \rightarrow 0$ a.e.in $(0, \pi)$. Clearly, $V_{0} \geq 0$. Denote

$$
\begin{aligned}
G_{n}(x) & =\left(g_{n}^{1}(x), g_{n}^{2}(x)\right) \\
& =\frac{\left(f_{1}\left(x, W_{n}(x)\right)+t_{1} \sin x+h_{1}, f_{2}\left(x, W_{n}(x)\right)+t_{2} \sin x+h_{2}\right)}{\left\|W_{n}\right\|_{X}} .
\end{aligned}
$$

We claim that

$$
\begin{equation*}
G_{n} \rightarrow \gamma=\left(\gamma_{1}, \gamma_{2}\right) \geq 0 \quad \text { in } L^{2} \times L^{2} \tag{2.18}
\end{equation*}
$$

In fact, let $A_{n}=\left\{x \in(0, \pi) ; u_{n}(x) \leq 0\right.$ and $\left.v_{n}(x) \leq 0\right\}$ and let χ_{n} denotes its characteristic function, then $G_{n}=\chi_{n} G_{n}+\left(1-\chi_{n}\right) G_{n}$. By (H3), 2.16), 2.17) and using the Lebesgue Dominated Convergence Theorem, we get

$$
\chi_{n} \frac{F\left(x, W_{n}\right)}{\left\|W_{n}\right\|_{X}} \rightarrow 0 \quad \text { in } L^{2} \times L^{2}
$$

Moreover, from (2.14) we have

$$
\chi_{n} \frac{\left(t_{1} \sin x+h_{1}, t_{2} \sin x+h_{2}\right)}{\left\|W_{n}\right\|_{X}} \rightarrow 0 \quad \text { in } L^{2} \times L^{2} .
$$

Hence $\chi_{n} G_{n} \rightarrow 0$ in $L^{2} \times L^{2}$. With the same reasoning $\left(1-\chi_{n}\right) G_{n} \rightarrow \gamma^{\prime}=\left(\gamma_{1}^{\prime}, \gamma_{2}^{\prime}\right)$ in $L^{2} \times L^{2}$. Therefore, we only need to prove that $\gamma^{\prime} \geq 0$.
(i) If $u_{n}(x) \geq 0$ and $v_{n}(x) \leq 0$, since $\bar{a}>1$, from 2.6 we have

$$
\left(1-\chi_{n}\right) g_{n}^{1}(x)+\bar{b}\left(y_{n}^{-}(x)\right)+\frac{c}{\left\|W_{n}\right\|_{X}}-\left(1-\chi_{n}\right) \frac{t_{1} \sin x+h_{1}}{\left\|W_{n}\right\|_{X}} \geq \bar{a} x_{n}^{+}(x) \geq 0
$$

and from 2.3 and 2.4 , we obtain

$$
\left(1-\chi_{n}\right) g_{n}^{2}(x)+\underline{d}\left(y_{n}^{-}(x)\right)+\frac{c}{\left\|W_{n}\right\|_{X}}-\left(1-\chi_{n}\right) \frac{t_{2} \sin x+h_{2}}{\left\|W_{n}\right\|_{X}} \geq \underline{c} x_{n}^{+}(x) \geq 0
$$

Since $V_{n}^{-} \rightarrow 0$ in $L^{2} \times L^{2}$ and

$$
\begin{aligned}
& \left(1-\chi_{n}\right) g_{n}^{1}(x)+\bar{b}\left(y_{n}^{-}(x)\right)+\frac{c}{\left\|W_{n}\right\|_{X}}-\left(1-\chi_{n}\right) \frac{t_{1} \sin x+h_{1}}{\left\|W_{n}\right\|_{X}} \rightarrow \gamma_{1}^{\prime} \\
& \left(1-\chi_{n}\right) g_{n}^{2}(x)+\underline{d}\left(y_{n}^{-}(x)\right)+\frac{c}{\left\|W_{n}\right\|_{X}}-\left(1-\chi_{n}\right) \frac{t_{2} \sin x+h_{2}}{\left\|W_{n}\right\|_{X}} \rightarrow \gamma_{2}^{\prime}
\end{aligned}
$$

we get $\gamma^{\prime} \geq 0$.
(ii) If $u_{n}(x) \leq 0$ and $v_{n}(x) \geq 0$, we can handle in the same way to obtain that $\gamma^{\prime} \geq 0$.
(iii) If $u_{n}(x) \geq 0$ and $v_{n}(x) \geq 0$, the assertion $\gamma^{\prime} \geq 0$ can be inferred from (H2).

Now dividing (2.13) by $\left\|W_{n}\right\|_{X}$, using (2.15), 2.18) and passing to the limit we obtain

$$
\begin{equation*}
\int_{0}^{\pi}\left(x_{0}^{\prime} \psi_{1}^{\prime}+y_{0}^{\prime \prime} \psi_{2}^{\prime \prime}\right)=\int_{0}^{\pi}\left(\gamma_{1} \psi_{1}+\gamma_{2} \psi_{2}\right), \quad \forall \Psi=\left(\psi_{1}, \psi_{2}\right) \in X \tag{2.19}
\end{equation*}
$$

From (2.6) we have

$$
\frac{\left(f_{1}\left(x, W_{n}(x)\right)+t_{1} \sin x+h_{1}, f_{2}\left(x, W_{n}(x)\right)+t_{2} \sin x+h_{2}\right)}{\left\|W_{n}\right\|_{X}} \geq \bar{A} V_{n}-\frac{c e}{\left\|W_{n}\right\|_{X}} .
$$

Passing to the limit in this inequality we get

$$
\begin{equation*}
\gamma \geq \bar{A} V_{0} \tag{2.20}
\end{equation*}
$$

Taking $\psi_{1}=\sin x, \psi_{2}=0$ and then $\psi_{1}=0, \psi_{2}=\sin x$ in 2.19) and using 2.20, it is achieved that

$$
\begin{equation*}
(\bar{A}-I)\binom{\int_{0}^{\pi} x_{0} \sin x}{\int_{0}^{\pi} y_{0} \sin x} \leq 0 . \tag{2.21}
\end{equation*}
$$

From Remark 2.1, applying $(\bar{A}-I)^{-1}$ to 2.21 we get $\left(\int_{0}^{\pi} x_{0} \sin x, \int_{0}^{\pi} y_{0} \sin x\right) \leq 0$. Hence $x_{0}=y_{0}=0$ a.e. So, from 2.19, $\int_{0}^{\pi}(\gamma, \Psi)=0$ and taking $\Psi>0$ we have $\gamma=0$.

Finally, consider $\psi_{1}=x_{n}, \psi_{2}=y_{n}$ in (2.13). Dividing the resulting expression by $\left\|W_{n}\right\|_{X}$, and passing to the limit we obtain $1 \leq 0$, that is impossible.

Lemma 2.3. Suppose (H5) hold. Then

$$
\begin{equation*}
\lim _{s \rightarrow+\infty} J(s \sin x, s \sin x)=-\infty \tag{2.22}
\end{equation*}
$$

Proof. From (2.6) we have

$$
\begin{array}{ll}
H(x, u, v) \geq \frac{\bar{a}}{2} u^{2}+\bar{b} u v-c u+H(x, 0, v) & \text { as } u \geq 0, \forall v \\
H(x, u, v) \geq \frac{\bar{d}}{2} v^{2}+\bar{c} u v-c v+H(x, u, 0) & \text { as } v \geq 0, \forall u \tag{2.24}
\end{array}
$$

Adding (2.23), (2.24) and using them again,

$$
\begin{aligned}
2 H(x, u, v) & \geq \frac{\bar{a}}{2} u^{2}+(\bar{b}+\bar{c}) u v+\frac{\bar{d}}{2} v^{2}-c u-c v+H(x, 0, v)+H(x, u, 0) \\
& \geq \bar{a} u^{2}+(\bar{b}+\bar{c}) u v+\bar{d} v^{2}-2 c u-2 c v+2 H(x, 0,0) \\
& \geq \bar{a} u^{2}+(\bar{b}+\bar{c}) u v+\bar{d} v^{2}-2 c u-2 c v+2 c, \quad \text { for } u, v \geq 0 .
\end{aligned}
$$

Then by (2.8) we have

$$
\begin{equation*}
H(x, W) \geq \frac{\bar{\mu}}{2}|W|^{2}-c u-c v+c . \tag{2.25}
\end{equation*}
$$

Taking $W=(s \sin x, s \sin x)$, where $s>0$, from 2.14 and 2.25 we get

$$
\begin{aligned}
J(s \sin x, s \sin x) & \leq \frac{\pi s^{2}}{2}(1-\bar{\mu})+\left(c+M_{1}\right) \int_{0}^{\pi} s \sin x+\left(c+M_{2}\right) \int_{0}^{\pi} s \sin x-c \\
& \leq \frac{\pi s^{2}}{2}(1-\bar{\mu})+c s-c
\end{aligned}
$$

since $\bar{\mu}>1$, 2.22 holds.

3. The Ambrosetti-Prodi type result

In this section, we state and prove the Ambrosetti-Prodi type result for system 1.5). We need the following concepts.

Definition 3.1. (1) We say that a vector function $W \in X$ is a weak subsolution of 1.5 if

$$
J^{\prime}(W)(\Psi) \leq 0, \quad \forall \Psi \in X, \Psi \geq 0
$$

(2) $W=(u, v) \in C^{2} \times C^{4}$ is a subsolution (classical) of 1.5) if

$$
\begin{gathered}
-u^{\prime \prime} \leq f_{1}(x, u, v)+t_{1} \sin x+h_{1}, \quad \text { in }(0, \pi) \\
v^{\prime \prime \prime \prime} \leq f_{2}(x, u, v)+t_{2} \sin x+h_{2}, \quad \text { in }(0, \pi) \\
u(0)=u(\pi)=0 \\
v(0)=v(\pi)=v^{\prime \prime}(0)=v^{\prime \prime}(\pi)=0
\end{gathered}
$$

(3) Weak supersolutions and supersolutions (classical) are defined likewise by reversing the above inequalities.

We can easily show that each a subsolution or a supersolution of 1.5 is indeed also a weak subsolution or a weak supersolution, respectively.

For to present the subsolution and supersolution for (1.5), we firstly show a maximum principle as follows.

Lemma 3.2. Let A be a matrix-function with entries in $C[0, \pi]$ satisfy (2.4 and (2.5). If $W=(u, v) \in X$ is such that

$$
\begin{equation*}
\int_{0}^{\pi}\left(u^{\prime} \psi_{1}^{\prime}+v^{\prime \prime} \psi_{2}^{\prime \prime}\right) \geq \int_{0}^{\pi}(A W, \Psi), \quad \forall \Psi=\left(\psi_{1}, \psi_{2}\right) \in X \tag{3.1}
\end{equation*}
$$

then $W \geq 0$.
Proof. Let $\Psi=W^{-}=\left(u^{-}, v^{-}\right)$in (3.1), by (2.4) and 2.5), we obtain

$$
\begin{aligned}
\int_{0}^{\pi}\left(\left|u^{-^{\prime}}\right|^{2}+\left|v^{-^{\prime \prime}}\right|^{2}\right) & \leq \int_{0}^{\pi}\left(A W^{-}, W^{-}\right)-\int_{0}^{\pi}\left(A W^{+}, W^{-}\right) \\
& \leq \underline{\mu} \int_{0}^{\pi}\left|W^{-}\right|^{2} \leq \underline{\mu}\left\|W^{-}\right\|_{X}^{2}
\end{aligned}
$$

Therefore, $W^{-}=0$, i.e. $W \geq 0$.
Remark 3.3. In the classical sense, 2.4 and 2.5 are also sufficient conditions for having a maximum principle for the problem

$$
\begin{gathered}
-u^{\prime \prime}=\underline{a} u+\underline{b} v+g_{1}(x), \quad \text { in }(0, \pi), \\
v^{\prime \prime \prime \prime}=\underline{c} u+\underline{d} v+g_{2}(x), \quad \text { in }(0, \pi), \\
u(0)=u(\pi)=0,
\end{gathered}
$$

$$
v(0)=v(\pi)=v^{\prime \prime}(0)=v^{\prime \prime}(\pi)=0
$$

This is, $W=(u, v) \geq 0$ if $g_{1} \geq 0, g_{2} \geq 0$.
Lemma 3.4. Assume condition (H4), i.e. 2.3, 2.4 and 2.5 hold. Then, for all $t=\left(t_{1}, t_{2}\right) \in \mathbb{R}^{2}$, system 1.5) has a subsolution W_{t} such that, if W^{t} is any supersolution we have

$$
\begin{equation*}
W_{t} \leq W^{t} \quad \text { in }(0, \pi) \tag{3.2}
\end{equation*}
$$

Proof. We consider the system

$$
\begin{gather*}
-u^{\prime \prime}=\underline{a} u+\underline{b} v-c+t_{1} \sin x+h_{1}, \quad \text { in }(0, \pi), \\
v^{\prime \prime \prime \prime}=\underline{c} u+\underline{d} v-c+t_{2} \sin x+h_{2}, \quad \text { in }(0, \pi), \\
u(0)=u(\pi)=0, \tag{3.3}\\
v(0)=v(\pi)=v^{\prime \prime}(0)=v^{\prime \prime}(\pi)=0,
\end{gather*}
$$

where c is the constant in (2.3) and 2.6). From the hypotheses on \underline{A} and h_{1}, h_{2}, (3.3) has a unique solution $W_{t} \in C^{2} \times C^{4}$. Then, using 2.3) we conclude that W_{t} is in fact a subsolution of 1.5).

Finally, suppose that W^{t} is any supersolution of 1.5 , from 2.3 and applying Lemma 3.2 directly we can get the assertion 3.2 .

Lemma 3.5. Suppose (H1) holds and $\left(h_{1}, h_{2}\right) \in C[0, \pi] \times C[0, \pi]$. Then there exists $t^{0} \in \mathbb{R}^{2}$ such that, for all $t \leq t^{0}$, system 1.5 has a supersolution W^{t}.

Proof. Let \bar{u}, \bar{v} be the solution of the system

$$
\begin{gather*}
-\bar{u}^{\prime \prime}=f_{1}(x, 0,0)+h_{1}(x), \quad \text { in }(0, \pi), \\
\bar{v}^{\prime \prime \prime \prime}=f_{2}(x, 0,0)+h_{2}(x), \quad \text { in }(0, \pi), \\
u(0)=u(\pi)=0, \tag{3.4}\\
v(0)=v(\pi)=v^{\prime \prime}(0)=v^{\prime \prime}(\pi)=0 .
\end{gather*}
$$

Due to the locally Lipschitzian condition on f_{1}, f_{2}, it is possible to choose $t^{0}=$ $\left(t_{1}^{0}, t_{2}^{0}\right)<0$ such that

$$
\begin{aligned}
& f_{1}(x, \bar{u}, \bar{v})-f_{1}(x, 0,0)+t_{1}^{0} \sin x \leq 0 \\
& f_{2}(x, \bar{u}, \bar{v})-f_{2}(x, 0,0)+t_{2}^{0} \sin x \leq 0
\end{aligned}
$$

Hence, from these inequalities and the system 3.4, for all $t \leq t^{0}, W^{t^{0}}=(\bar{u}, \bar{v})$ is a supersolution for (1.5).

Lemma 3.6. Let (H4), (H5) hold. Then for a given h_{1}, h_{2}, there exists an unbounded domain \Re in the plane such that if $t \in \Re$, system (1.5) has no supersolution.

Proof. Suppose $W=(u, v)$ is a supersolution for 1.5). Multiplying both equations of this system by $\sin x$, integration them by parts and using $(2.3), 2.6$ we deduce that

$$
\begin{align*}
& (\underline{A}-I)\binom{\rho_{1}}{\rho_{2}} \leq \frac{\pi}{2}\binom{-s_{1}}{-s_{2}} \tag{3.5}\\
& (\bar{A}-I)\binom{\rho_{1}}{\rho_{2}} \leq \frac{\pi}{2}\binom{-s_{1}}{-s_{2}} \tag{3.6}
\end{align*}
$$

Where $\rho_{1}=\int_{0}^{\pi} u \sin x, \rho_{2}=\int_{0}^{\pi} v \sin x, s_{1}=t_{1}-c, s_{2}=t_{2}-c$ and c is the constant in (2.3) and 2.6). From remark 2.1, applying $(\underline{A}-I)^{-1}$ and $(\bar{A}-I)^{-1}$ to 3.5 and (3.6), respectively, we obtain that
(i) If $\rho_{1} \leq 0$, then $s_{2} \leq \frac{\underline{d-1}}{\underline{b}} s_{1}$ when $\underline{b} \neq 0$, or $s_{1} \leq 0$ when $\underline{b}=0$.
(ii) If $\rho_{1} \geq 0$, then $s_{2} \leq \frac{\bar{d}-1}{\bar{b}} s_{1}$ when $\bar{b} \neq 0$, or $s_{1} \leq 0$ when $\bar{b}=0$.

Therefore, independently of the sign of ρ_{1}, the pair $\left(s_{1}, s_{2}\right)$ is in a region composed of the union of two half-planes passing through the origin, each of them bounded above by a straight-line of negative or infinity slope. \Re is the complement of this region in the original variables t_{1} and t_{2}.

Now, we are at a position to prove the Ambrosetti-Prodi type result for system (1.5).

Theorem 3.7. Suppose that conditions (H1)-(H5) are satisfied and that there exists a matrix

$$
A(x)=\left(\begin{array}{ll}
a(x) & b(x) \\
c(x) & d(x)
\end{array}\right)
$$

with $b(x), c(x) \geq 0$ (cooperativeness condition on $A(x))$ satisfies 2.5 such that

$$
\begin{equation*}
F(x, \xi)-F(x, \eta) \geq A(x)(\xi-\eta), \quad \text { for } \xi, \eta \in \mathbb{R}^{2}, \xi \geq \eta \tag{3.7}
\end{equation*}
$$

Then there exists a continuous curve Γ splitting \mathbb{R}^{2} into two unbounded components N and E such that:
(1) for each $t=\left(t_{1}, t_{2}\right) \in N$, 1.5 has no solution;
(2) for each $t=\left(t_{1}, t_{2}\right) \in E$, 1.5) has at least two solutions.

Proof. For each $\theta \in \mathbb{R}$, define

$$
L_{\theta}=\left\{\left(t_{1}, t_{2}\right) \in \mathbb{R}^{2} ; t_{2}+\theta=t_{1}\right\}
$$

and $R(\theta)=\left\{t_{1} \in \mathbb{R} ; 1.5\right.$ has a supersolution with $t \in L_{\theta}$ for some $\left.t_{2} \in \mathbb{R}\right\}$.
Lemmas 3.5 and 3.6 allows us to define the continuous curve

$$
\Gamma(\theta)=(\sup R(\theta), \sup R(\theta)-\theta),
$$

which splits the plane into two disjoints unbounded domains N and E such that for all $t \in N$ no supersolution exists for 1.5, while for all $t \in E$ 1.5 has a supersolution.

Obviously, for all $t \in N$, no solution exists for (1.5), result (1) is proved.
To prove result (2), now we use the abstract variational theorems to find the solutions of 1.5 when $t \in E$. We write

$$
\begin{aligned}
& \left\langle J^{\prime}(W), \Psi\right\rangle \\
& =\langle W, \Psi\rangle-\int_{0}^{\pi}\left[\left(f_{1}(x, u, v)+t_{1} \sin x+h_{1}\right) \psi_{1}+\left(f_{2}(x, u, v)+t_{2} \sin x+h_{2}\right) \psi_{2}\right]
\end{aligned}
$$

Given $t \in E$ there exists a supersolution $W^{t}=\left(u^{t}, v^{t}\right)$ and a subsolution $W_{t}=$ $\left(u_{t}, v_{t}\right)$ of 1.5 such that $W_{t} \leq W^{t}$ in $(0, \pi)$. Let

$$
M=\left[W_{t}, W^{t}\right]=\left\{W \in X ; W_{t} \leq W \leq W^{t}\right\}
$$

since $W_{t}, W^{t} \in L^{\infty}$ by assumption, also $M \subset L^{\infty}$ and $H(x, W(x))+\left(t_{1} \sin x+\right.$ $\left.h_{1}\right) u+\left(t_{2} \sin x+h_{2}\right) v \leq c$ for all $W \in M$ and almost every $x \in(0, \pi)$.

Clearly, M is a closed and convex subset of X, hence weakly closed. Since M is essentially bounded, $J(W) \geq \frac{1}{2}\|W\|_{X}^{2}-c$ is coercive on M. On the other hand, if
$W_{n} \rightharpoonup W$ weakly in X, where $W_{n}, W \in M$, we may assume that $W_{n} \rightarrow W$ pointwise almost everywhere; moreover, $\left|H\left(x, W_{n}\right)+\left(t_{1} \sin x+h_{1}\right) u_{n}+\left(t_{2} \sin x+h_{2}\right) v_{n}\right| \leq c$ uniformly, using Lebesgue Dominated Convergence Theorem, we have

$$
\begin{aligned}
& \int_{0}^{\pi} H\left(x, W_{n}\right)+\int_{0}^{\pi}\left[\left(t_{1} \sin x+h_{1}\right) u_{n}+\left(t_{2} \sin x+h_{2}\right) v_{n}\right] \\
& \rightarrow \int_{0}^{\pi} H(x, W)+\int_{0}^{\pi}\left[\left(t_{1} \sin x+h_{1}\right) u+\left(t_{2} \sin x+h_{2}\right) v\right]
\end{aligned}
$$

Hence J is weakly lower semi-continuous on M. Then we can use [17, Theorem 1.2] to find a vector function $W_{0}=\left(u_{0}, v_{0}\right) \in X$ such that $W_{0} \in M$ is the infimum of the functional J restricted to M.

To see that W_{0} is a weak solution of (1.5), for $\varphi=\left(\varphi_{1}, \varphi_{2}\right) \in C_{0}^{\infty}(0, \pi)$ and $\varepsilon>0$ let

$$
\begin{aligned}
& u_{\varepsilon}=\min \left\{u^{t}, \max \left\{u_{t}, u_{0}+\varepsilon \varphi_{1}\right\}\right\} \\
& v_{\varepsilon}=\min \left\{v^{t}, \max \left\{v_{t}, v_{0}+\varepsilon \varphi_{1}\right\}\right\} \\
&=\varphi_{1}^{\varepsilon}+\varphi_{1 \varepsilon} \\
&=\varepsilon \varphi_{2}-\varphi_{2}^{\varepsilon}+\varphi_{2 \varepsilon}
\end{aligned}
$$

with

$$
\begin{aligned}
\varphi_{1}^{\varepsilon} & =\max \left\{0, u_{0}+\varepsilon \varphi_{1}-u^{t}\right\} \geq 0 \\
\varphi_{2}^{\varepsilon} & =\max \left\{0, v_{0}+\varepsilon \varphi_{2}-v^{t}\right\} \geq 0
\end{aligned}
$$

and

$$
\begin{aligned}
\varphi_{1 \varepsilon} & =-\min \left\{0, u_{0}+\varepsilon \varphi_{1}-u_{t}\right\} \geq 0 \\
\varphi_{2 \varepsilon} & =-\min \left\{0, v_{0}+\varepsilon \varphi_{2}-v_{t}\right\} \geq 0
\end{aligned}
$$

Note that $W_{\varepsilon}=\left(u_{\varepsilon}, v_{\varepsilon}\right) \in M$ and $\varphi^{\varepsilon}=\left(\varphi_{1}^{\varepsilon}, \varphi_{2}^{\varepsilon}\right), \varphi_{\varepsilon}=\left(\varphi_{1 \varepsilon}, \varphi_{2 \varepsilon}\right) \in X \cap L^{\infty}(0, \pi)$.
The functional J is differentiable in direction $W_{\varepsilon}-W_{0}$. Since W_{0} minimizes J in M we have

$$
0 \leq\left\langle W_{\varepsilon}-W_{0}, J^{\prime}\left(W_{0}\right)\right\rangle=\varepsilon\left\langle\varphi, J^{\prime}\left(W_{0}\right)\right\rangle-\left\langle\varphi^{\varepsilon}, J^{\prime}\left(W_{0}\right)\right\rangle+\left\langle\varphi_{\varepsilon}, J^{\prime}\left(W_{0}\right)\right\rangle
$$

so that

$$
\left\langle\varphi, J^{\prime}\left(W_{0}\right)\right\rangle \geq \frac{1}{\varepsilon}\left[\left\langle\varphi^{\varepsilon}, J^{\prime}\left(W_{0}\right)\right\rangle-\left\langle\varphi_{\varepsilon}, J^{\prime}\left(W_{0}\right)\right\rangle\right]
$$

Now, from W^{t} is a supersolution to 1.5 , we get

$$
\begin{aligned}
&\left\langle\varphi^{\varepsilon}, J^{\prime}\left(W_{0}\right)\right\rangle \\
&=\left\langle\varphi^{\varepsilon}, J^{\prime}\left(W^{t}\right)\right\rangle+\left\langle\varphi^{\varepsilon}, J^{\prime}\left(W_{0}\right)-J^{\prime}\left(W^{t}\right)\right\rangle \\
& \geq\left\langle\varphi^{\varepsilon}, J^{\prime}\left(W_{0}\right)-J^{\prime}\left(W^{t}\right)\right\rangle \\
&= \int_{\Omega}\left[\left(u_{0}-u^{t}\right)^{\prime}\left(u_{0}+\varepsilon \varphi_{1}-u^{t}\right)^{\prime}+\left(v_{0}-v^{t}\right)^{\prime \prime}\left(v_{0}+\varepsilon \varphi_{2}-v^{t}\right)^{\prime \prime}\right] \\
&-\int_{\Omega}\left[f_{1}\left(x, W_{0}\right)-f_{1}\left(x, W^{t}\right)\right]\left(u_{0}+\varepsilon \varphi_{1}-u^{t}\right) \\
&-\int_{\Omega}\left[f_{2}\left(x, W_{0}\right)-f_{2}\left(x, W^{t}\right)\right]\left(v_{0}+\varepsilon \varphi_{2}-v^{t}\right) \\
& \geq \varepsilon \int_{\Omega}\left[\left(u_{0}-u^{t}\right)^{\prime} \varphi_{1}^{\prime}+\left(v_{0}-v^{t}\right)^{\prime \prime} \varphi_{2}^{\prime \prime}\right] \\
&-\varepsilon \int_{\Omega}\left|f_{1}\left(x, W_{0}\right)-f_{1}\left(x, W^{t}\right)\left\|\varphi_{1}\left|-\varepsilon \int_{\Omega}\right| f_{2}\left(x, W_{0}\right)-f_{2}\left(x, W^{t}\right)\right\| \varphi_{2}\right|
\end{aligned}
$$

where $\Omega=\left\{x \in(0, \pi) ; W_{0}(x)+\varepsilon \varphi(x) \geq W^{t}(x)>W_{0}(x)\right\}$. Note that meas $(\Omega) \rightarrow 0$ as $\varepsilon \rightarrow 0$. Hence by absolute continuity of the Lebesgue integral we obtain that

$$
\left\langle\varphi^{\varepsilon}, J^{\prime}\left(W_{0}\right)\right\rangle \geq o(\varepsilon)
$$

where $o(\varepsilon) / \varepsilon \rightarrow 0$ as $\varepsilon \rightarrow 0$. Similarly, we conclude that $\left\langle\varphi_{\varepsilon}, J^{\prime}\left(W_{0}\right)\right\rangle \leq o(\varepsilon)$; thus

$$
\left\langle\varphi, J^{\prime}\left(W_{0}\right)\right\rangle \geq 0
$$

for all $\varphi \in C_{0}^{\infty}(0, \pi)$. Reversing the sign of φ and since $C_{0}^{\infty}(0, \pi)$ is dense in X we finally get that $J^{\prime}\left(W_{0}\right)=0$, i.e. W_{0} is a weak solution to 1.5 . Then using (3.7) and a Maximum Principle Lemma 3.2 , we claim that W_{0} is a local minimum of J.

Suppose by contradiction that W_{0} is not a local minimum, then for every $\varepsilon>0$ there is $\widetilde{W}_{\varepsilon} \in \overline{B_{\varepsilon}\left(W_{0}\right)}$ (a ball of radius ε around $\left.W_{0} \in X\right)$ such that $J\left(\widetilde{W_{\varepsilon}}\right)<J\left(W_{0}\right)$. We know that $\overline{B_{\varepsilon}\left(W_{0}\right)}$ is weaker sequentially compact in X and J is weakly lower semi-continuous, therefore there is $\widehat{W}_{\varepsilon} \in \overline{B_{\varepsilon}\left(W_{0}\right)}$ such that

$$
J\left(\widehat{W}_{\varepsilon}\right)=\frac{\inf }{B_{\varepsilon}\left(W_{0}\right)} J \leq J\left(\widetilde{W}_{\varepsilon}\right)<J\left(W_{0}\right)
$$

and $\left\langle J^{\prime}\left(\widehat{W_{\varepsilon}}\right), \widehat{W_{\varepsilon}}-W_{0}\right\rangle \leq 0$, or

$$
J^{\prime}\left(\widehat{W_{\varepsilon}}\right)=\lambda_{\varepsilon}\left(\widehat{W_{\varepsilon}}-W_{0}\right) \quad \text { with } \lambda_{\varepsilon} \leq 0
$$

namely

$$
\begin{align*}
& \int_{0}^{\pi}\left({\widehat{u_{\varepsilon}}}^{\prime} \psi_{1}^{\prime}+{\widehat{v_{\varepsilon}}}^{\prime \prime} \psi_{2}^{\prime \prime}\right)-\int_{0}^{\pi}\left[f_{1}\left(x, \widehat{u_{\varepsilon}}, \widehat{v_{\varepsilon}}\right) \psi_{1}+f_{2}\left(x, \widehat{u_{\varepsilon}}, \widehat{v_{\varepsilon}}\right) \psi_{2}\right] \\
& -\int_{0}^{\pi}\left[\left(t_{1} \sin x+h_{1}\right) \psi_{1}+\left(t_{2} \sin x+h_{2}\right) \psi_{2}\right] \tag{3.8}\\
& =\lambda_{\varepsilon}\left[\left(\widehat{u_{\varepsilon}}-u_{0}\right) \psi_{1}+\left(\widehat{v_{\varepsilon}}-v_{0}\right) \psi_{2}\right] .
\end{align*}
$$

On the other hand, from Definition 3.1 we have

$$
\begin{align*}
& \int_{0}^{\pi}\left(u_{t}^{\prime} \psi_{1}^{\prime}+v_{t}^{\prime \prime} \psi_{2}^{\prime \prime}\right)-\int_{0}^{\pi}\left[f_{1}\left(x, u_{t}, v_{t}\right) \psi_{1}+f_{2}\left(x, u_{t}, v_{t}\right) \psi_{2}\right] \tag{3.9}\\
& -\int_{0}^{\pi}\left[\left(t_{1} \sin x+h_{1}\right) \psi_{1}+\left(t_{2} \sin x+h_{2}\right) \psi_{2}\right] \leq 0
\end{align*}
$$

and

$$
\begin{align*}
& \int_{0}^{\pi}\left(u^{t^{\prime}} \psi_{1}^{\prime}+v^{t^{\prime \prime}} \psi_{2}^{\prime \prime}\right)-\int_{0}^{\pi}\left[f_{1}\left(x, u^{t}, v^{t}\right) \psi_{1}+f_{2}\left(x, u^{t}, v^{t}\right) \psi_{2}\right] \tag{3.10}\\
& -\int_{0}^{\pi}\left[\left(t_{1} \sin x+h_{1}\right) \psi_{1}+\left(t_{2} \sin x+h_{2}\right) \psi_{2}\right] \geq 0
\end{align*}
$$

From (3.8)-3.9), we obtain

$$
\begin{aligned}
& \int_{0}^{\pi}\left[\left({\widehat{u_{\varepsilon}}}^{\prime}-u_{t}^{\prime}\right) \psi_{1}^{\prime}+\left(\widehat{v}_{\varepsilon}^{\prime \prime}-v_{t}^{\prime \prime}\right) \psi_{2}^{\prime \prime}\right] \\
& -\int_{0}^{\pi}\left[\left(f_{1}\left(x, \widehat{W_{\varepsilon}}\right)-f_{1}\left(x, W_{t}\right)\right) \psi_{1}+\left(f_{2}\left(x, \widehat{W_{\varepsilon}}\right)-f_{2}\left(x, W_{t}\right)\right) \psi_{2}\right] \\
& \geq \lambda_{\varepsilon}\left[\left(\widehat{u_{\varepsilon}}-u_{t}+u_{t}-u_{0}\right) \psi_{1}+\left(\widehat{v_{\varepsilon}}-v_{t}+v_{t}-v_{0}\right) \psi_{2}\right]
\end{aligned}
$$

This implies

$$
\begin{aligned}
-\left(\widehat{u_{\varepsilon}}-u_{t}\right)^{\prime \prime} & \geq f_{1}\left(x, \widehat{W_{\varepsilon}}\right)-f_{1}\left(x, W_{t}\right)+\lambda_{\varepsilon}\left(\widehat{u_{\varepsilon}}-u_{t}\right)+\lambda_{\varepsilon}\left(u_{t}-u_{0}\right), \\
\left(\widehat{v_{\varepsilon}}-v_{t}\right)^{(4)} & \geq f_{2}\left(x, \widehat{W_{\varepsilon}}\right)-f_{2}\left(x, W_{t}\right)+\lambda_{\varepsilon}\left(\widehat{v_{\varepsilon}}-v_{t}\right)+\lambda_{\varepsilon}\left(v_{t}-v_{0}\right)
\end{aligned}
$$

Then from (3.7) we obtain

$$
\binom{-\left(\widehat{u_{\varepsilon}}-u_{t}\right)^{\prime \prime}}{\left(\widehat{v_{\varepsilon}}-v_{t}\right)^{(4)}} \geq A(x)\left(\widehat{W_{\varepsilon}}-W_{t}\right)+\lambda_{\varepsilon}\left(\widehat{W_{\varepsilon}}-W_{t}\right)
$$

note that $\lambda_{\varepsilon} \leq 0$, and by using Lemma 3.2 we obtain

$$
\widehat{W_{\varepsilon}}-W_{t} \geq 0, \quad \text { or } \quad W_{t} \leq \widehat{W}_{\varepsilon}
$$

Similarly, from $3.10-3.8$, we can obtain

$$
\widehat{W_{\varepsilon}} \leq W^{t}
$$

Which contradicts $J\left(W_{0}\right)=\inf _{M} J(W)$.
Finally, since J is not bounded from below, a weaker form of the Mountain Pass Theorem can be used to find another solution $W_{1} \neq W_{0}$ of (1.5). Then result (2) is proved.

4. Example: A piecewise linear problem

Consider the system

$$
\begin{gather*}
-u^{\prime \prime}=k_{1} u^{+}+\epsilon v^{+}+t_{1} \sin x+h_{1}(x), \\
v^{(4)}=\epsilon u^{+}+k_{2} v^{+}+t_{2} \sin x+h_{2}(x), \tag{4.1}\\
u(0)=u(\pi)=0 \\
u(0) \\
v(0)=v(\pi)=v^{\prime \prime}(0)=v^{\prime \prime}(\pi)=0
\end{gather*}
$$

Where ϵ and k_{1}, k_{2} are constants, t_{1}, t_{2} are parameters and $h_{1}, h_{2} \in C[0, \pi]$ are fixed functions with $\int_{0}^{\pi} h_{1} \sin x=\int_{0}^{\pi} h_{2} \sin x=0$. This problem is similar to system (1.4.

Theorem 4.1. Suppose that $k_{1}>1, k_{2}>1$ and $\epsilon \geq 0$. Then there exists a curve Γ splitting \mathbb{R}^{2} into two unbounded components N and E such that:
(1) for each $t=\left(t_{1}, t_{2}\right) \in N$, 4.1) has no solution;
(2) for each $t=\left(t_{1}, t_{2}\right) \in E$, 4.1) has at least two solutions.

Proof. Let

$$
\bar{A}=\left(\begin{array}{cc}
k_{1} & 0 \\
0 & k_{2}
\end{array}\right), \quad \underline{A}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
$$

Then we can easily verify that the conditions of Theorem 3.7 hold and therefore the results are follow.

Remark 4.2. (1) Denote by $\mu_{i}(i=1,2)$ the eigenvalues of matrix

$$
A=\left(\begin{array}{cc}
k_{1} & \epsilon \\
\epsilon & k_{2}
\end{array}\right)
$$

and let $\mu_{1} \leq \mu_{2}$. It can be shown that $\mu_{2}>1$ since $k_{1}>1$ and $k_{2}>1$.
(2) This result gives a partial answer to Question 1 and Question 2 that were posted in [16] and stated in Section 1.

References

[1] A. C. Lazer, P. J. McKenna; Large-amplitude periodic oscillations in suspension bridge: some new connections with nonlinear analysis, SIAM Rev. 32 (1990) 537-578.
[2] P. J. McKenna and W. Walter; Nonlinear oscillation in a suspension bridge, Arch. Rational Mech. Anal. 98 (1987) 167-177.
[3] Q. H. Choi, T. Jung and P. J. McKenna; The study of a nonlinear suspension bridge equation by a variational reduction method, Appl. Anal. 50 (1995) 71-90.
[4] Q. H. Choi and T. Jung; A nonlinear suspension bridge equation with nonconstant load, Nonli.Anal. 35 (1999) 649-668.
[5] Y. K. An and C. K. Zhong; Periodic solutions of Nonlinear suspension bridge equation with damping and nonconstant load, J. Math. Anal. Appl. 279 (2003) 569-579.
[6] A. Ambrosetti, G. Prodi; On the inversion of some differentiable mappings with singularities between Banach spaces, Annali Mat. pura appl. 93 (1972) 231-246.
[7] D. G. de Figueiredo; Lectures on boundary value problems of Ambrosetti-Prodi type, 12th Brazilian Seminar of Analysis, São Paulo, Brazil (1980).
[8] D. G. de Figueiredo; On the superlinear Ambrosetti-Prodi problem, MRC Tech Rep \# 2522, $\operatorname{May}(1983)$.
[9] D. C. de Morais Filho; A variational approach to an Ambrosetti-Prodi type problem for a system of elliptic equations, Nonlinear Anal. TMA 26 (1996) 1655-1668.
[10] D. C. de Morais Filho, F.R. Pereira, Critical Ambrosetti-Prodi type results for systems of Elliptic Equations, Nonlinear Anal. TMA, in prees.
[11] K. C. Chang; Ambrosetti-Pfodi type results in elliptic systems, Nonlinear Anal. 51 (2002) 553-566.
[12] P. Drabek, H. Leinfelder and G. Tajcova; Coupled string-beam equations as a model of suspension bridges, Appl. Math. 44 (1999) 97-142.
[13] Y. K. An; Nonlinear Perturbations of a Coupled System of Steady State Suspension Bridge Equations, Nonli. Anal. 51 (2002) 1285-1292.
[14] Y. K. An, X. L. Fan; On the coupled systems of second and fourth order elliptic equations, Appl. Math. Comput. 140 (2003) 341-351.
[15] Y.K. An; Mountain pass solutions for the coupled systems of second and fourth order elliptic equations, Nonli. Anal. 63 (2005) 1034-1041.
[16] F. Dalbono, P. J. McKenna; Multiplicity results for a class of asymmetric weakly coupled systems of second-order ordinary differential equations, Boundary Value Problems. 2 (2005) 129-151.
[17] M. Struwe; Variational Methods, Springer-Verlag, 2000.
Yukun An
Department of Mathematics, Nanjing University of Aeronautics and Astronautics, NanJing, 210016, China

E-mail address: anyksd@hotmail.com
Jing Feng
Department of Mathematics, Nanjing University of Aeronautics and Astronautics, NanJing, 210016, China

E-mail address: erma19831@sina.com

[^0]: 2000 Mathematics Subject Classification. 34B08, 34B15, 34L30, 47J30.
 Key words and phrases. Differential system; Ambrosetti-Prodi type problem; subsolution; supersolution; variational method.
 (C) 2008 Texas State University - San Marcos.

 Submitted March 17, 2008. Published August 25, 2008

