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Zusammenfassung 

Der Computer hat die wissenschaftliche Praxis in fast allen Disziplinen signifikant verändert. Neben 
traditionellen Quellen für neue Erkenntnisse wie beispielsweise Beobachtungen, deduktiven 
Argumenten oder Experimenten, werden nun regelmäßig auch computerbasierte Methoden wie 
‚Computersimulationen‘ und ‚Machine Learning‘ als solche Quellen genannt. Dieser Wandel in der 
Wissenschaft bringt wissenschaftsphilosophische Fragen in Bezug auf diese neuen Methoden mit sich. 
Eine der naheliegendsten Fragen ist dabei, ob diese neuen Methoden dafür geeignet sind, als Quellen 
für neue Erkenntnisse zu dienen. Dieser Frage wird in der vorliegenden Arbeit nachgegangen, wobei 
ein besonderer Fokus auf einem der zentralen Probleme der computerbasierten Methoden liegt: der 
Opazität. Computerbasierte Methoden werden als opak bezeichnet, wenn der kausale 
Zusammenhang zwischen Input und Ergebnis nicht nachvollziehbar ist. Zentrale Fragen dieser Arbeit 
sind, ob Computersimulationen und Machine Learning Algorithmen opak sind, ob die Opazität bei 
beiden Methoden von der gleichen Natur ist und ob die Opazität verhindert, mit computerbasierten 
Methoden neue Erkenntnisse zu erlangen. Diese Fragen werden nah an der naturwissenschaftlichen 
Praxis untersucht; insbesondere die Teilchenphysik und das ATLAS-Experiment am CERN dienen als 
wichtige Fallbeispiele.  

Die Arbeit basiert auf fünf Artikeln. In den ersten beiden Artikeln werden Computersimulationen mit 
zwei anderen Methoden – Experimenten und Argumenten – verglichen, um sie methodologisch 
einordnen zu können und herauszuarbeiten, welche Herausforderungen beim Erkenntnisgewinn 
Computersimulationen von den anderen Methoden unterscheiden. Im ersten Artikel werden 
Computersimulationen und Experimente verglichen. Aufgrund der Vielfalt an Computersimulationen 
ist es jedoch nicht sinnvoll, einen pauschalen Vergleich mit Experimenten durchzuführen. Es werden 
verschiedene epistemische Aspekte herausgearbeitet, auf deren Basis der Vergleich je nach 
Anwendungskontext durchgeführt werden sollte. Im zweiten Artikel wird eine von Claus Beisbart 
formulierte Position diskutiert, die Computersimulationen als Argumente versteht. Dieser ‚Argument 
View‘ beschreibt die Funktionsweise von Computersimulationen sehr gut und ermöglicht es damit, 
Fragen zur Opazität und zum induktiven Charakter von Computersimulationen zu beantworten. Wie 
mit Computersimulationen neues Wissen erlangt werden kann, kann der Argument View alleine 
jedoch nicht ausreichend beantworten. Der dritte Artikel beschäftigt sich mit der Rolle von Modellen 
in der theoretischen Ökologie. Modelle sind zentraler Bestandteil von Computersimulationen und 
Machine Learning Algorithmen. Die Fragen über die Beziehung von Phänomenen und Modellen, die 
hier anhand von Beispielen aus der Ökologie betrachtet werden, sind daher für die epistemischen 
Fragen dieser Arbeit von zentraler Bedeutung. Der vierte Artikel bildet das Bindeglied zwischen den 
Themen Computersimulation und Machine Learning. In diesem Artikel werden verschiedene Arten 
von Opazität definiert und Computersimulationen und Machine Learning Algorithmen anhand von 
Beispielen aus der Teilchenphysik daraufhin untersucht, welche Arten von Opazität jeweils vorhanden 
sind. Es wird argumentiert, dass Opazität für den Erkenntnisgewinn mithilfe von Computer-
simulationen kein prinzipielles Problem darstellt, Model-Opazität jedoch für Machine Learning 
Algorithmen eine Quelle von fundamentaler Opazität sein könnte. Im fünften Artikel wird dieselbe 
Terminologie auf den Bereich von Schachcomputern angewandt. Der Vergleich zwischen einem 
traditionellen Schachcomputer und einem Schachcomputer, der auf einem neuronalen Netz basiert 
ermöglicht die Illustration der Konsequenzen der unterschiedlichen Opazitäten.  

Insgesamt ermöglicht die Arbeit eine methodische Einordnung von Computersimulationen und zeigt, 
dass sich weder mit einem Bezug auf Experimente noch auf Argumente alleine klären lässt, wie 
Computersimulationen zu neuen Erkenntnissen führen. Eine klare Definition der jeweils vorhanden 
Opazitäten ermöglicht eine Abgrenzung von den eng verwandten Machine Learning Algorithmen.   

 

 



Abstract 

Computers have significantly changed scientific practice in almost all disciplines. In addition to 

traditional sources of new knowledge such as observation, deductive arguments, or experiments, 

computer-based methods such as 'computer simulations' and 'machine learning' are now regularly 

cited as sources of knowledge. This development in scientific practice raises several questions about 

these new methods within the philosophy of science, including whether these new methods are in 

fact suited to serving as sources of new knowledge. This issue is explored in this thesis with a focus on 

one of the central problems of computer-based methods: opacity. Computer-based methods are 

considered to be opaque when the causal relationship between input and outcome is not traceable. 

The thesis addresses three central questions related to the problem of opacity: whether computer 

simulations and machine learning algorithms are opaque, whether opacity is of the same nature in 

both methods, and whether opacity prevents computer-based methods from yielding new insights. 

These questions are explored in close connection with concrete scientific practice; in particular, 

particle physics and the ATLAS experiment at CERN serve as important examples.  

The thesis is based on five articles. In the first two articles, I compare computer simulations with two 

other methods – experiments and arguments – in order to position them on the ‘methodological map’ 

and to identify the challenges of knowledge acquisition that distinguish computer simulations from 

the other methods. The first article compares computer simulations and experiments. Because of the 

diversity of computer simulations, however, it becomes clear that a blanket comparison of these two 

methods is not useful. The article therefore formulates several epistemic aspects that should be used 

as the framework for specific comparisons in various application contexts. The second article discusses 

a position formulated by Claus Beisbart that regards computer simulations as arguments. This 

“Argument View” aptly describes the functioning of computer simulations and thus makes it possible 

to answer questions about the opacity and inductive character of computer simulations. However, the 

Argument View alone cannot adequately answer the question of how new knowledge can be obtained 

with computer simulations. The third article focuses on the role of models in theoretical ecology. 

Models are central to computer simulations and machine learning algorithms. Questions about the 

relationship between phenomena and models, considered here using examples from the field of 

ecology, are therefore central to the epistemic questions of this thesis. The fourth article connects the 

topics of computer simulation and machine learning. In this article, different types of opacity are 

defined, and computer simulations and machine learning algorithms are examined based on examples 

from particle physics in order to determine which types of opacity are present in each case. It is argued 

that opacity does not pose an intrinsic problem for acquiring knowledge using computer simulations, 

but model-opacity could be a source of fundamental opacity for machine learning algorithms. In the 

fifth article, this terminology is applied to chess computers. A comparison between a traditional chess 

computer and a chess computer based on a neural network allows us to illustrate the consequences 

of the various types of opacity.  

In sum, the thesis offers a methodological classification of computer simulations and shows that an 

exclusive reference to experiments or to arguments cannot clarify how computer simulations lead to 

new insights. A clear definition of the opacities present in each case enables differentiation from the 

closely related machine learning algorithms. 

 



List of individual articles included in the dissertation 

Article 1:  Grünke, P. Computer simulations and experiments: Epistemologically on a par 

or not? (submitted)  

Article 2: Grünke, P. & Schweer, J. “How do we learn from Computer Simulations? A 

Critical Examination of the “Argument View” on Simulation.” (submitted) 

Article 3: Grünke, P. & Brinck, K. “Model building in theoretical ecology: Is ‘species’ a 

good observable? Or: Why grass is not less important than rabbits.” 

(submitted) 

Article 4: Boge, F. & Grünke, P. “Computer simulations, machine learning and the 

Laplacean demon: Opacity in the case of high energy physics.” forthcoming in 

Resch, Kaminski, and Gehring (Eds.), The Science and Art of Simulation II, 

Springer (forthcoming) 

Preprint available: http://philsci-archive.pitt.edu/17637/ 

Article 5: Grünke, P. (2019). “Chess, Artificial Intelligence, and Epistemic Opacity.” 

Információs Társadalom, 19(4). 

 

 

List of figures 

Figure 1: Elements of a computer simulation ......................................................................................... 7 

Figure 2: Graph representation of a neural network (Bre et al. 2018) ................................................. 10 

Figure 3: Schematic description of the phases of modelling and testing of a computer simulation…..24 

Figure 4: Three representations of a food web with one rabbit and one hare species, feeding on 

grass………………………………………………………………………………………………………………………………………………..73 

Figure 5: Central elements of the model building process (target system, data, model) and their 

relationships (observation, model building, representation)…………………………………………………………….76 

Figure 6: Representation of the network described below by a directed graph…………………………………91 

Figure 7: Pseudo-computational graph for stochastic gradient descent in a shallow network with 

sigmoid activations………………………………………………………………………………………………………………………..106 

   

 

  

  



Acknowledgements 

 

First of all, I want to thank my supervisor, Rafaela Hillerbrand, for taking me on as a PhD 

student and offering me the opportunity to do research on the topics I am most passionate 

about.  

The two research groups I was a member of have provided me with my academic home: the 

PHILETAS group at ITAS and the “The Epistemology of the Large Hadron Collider” group. I am 

very grateful for the academic discussions as well as for the friends I could make here. A 

special thanks also goes to the members of the philosophy department at the Stockholm 

University and Richard Dawid for welcoming and integrating me during my stay in Stockholm. 

Thanks to The Karlsruhe House of Young Scientist (KHYS) for supporting this research stay.  

Jasmin and Max, thank you for all the support from our 312-office group. Florian, Julie and 

Katharina, thank you for co-authoring papers with me. It has been a joy to discuss and write 

with you.   

Last but certainly not least, my thanks goes to my close friends and my family who have 

supported me all my life and especially during the rather tough times of finishing this PhD. I 

could not have done it without you!   



Table of Contents 

CHAPTER 1: INTRODUCTION ............................................................................................................................ 1 

1 Computer Simulations in Science .................................................................................................... 2 

2 Terminology and Analysis ................................................................................................................ 6 

2.1 Computer simulation ................................................................................................................. 6 

2.2 Machine Learning.................................................................................................................... 10 

2.3 Opacity .................................................................................................................................... 13 

3 Research questions ........................................................................................................................ 14 

4 Overview of the thesis ................................................................................................................... 14 

5 Outlook........................................................................................................................................... 16 

References ........................................................................................................................................ 18 

CHAPTER 2: COMPUTER SIMULATIONS AND EXPERIMENTS: EPISTEMOLOGICALLY ON A PAR OR NOT? ........ 21 

Abstract ............................................................................................................................................. 21 

1 Introduction ................................................................................................................................... 21 

2 Computer simulation – a reconstruction ....................................................................................... 24 

3 Epistemic privilege of experiments – the methodological perspective ......................................... 28 

4 Epistemologically on a par – pragmatic perspective ..................................................................... 31 

5 Computer simulations and Beyond the Standard Model searches in high-energy physics .......... 33 

6 Epistemically relevant differences between computer simulations and experiments ................. 36 

7 Conclusion ...................................................................................................................................... 39 

References ........................................................................................................................................ 41 

CHAPTER 3: HOW DO WE LEARN FROM COMPUTER SIMULATIONS? A CRITICAL EXAMINATION OF THE 
“ARGUMENT VIEW” ON SIMULATION............................................................................................................ 44 

Abstract ............................................................................................................................................. 44 

1 Introduction ................................................................................................................................... 44 

2 The argument view on CS .............................................................................................................. 46 

2.1 The reconstruction thesis ....................................................................................................... 48 

2.2 The epistemic power thesis .................................................................................................... 49 

3 Can CSs be reconstructed as arguments? ...................................................................................... 51 

4 Epistemic opacity and the inferential character of CSs ................................................................. 53 

5 Going beyond the reconstructing thesis ........................................................................................ 57 

5.1 Validation ................................................................................................................................ 58 

5.2 CSs and the inductive leap ...................................................................................................... 62 

6 Conclusion ...................................................................................................................................... 67 

References ........................................................................................................................................ 69 

 



CHAPTER 4: MODEL BUILDING IN THEORETICAL ECOLOGY: IS ‘SPECIES’ A GOOD OBSERVABLE? ................... 71 

Abstract ............................................................................................................................................. 71 

1 Introduction ................................................................................................................................... 71 

2 Data and Observables in Theoretical Ecology ................................................................................ 72 

3 Models in philosophy of science .................................................................................................... 75 

3.1 Observation ............................................................................................................................. 76 

3.2 Model building ........................................................................................................................ 77 

3.3 Representation ........................................................................................................................ 78 

4 Model building in ecology .............................................................................................................. 79 

4.1 Target system .......................................................................................................................... 80 

4.2 Data ......................................................................................................................................... 80 

4.3 Model ...................................................................................................................................... 82 

5 Conclusion & Outlook .................................................................................................................... 83 

References ........................................................................................................................................ 86 

CHAPTER 5: COMPUTER SIMULATIONS, MACHINE LEARNING AND THE LAPLACEAN DEMON: OPACITY IN THE 
CASE OF HIGH ENERGY PHYSICS ..................................................................................................................... 88 

1 Introduction ................................................................................................................................... 88 

1.1 Computer simulations in high energy physics in a nutshell .................................................... 89 

1.2 Deep learning in a nutshell ..................................................................................................... 90 

1.3 The rise of deep learning in high energy physics .................................................................... 94 

2 Opacity in computer simulation and deep learning ...................................................................... 98 

2.1 Computer simulations: Opacity induced by complexity ....................................................... 103 

2.2 Deep learning: Opacity induced by the method ................................................................... 105 

3 (Partially) overcoming opacity ..................................................................................................... 108 

3.1 Epistemic relevance, justification and understanding .......................................................... 108 

3.2 Paths to overcoming opacity ................................................................................................ 111 

3.3 Complexity: Learning about model relations ........................................................................ 113 

3.4 Method: Learning about the learning process...................................................................... 118 

3.5 Model-opacity: What do we really learn? ............................................................................ 123 

4 Discussion: A novel phenomenon on any level? .......................................................................... 127 

5 Conclusions .................................................................................................................................. 134 

References ...................................................................................................................................... 136 

CHAPTER 6: CHESS, ARTIFICIAL INTELLIGENCE, AND EPISTEMIC OPACITY .................................................... 141 

Abstract ........................................................................................................................................... 141 

1 Introduction ................................................................................................................................. 141 

2 History of Chess Engines and AI ................................................................................................... 142 



3 Comparing AlphaZero and Stockfish – a new kind of chess engine ............................................. 144 

3.1 Stockfish ................................................................................................................................ 144 

3.2 AlphaZero .............................................................................................................................. 146 

4 Epistemic opacity ......................................................................................................................... 148 

4.1 Defining epistemic opacity .................................................................................................... 149 

4.2 Model-opacity as fundamental opacity ................................................................................ 151 

4.3 Discussion of the opacities .................................................................................................... 152 

5 Conclusion .................................................................................................................................... 153 

References ...................................................................................................................................... 155 

 

 

 

 

 

 



Chapter 1: Introduction 

1 
 

Chapter 1: Introduction 
 

Computer-based methods such as computer simulations or machine learning are ubiquitous 

in today’s scientific practice. Almost every scientific discipline employs these methods and 

cites them as sources of new knowledge. Their results influence policy decisions such as the 

closure of European air space after the eruption of a volcano (Webster et al. 2012), the 

evaluation of various climate change scenarios (IPCC 2014), or the response to the outbreak 

of a pandemic (Adam 2020). This development in scientific practice raises several questions 

for philosophers of science. One central question related to computer-based methods is how 

they fit into the traditional distinction between inductive and deductive methods. Peter 

Galison describes them as being “at once nowhere and everywhere on the usual 

methodological map” (Galison 1996, 120). Because models constitute an essential 

component of computer-based methods, they are very closely connected to theory, while at 

the same time the practice of simulation is very similar to the practice of experimentation, 

and new knowledge is often produced via inductive reasoning. Another important question is 

whether these new methods are suited to serving as sources of new knowledge. It is of central 

importance for philosophers of science to determine how computer-based methods can 

generate new knowledge and to explicate some of the major challenges that might hinder 

such knowledge creation. The scope of these questions is too extensive for conclusive 

answers to be attained in this thesis; they will certainly require further debate. My aim here 

is to enrich and advance these debates with a particular focus on the role of opacity in 

computer-based methods of knowledge acquisition.   

It seems natural that computer simulations and machine learning1 methods should be 

discussed together, since they share many methodological aspects. As I describe below, 

machine learning methods could even be understood as a specific type of computer 

simulation. Both are based on deterministic algorithms that govern every step in their 

calculations. They are employed to process and analyse large amounts of data and the 

purposes for which they are used can sometimes be very similar, such as the discovery and 

prediction of statistical patterns. Of course, the most obvious feature that these computer-

                                                           
1 The term machine learning encompasses several different types of algorithms that are used to solve problems 
by learning from data. For the purposes of this thesis, I will primarily discuss supervised learning algorithms, 
which will be defined below. 
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based methods share, in contrast to other tools of scientific inquiry, is the involvement of the 

computer. This is also the source of one of the most prominently expressed epistemological 

concerns about computer-based methods: opacity. Opacity is commonly understood as the 

inability to trace the causal connection between the input and output of a given process.2 My 

goal in this thesis is to define precisely what opacity is, what sources of opacity are present in 

computer simulations and machine learning algorithms, and whether opacity is a 

fundamental problem for generating knowledge with computer-based methods.3  

In the remainder of the introduction, I will first present some historical and current examples 

of the use of computer simulations in science (Section 1), before clarifying the terminology 

used in this thesis and providing a characterisation of the central elements of the terminology 

(Section 2). I will then formulate my research questions (Section 3) and give an overview of 

the answers to these questions found in the chapters that follow (Section 4), before 

concluding with a discussion of the outlook for future research (Section 5).  

 

1 Computer Simulations in Science 

“As soon as an Analytical Engine exists, it will necessarily guide the future course of the 
science.”  
(Babbage 1864: 137) 

Charles Babbage was among the first to envision the concept of the digital computer – or 

“analytical engine” – and he predicted quite accurately that this invention would have a 

significant impact on almost all areas of science. The introduction of computers and especially 

their increasing calculation speed in recent decades has enabled scientists to simulate and 

learn about phenomena that were previously inaccessible (Humphreys 2004).   

                                                           
2 Paul Humphreys has formulated the most prominent definition of opacity: “[A] process is epistemically opaque 
relative to a cognitive agent X at time t just in case X does not know at t all of the epistemically relevant elements 
of the process” (Humphreys 2009: 618). It is interesting to note that Humphreys attaches opacity to processes. 
Humphreys formulates this definition in the context of computer simulations and parts of the computer-based 
methods discussed in this thesis can easily be understood as processes, as I elaborate below. 
3 Alongside the question of opacity, questions of uncertainty and robustness pertain to both computer 
simulations and machine learning, making their comparison also epistemologically interesting. In this thesis, the 
focus will be on opacity. For work on the uncertainty of computer simulations, see e.g. Parker 2013; Petersen 
2012; Hillerbrand 2010; Biddle and Winsberg 2010. For work on the robustness of computer simulations, see 
e.g. Wimsatt 2007 and Boge forthcoming. 



Chapter 1: Introduction 

3 
 

The use of computers in science became wide-spread after World War II, when scientists 

involved in the Manhattan Project – the American research project that developed and 

produced the first nuclear weapons – brought their expertise into different disciplines (Benov 

2016). Meteorology and particle physics were among the first fields to use computer 

simulations as a scientific tool and the scientists working in these disciplines were therefore 

among the first to face the epistemological questions raised by the use of computer 

simulations (Borelli & Wellmann 2019, Lynch 2008).  

The research on nuclear weapons during and after World War II required theoretical 

calculations that were – though algorithmically calculable in theory – too complex to solve 

analytically. At the same time, it was not practical to test the weapon designs experimentally. 

As a solution, Nicholas Metropolis and Stanislaw Ulam, two of the researchers at the 

Manhattan Project, developed the Monte Carlo method (Metropolis & Ulam 1949). They 

introduced it as “a statistical approach to the study of differential equations” (335). Sampling 

outcomes by using random numbers, this method can be used to simulate stochastic 

processes as well as to calculate approximations to deterministic problems. The Monte Carlo 

method works independently of computers, but Metropolis and Ulam noted already in their 

1949 paper “that modern computing machines are extremely well suited to perform the 

procedures described” (339). John von Neumann, another colleague at the Manhattan 

Project, was also fascinated by the possibilities of the Monte Carlo method. All of the above 

researchers used the newly developed ENIAC, the first electronic digital computer that could 

be programmed for their Monte Carlo simulations. As Peter Galison (1996) put it, they “built 

an artificial world in which "experiments" (their term) could take place” (120). 

Meteorology was another early discipline to employ computer simulations on a large scale. 

Already in the 1950s a computer model was used to simulate the dynamics of the 

atmosphere. The scientists who used these simulations were interested in weather forecasts 

and the development of the climate as well as advancing their theoretical understanding of 

the climate system (Parker 2014: 337). The primary impact of the introduction of the 

computer in meteorology was that it enabled scientists to acquire approximate solutions for 

the theoretical equations that they assumed governed the climate system, which would have 

required too much time to calculate by hand. The computer “helped scientists to see what 

followed (or failed to follow) from the physical assumptions reflected in different 
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mathematical models of the atmosphere or climate system” (Parker 2014: 341). It seems to 

follow naturally that computer simulations can be seen in this context as a tool for inductive 

reasoning, as they enabled scientists to test hypotheses about the model of the climate 

system.  

There were a number of practical problems, however. Some of these problems, especially the 

sensitivity to small variations in input data, can be seen as paradigmatic for computer 

simulations. Lenhard (2007) discusses the problem of instability in an early model of the 

atmosphere over long periods, which was later solved by using a mathematical trick that did 

not conform to physical theory but resolved the stability issue. Another challenge faced by 

weather forecast models was first made public by Edward Lorenz. Lorenz wanted to repeat a 

weather simulation, but instead of using the same data as in the previous simulation, he 

entered the data from a print-out in which the data was rounded after three digits rather than 

six digits. To Lorenz’s surprise, although the variation of the starting values was minor, the 

simulation result was completely different from the previous simulation run. Lorenz had 

discovered that nonlinear systems, such as the models of the weather, can behave chaotically. 

Small changes in the input data increase exponentially during the run of the simulation 

(Oestreicher 2007).  

This is relevant to weather simulations for two reasons. Firstly, due to the discrete 

representation of numbers in the computer, numbers must be rounded; because of the 

chaotic nature of the weather system, these rounding errors may lead to significant deviations 

from the continuous solutions. It also means that in order to reproduce simulation results on 

a different computer, not just the starting values need to be identical, but also the rounding 

mechanisms, which is not always easily achievable. Secondly, this discovery of chaotic 

behaviour imposes a fundamental constraint on the possibility of representing real-world 

weather conditions using the weather forecast model because of the imprecision of 

measurement. The relevant input values for the weather model, such as temperature or 

pressure, cannot be measured to an arbitrary degree of precision and must therefore always 

approximate the exact value. Since even small deviations from the exact value can lead to 

significantly different developments in the system, one single simulation run does not 

necessarily produce an accurate weather forecast. Lorenz’s proposed solution was to conduct 

many simulations with slight variations in the values of the starting parameters. By comparing 
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the different developments and recognizing common patterns among the various 

simulations, the most likely weather developments can be inferred. This practice of 

“ensemble forecasting” is the common practice in weather forecasting today (Dizikes 2011).  

Another prime example of the use of computer simulations in today’s scientific practice is 

found in the area of high-energy physics: the ATLAS experiment at the Large Hadron Collider 

(LHC) at CERN.4 This example also introduces another facet of the use of computer simulations 

in science. While computer simulations are primarily used as predictive tools in the cases 

discussed above, in the case of the LHC, computer simulations function as part of an 

experiment. The ATLAS experiment is designed to collide particles at high energies and 

observe the resulting phenomena. One result of this experiment was the discovery of the 

Higgs boson in 2012 (ATLAS Collaboration 2012). Two kinds of simulation are essential for the 

ATLAS experiment: event generators simulate the collision of two protons and the 

development of the resulting particles until they reach the detector; detector simulations 

simulate the reactions of the real-world detector to the particles that result from the collisions 

and the following decays. The computer simulations of the ATLAS experiment are an excellent 

case study for the problems of opacity and potential ways of overcoming opacity. The ATLAS 

simulation infrastructure is a complex combination of various models with so many lines of 

code that no human being will ever be able to read all of them. At the same time, the LHC 

physicists have managed to achieve a good deal of transparency in their methods via careful 

modeling, programming, documenting, and testing (see chapters 2 and 5).  

The ATLAS experiment has received a good deal of attention from philosophers because, 

among other things, computer simulations play a central role in this experiment. One 

philosophical question that has been discussed by several scholars concerns the 

(in)dispensability of computer simulations in high-energy physics. Margaret Morrison (2015) 

has argued that the discovery of the Higgs boson would have been impossible without the 

use of computer simulations. Other philosophers argue that computer simulations are 

epistemically equivalent to experiments in the case of ATLAS (Massimi & Bhimji 2015). Others 

                                                           
4 ATLAS (A Toroidal LHC ApparatuS) and CMS (Compact Muon Solenoid) are the two largest particle detector 
experiments at the LHC (Large Hadron Collider), which is the largest particle collider in the world.  
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disagree, arguing against an epistemic parity (Mättig 2021) or for the theoretical possibility of 

discovering the Higgs boson entirely unaided by computers (Schiemann et al. 2021).  

 

2 Terminology and Analysis 

2.1 Computer simulation 

There are many different types of computer simulation and it is accordingly difficult, if not 

impossible, to define them in a way that fits all these types while still being useful. 

Nevertheless, there are a few distinctions between the various meanings associated with the 

term ‘computer simulation’ that are central to its understanding.  

The first is the distinction between a narrow and a broad perspective on what is meant by 

‘computer simulation’ (cf. Winsberg 2019). In the narrow sense, the term ‘computer 

simulation’ refers to a specific program that is implemented and executed by a computer with 

the aim of approximating the behaviour of a ‘simulation model’, which typically represents 

some real-world system. The narrow view defines one run of the program on the simulation 

model as a computer simulation of the system. That is, the program receives as input the 

values of all the variables that define a system state and then calculates the system’s 

development through a predefined number of time steps. It starts with the input data as the 

system state at t0 and then calculates step-by-step how the state of the system progresses 

from there to t1, t2, and so on, according to equations given in the simulation model. In my 

thesis, I refer to this narrow understanding of a computer simulation as a ‘computer 

simulation run’. Authors such as Beisbart (2012, 2019) use this narrow terminology to focus 

exclusively on the epistemic questions concerning computer simulations and aim to 

distinguish these issues from epistemic questions related to models and the modeling 

process. It is my view that the epistemic questions of computer simulations and models are 

so closely intertwined that they cannot be fully disentangled from one another. I will 

therefore take the broader perspective in this thesis. However, the choice to adopt either of 

the two approaches does not directly impact the answers to the epistemic questions 

addressed in this thesis.  
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The broader approach defines ‘computer simulation’ as a scientific method of studying 

systems. Proponents of the narrow definition often refer to this as ‘computer simulations 

study’. This definition includes all the elements that are necessary to lead to a computer 

simulation run, which then produces results that can be used for the relevant scientific 

purpose; these results will typically constitute knowledge generation in one way or another. 

Figure 1 illustrates these elements and their relationships, which are discussed only briefly 

here (a similar figure is described in more detail in chapter 2). 

 

Figure 1: Elements of a computer simulation  

 

The starting point for most computer simulations is some phenomenon that is of interest to 

the researcher. This phenomenon might be real, such as the collision of particles, or 

hypothetical, and constitutes the target system. The researcher’s goal is to build a simulation 

model that adequately represents the target system. In order to achieve this, one must first 

identify which properties of the target system are relevant for the simulation model and on 

this basis specify a model of the target system. This typically takes the form of mathematical 

equations. Once this model of the target system is implemented on a computer, the result is 

the simulation model. Determining whether this simulation model adequately represents the 

target system is one of the central challenges researchers face, and will be addressed in more 

detail below. The researcher now uses simulation runs (computer simulations in the narrow 
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sense) to create simulation results and thereby gather knowledge about the structure and 

patterns of the simulation model. In a final step one can then – assuming an adequate 

representation – apply this knowledge about the model to the target system.  

To summarize, in addition to running the simulation, the main elements of this broader 

understanding of computer simulation are the selection and implementation of an adequate 

model, the sanctioning of this model’s adequacy, and the interpretation of the simulation 

results, including inferences for the target system.  

In both the narrow and the broad interpretation of computer simulation, the use of the 

computer is central to the definition. An alternative approach taken by Hartmann (1996), 

among others, is to seek a compositional definition, i.e. to arrive at a definition of ‘simulation’ 

first and then define ‘computer simulation’ as a simulation that is carried out with the use of 

a computer. Hartmann defines simulation as something that “imitates one process by another 

process” (83). This approach might be especially useful when focusing on the analogy 

between the target system and the simulation model. For the purposes of this thesis, 

however, the role of the computer is central and therefore the definition that specifically 

targets computer simulation will be more productive.  

Another distinction is often made between different types of computer simulations. I will 

discuss three different types here. Two of the most relevant types are equation-based 

simulations and agent-based simulations. This distinction refers to the structure of the 

simulation model. In equation-based simulations, models are typically governed either by 

discretised differential equations5 that describe how the different elements of the target 

system interact, or by a set of equations that describes how the system as a whole evolves 

over time (Winsberg 2019). Equation-based simulations are typically found in the physical 

sciences such as particle physics (simulations of particle collisions) or meteorology (weather 

simulations). In agent-based simulations, rather than having global equations that govern the 

system’s behaviour, models are defined by equations that govern the behaviour of the 

agents6 on a local level. This makes them well suited to the study of emergent phenomena. 

                                                           
5 The computer is a machine that can only calculate discretely. Any continuous equation must therefore be 
approximated in the modeling phase such that it can be implemented in a discretised form.  
6 Agents represent either individual or collective entities in the target system, such as the players in the 
simulation of a game, the organisms in an ecosystem simulation or companies in an economics simulation. 
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Classic examples of agent-based simulations are the Schelling model or the Game of Life (see 

chapter 3).  

A third type of computer simulation consists of stochastic simulations, which are simulations 

that include variables whose values are governed by individual probabilities. One type of 

stochastic simulation that has received some attention from philosophers are so-called 

Monte Carlo simulations (Beisbart & Norton 2012). Monte Carlo simulations do not aim to 

model a feature of the target system explicitly but rather use a surrogate process that relies 

on random numbers to approximately calculate the desired feature. One illustrative example 

of a Monte Carlo simulation is the approximation of π: We take a circle with radius 1 and a 

square, such that the circle is inscribed in it, with the origin of the coordinate system in the 

centre of both. Now we use uniformly distributed random numbers to sample N coordinates. 

Counting the number of coordinates within the square (m) and the number of coordinates 

within the circle (n) will give us an approximation for the area of the square (which we know 

to be 4) and for the area of the circle (which we know to be π), and provides an approximation 

for π: π = 4(n/m). The larger the number N of random samplings, the better, on average, the 

approximation of π will be.  

Some philosophers argue that Monte Carlo simulations should not be considered computer 

simulations because they do not explicitly aim at modeling the target system (Grüne-Yanoff 

and Weirich 2010). They do, however, fit very well with the above description of computer 

simulation in Figure 1 and share with the other types of computer simulations the aim of using 

a substitute system to learn something about the target system.7 In certain cases, when 

Monte Carlo simulations are used to simulate systems governed by stochastic dynamical 

equations, they even fit within the class of equation-based simulations (cf. Beisbart and 

Norton 2012). 

  

                                                           
7 As the Feynman-Kac formula shows, there are also cases, e.g. applications of the heat equation, in which it 
can be mathematically proven that a stochastic process can act as a representation of the target system 
(Bertini & Cancrini 1995).  
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2.2 Machine Learning  

Although the terminology used to discuss machine learning methods is usually different, 

these methods can in some sense be understood as another type of computer simulation. 

The main difference between the two lies in the way the simulation model is constructed. In 

the case of the machine learning methods, the simulation model is a neural network.8 Neural 

networks are typically represented within the language of graph theory as an arrangement of 

nodes in different layers, which are connected by directed edges (compare Figure 2). The 

nodes with no incoming edges comprise the input layer and the nodes with no outgoing edges 

constitute the output layer, with the nodes between them forming the hidden layers. The 

nodes of the input layer receive input data, which is then transformed according to functions 

associated with each of the edges to create new values in the nodes of the next layer. These 

values will then be transformed according to the functions on the next edges and so on until 

the nodes of the output layer have values. This process can be understood as analogous to 

the simulation run, with the values in the output layer analogous to the simulation results.  

The aspect of neural networks in machine learning methods that differs critically from the 

simulation models in the computer simulations described above is the way in which the values 

are chosen for the functions that transform the input data into output data.  

 

Figure 2: Graph representation of a neural network (Bre et al. 2018) 

                                                           
8 There are methods that are called machine learning methods that do not use neural networks. These are not 
discussed in this thesis.  
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While the simulation models of computer simulations are built by human modelers who 

choose all the parameter values, the parameters of neural networks in machine learning 

methods are determined algorithmically in the so-called ‘training phase’. During the training 

phase, the network receives input data for which the desired output data is already known 

(training data).9 The goal is for the neural network to produce the desired outputs. To this 

end, the parameters of the neural network – after being initialised randomly – are iteratively 

updated during the training phase, optimizing the performance of the neural network with 

respect to the training data (learning algorithm). One common optimization method is 

‘stochastic gradient descent’, which is described in detail in chapter 5. Once the training phase 

is completed, the neural network is used to determine the output data for inputs whose 

output data is unknown.  

One could say that in the case of machine learning methods, the simulation model is based 

on data, while the simulation model in computer simulations is typically based on theory. Of 

course, the neural network is still a model comprised of equations. These equations, however, 

are determined during the training phase by the training data and the learning algorithm. One 

central philosophical question regarding machine learning methods is how the simulation 

model can be considered a representation of the target system when the equations of the 

simulation model do not refer directly to anything in the target system. One way to interpret 

the relation of representation in the case of machine learning methods is via the training data. 

The neural network is a determined result based on the learning algorithm and the training 

data. In order for the neural network to successfully produce the correct outputs for new 

inputs after the training phase, the training data must provide a good representation of the 

target system. During the training phase, this data set is transformed into a set of equations 

in the form of a neural network. This is clearly a different kind of representation than is found 

in the types of computer simulations described above; nevertheless, there are structural 

similarities between the two. In order to reveal these similarities, let us consider the elements 

                                                           
9 I describe supervised learning here, which is one popular machine learning method. Other machine learning 
methods are discussed in detail in chapters 5 and 6. 
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of Figure 1 once more and try to apply them to the machine learning methods as described 

here.  

The target system is some phenomenon of interest. Identifying the target system, however, 

is often not as obvious in machine learning methods as it is in the case of computer 

simulations, because after something is learned about a phenomenon, this knowledge is then 

applied to some other task. One of the typical applications of machine learning methods is 

image classification, i.e. identifying what kind of object is present in a specific image. Let us 

take an example in which a machine learning algorithm is used to determine whether a cat or 

a dog are present in a specific image. In these cases, one could say that the target system is 

the visual appearance of a dog or a cat, since this is what the neural network must learn to 

recognize in order to be able to successfully classify images. The specification process is two-

fold. On the one hand, the architecture of the neural network must be specified, which 

involves among other things decisions about the number of layers, the number of nodes in 

each layer, and the level of connectivity between the nodes (fully connected, partly 

connected, only connected forward or also recursively). On the other hand, the training data 

set must also be specified. This is a very important task because the training data set largely 

determines how well the resulting neural network will represent the target system. In the 

case of image classification, one must ensure that the training data covers all kinds of cats 

and dogs from many different angles to enable the neural network to learn a good 

representation of the visual appearance of cats and dogs. The more complex the target 

system is, the more difficult it is to specify a good training data set. Once all of this is specified 

and a learning algorithm has been chosen, the learning phase can start. This phase is 

analogous to the implementation of computer simulations; the values of the parameters in 

the neural network are determined and the neural network, which has the role of the 

simulation model, is created. The neural network’s transformation of input data into output 

data is equivalent to the simulation run creating simulation results. The type of inference that 

can be drawn from these results is often different from those of computer simulation. Instead 

of learning something about the model behaviour in order to learn something about the 
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target system, machine learning methods are often used to produce predictions rather than 

explanations10.  

 

2.3 Opacity 

One of the philosophical issues discussed prominently in connection with both computer 

simulations and machine learning methods is the topic of opacity. Simply put, computer 

simulations or machine learning methods are referred to as opaque or black boxes if we – 

meaning some epistemic agent – cannot understand the process that leads from the input to 

the output. Paul Humphreys’ (2009) definition of opacity, which has become the standard 

point of reference for philosophical discussions about opacity, captures this well: “[A] process 

is epistemically opaque relative to a cognitive agent X at time t just in case X does not know 

at t all of the epistemically relevant elements of the process.” (618) 

The involvement of the computer in computer simulations and machine learning methods is 

one potential source of opacity. Due to the calculation speed of today’s computers and the 

sheer number of lines of code required for a complex computer simulation or a machine 

learning method, human agents cannot fully comprehend how a certain input leads to a 

certain output (Saam 2017, Schembera 2017, Kaminski 2018). Results of computer 

simulations also depend on the many modeling choices that were made during the 

specification and implementation phases of the simulation model and are further 

complicated by the dependencies that exist between the different parts of the simulation 

model. This complexity is an additional source of opacity in computer simulations. The same 

sources are also present in machine learning methods, with the further complication that the 

modeling choices for the neural network are not explicitly made by human modelers but 

rather determined by a complex combination of the training data and the learning algorithm. 

In this thesis, especially in chapters 5 and 6, I aim to clarify the nature of these opacities and 

discuss the extent to which they might hinder our ability to generate knowledge about target 

systems using computer simulations or machine learning methods. 

  

                                                           
10 For a wide range of discussion on this topic, see the forthcoming Special Issue on “Machine Learning: 
Prediction Without Explanation?” in Minds & Machines. 
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3 Research questions 

The emergence of computer simulations and machine learning methods raises a broad range 

of philosophical questions. In this thesis, I aim to address several questions that can be 

categorized in three different groups.  

1) Computer simulations as a source of knowledge: How do computer simulations compare 

to other scientific methods of knowledge generation, namely experiments and arguments? 

What epistemic challenges and opportunities do computer simulations share with these 

methods, and which are unique to computer simulations? Is computer simulation a genuinely 

new method and does it require its own epistemology?  

2) The impact of modeling choices on the potential for knowledge acquisition: What are the 

differences between theory-based models and data-based models? What are typical 

problems encountered during the modeling phase? What are good criteria for choosing 

model parameters?  

3) Opacity in computer simulations and machine learning: What kinds of opacities are present 

in computer simulations and machine learning? Can opacity be overcome in computer 

simulations and in machine learning? Can we learn anything about target systems from 

opaque computer simulations or machine learning methods?  

 

4 Overview of the thesis 

Chapters 2 and 3 address the questions related to the epistemic status of computer 

simulations. Chapter 2 discusses whether computer simulations are epistemically on a par 

with experiments. After reviewing the arguments offered by proponents of various positions, 

I11 conclude that the term ‘epistemically on a par’ is insufficiently defined and, in view of the 

diversity of experiments and computer simulations, the focus on an epistemic hierarchy 

between the two methods at such a general level is misguided. There are epistemic questions 

that require the use of experiments; but there are also epistemic questions for which 

                                                           
11 Some of the papers that comprise chapters 2 through 6 of the thesis have been co-authored. For the sake of 
consistency, I will use “I” rather than “we” for all papers. This is in no way meant to diminish the contributions 
of my co-authors to these papers. 
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computer simulations are better suited. A generalised determination of the epistemic 

hierarchy between the two methods is therefore unachievable. Instead, I suggest focusing on 

the epistemic differences between certain computer simulations and certain experiments in 

order to evaluate their relative epistemic status. Chapter 3 investigates whether computer 

simulations can be reconstructed as arguments and whether such a reconstruction fully 

captures the epistemic power of a computer simulation, as suggested in the “Argument View” 

proposed by Claus Beisbart. Computer simulations share many features with formal 

arguments and it is indeed possible to reconstruct a simulation run as an argument. This 

reconstruction does not, however, provide an entirely satisfying account of how new 

knowledge is generated through computer simulations, since new knowledge is often 

produced not by one single simulation run, but rather derives from the inductive reasoning 

that is possible only after acquiring the results of many simulation runs. Reconstructing the 

simulation run as an argument does, however, offer insights into questions related to the 

opacity of computer simulations. Chapters 2 and 3 show that while computer simulations 

exhibit some features that are characteristic of experiments and some that are characteristic 

of formal arguments, they also differ from both of these methods.  

Chapter 4 considers an example from the field of theoretical ecology in order to examine the 

role of models and their relationship with data and observation. As models are central to both 

computer simulations and machine learning algorithms, questions concerning the 

relationship between phenomena and models are highly relevant to the epistemic questions 

of this thesis. In contrast to the models employed in climate science and particle physics, the 

development of models in theoretical ecology are typically based on observational data 

rather than theories. This poses new challenges for our inquiry. In particular, the potential 

biases in observational data – discussed in chapter 4 in connection with the observable 

‘species’ in ecological systems – are relevant to machine learning methods, which are crucially 

dependent on high quality data sets for both the training phase and the test phase.  

Chapters 5 and 6 address questions concerning the opacity of computer simulations and 

machine learning methods. Chapter 5 discusses opacity in the context of high-energy physics. 

Here, I distinguish between various types of opacities, establish the difference between 

contingent and fundamental opacity, and show that there is no fundamental opacity in 

computer simulations. This means that there is no intrinsic reason that opacity should hinder 
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an epistemic agent from understanding how the input into a computer simulation is 

transformed into the output. There might only be restrictions such as limitations of time or of 

access to information that prohibit an epistemic agent from resolving all the opacity. This is 

also the case for most sources of opacity in machine learning methods. I do, however, argue 

that model-opacity – the inability to arrive at a unique theoretical model underlying a 

successful machine learning method – is a candidate for a fundamental opacity. Chapter 6 

makes a similar argument in another domain, namely chess engines. I compare Stockfish, a 

chess engine which is modelled in the same way as a computer simulation, with AlphaZero, a 

chess engine based on machine learning. AlphaZero is the more successful chess engine – that 

is, it is better at playing chess. However, while the opacity of Stockfish can be fully resolved, 

AlphaZero remains opaque, making it more difficult to understand why the latter is more 

successful than the former. 

 

5 Outlook 

The introduction of the computer into scientific practice has undoubtedly changed science 

itself significantly. Nearly all scientific disciplines use computer simulations today and some 

disciplines only exist because of the possibilities created by the computer. 

The epistemological questions surrounding computer simulations have not yet been fully 

resolved. It is my hope that this thesis contributes to a more complete epistemology of 

computer simulations, thus enabling scientists to have greater confidence in using computer 

simulations as a scientific method.  

As machine learning methods have become popular fairly recently and philosophers began to 

engage with this topic only a short time ago, there are several open epistemic questions in 

this area, especially concerning opacity and the relationship between the neural network, the 

target system, and the possibility of understanding. Machine learning algorithms, more so 

than computer simulations, also raise ethical questions. They may be applied in many 

contexts in which decisions traditionally require explanations that machine learning 

algorithms cannot yet provide. It is essential that the epistemic questions of machine learning 

be resolved in order to allow for a well-informed evaluation of the related ethical questions. 
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The relatively new field of Explainable AI might offer a good approach to bridging the 

epistemic and ethical questions of machine learning.  
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Chapter 2: Computer simulations and experiments: Epistemologically 
on a par or not? 
 

Abstract 

A central issue in the debate about the epistemology of computer simulations concerns the 

question whether a computer simulation can be epistemologically on a par with an 

experiment. In this paper, I present a reconstruction of the process of modelling, and testing 

a computer simulation. Based on this I structure and discuss the arguments of the debate 

about epistemic hierarchy between computer simulations and experiments. Using examples 

from high-energy physics, I argue that the focus on epistemic hierarchy between computer 

simulations and experiments in this generalised form does not do justice to the specific 

epistemic differences. I advocate a more differentiated view on the epistemic advantages and 

disadvantages of computer simulations and offer epistemic aspects that would allow for a 

more meaningful distinction.  

 

1 Introduction 

Computer simulations have become one of the most important tools in today’s science. 

Researchers as well as decision-makers place more and more trust in the results of computer 

simulations, be it in climate science, neuroscience, or high-energy physics. Philosophers of 

science discuss the epistemic status of computer simulations in order to assess whether this 

trust is justified. 

A central issue in the debate about the epistemic status of computer simulations focuses on 

the comparison between the epistemic status of computer simulations and the epistemic 

status of experiments (e.g.: Guala 2002, Massimi and Bhimji 2015, Morgan 2005, Morrison 

2009, Parke 2014, Parker 2009, Winsberg 2010). Highlighting similarities and differences 

between computer simulations and experiments helps place computer simulations on the 

“methodological map” (Galison 1996, p. 120).  

The overall goal of the debate seems to be to arrive at a widely agreed epistemology of 

computer simulations. In this paper, I will structure the current debate along some of the 

major arguments. A comparison between experiments and computer simulations without 
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concrete contexts is difficult and possibly not very meaningful, since both ‘experiment’ and 

‘computer simulation’ are terms that cover a very diverse set of practices. This makes it 

difficult to find a characterisation that fits all of them and is still informative about their 

epistemic value. High-energy physics and especially the ATLAS and CMS experiments at the 

Large Hadron Collider12 are scientific endeavours in which computer simulations abound and 

are used for a wide range of purposes, such as the design of detectors, the analysis of data or 

the estimation of ‘backgrounds’ in experiments.13 This makes high-energy physics a fruitful 

study object to learn about the epistemology of computer simulations. I will use examples 

from the scientific practice in high-energy physics to point to epistemic differences between 

computer simulations and experiments throughout this paper. 

Philosophers of science disagree about the conceptual nature of computer simulations. Some 

view computer simulations as numerical experiments (Humphreys 2004), as model 

experiments (Morgan 2005), or as computer experiments (Gramelsberger 2010). Others argue 

that simulations should be treated as arguments (Beisbart 2012). As Boge (2019) has shown, 

these accounts do not necessarily disagree and I will not follow any of these accounts 

explicitly, but rather discuss computer simulations based on my reconstruction of their 

modelling and testing that is provided in the following section.   

In the following I aim to show that a central problem in the debate about computer 

simulations is that one of the key terms – “epistemologically on a par” (and correspondingly 

also the terms “epistemically superior/inferior”) – is not defined explicitly in any of the 

relevant articles and is used with different meanings. Morrison (2009), for example, argues 

that in specific situations simulation and experiment can be epistemologically on a par and 

can both provide measurements because there are no epistemically relevant differences 

between them. She argues for the central role of models in both simulations and experiments 

and concludes that materiality cannot justify an epistemic privilege of experiments. Massimi 

and Bhimji (2015) use “on a par” synonymously for “interchangeably used”. Morgan (2005) 

states, “[w]e are more justified in claiming to learn something about the world from the 

experiment” (p. 323), arguing for an epistemic privilege of experiments over simulations. None 

                                                           
12 ATLAS (A Toroidal LHC ApparatuS) and CMS (Compact Muon Solenoid) are the two largest particle detector 
experiments at the LHC (Large Hadron Collider), which is the largest particle collider in the world.  
13 Consult e.g. ATLAS Collaboration (2010) for an overview over the different purposes of computer simulations 
in the ATLAS experiment.  
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of the authors offers a definition for “epistemologically on a par” and they remain vague about 

the consequences of the epistemic statuses of computer simulations and experiments. Even 

though all of them use the same term, they seem to talk about different things.  

Arguments are made for an epistemic superiority of experiments over computer simulations 

as well as for computer simulations being epistemologically on a par. My goal in this paper is 

to show that even though the two argumentations come to different conclusions, they are 

both sound. This is, however, no contradiction, since they start from different perspectives on 

what it means for two methods14 to be epistemologically on a par. I will offer different 

interpretations of the term “epistemologically on a par” to illustrate these perspectives. One 

line of arguments focuses only on the methods (methodological perspective); the other one 

incorporates the epistemic community in which the methods are used (pragmatic 

perspective). Both perspectives are, as I contend, useful to understand the relationship 

between experiments and simulations. The term “epistemologically on a par” however should 

ideally be abandoned and replaced by more descriptive terms that describe the epistemically 

relevant distinctions between computer simulations and experiments that are subsumed 

under the argument about an epistemic hierarchy in the present debate.  

In the next section I will provide a reconstruction of the process of modelling and testing of a 

computer simulation. This reconstruction will be used to structure the debate on the 

epistemic status of computer simulations and experiments. I will assess the arguments for the 

two positions – an epistemic privilege of experiments (Section 3) and experiments and 

simulations being epistemologically on a par (Section 4). In Section 5 I will discuss the two 

perspectives in the context of examples of computer simulations in high-energy physics. From 

this result, I will identify epistemically relevant differences between experiments and 

computer simulations and suggest terms that allow for a more differentiated distinction 

between the epistemic value of computer simulations and experiments (Section 6).  

 

  

                                                           
14 In the context of this paper, I will use the term ‘method’ to refer to computer simulations and experiments in 
the way I introduced them above. The arguments could however also be made for another set of methods and 
especially the characterisations in Section 6 can also be read with a broader interpretation of the term ‘method’. 
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2 Computer simulation – a reconstruction 

In order to gain a basis for the understanding of the different arguments for the epistemic 

status of computer simulations, I reconstruct the way in which computer simulations are 

modelled and the role of the testing processes that are used to generate trust in the results 

of computer simulations. Identifying the relevant steps of modelling and testing a computer 

simulation, I will show that experiments play a crucial role in the validation of the connection 

between the simulation and the phenomenon that is investigated.15  

Figure 3 depicts the different entities (rectangular in the figure) and processes (oval in the 

figure) that are part of this reconstruction to explain the phases of modelling and testing of a 

computer simulation. In the following I will discuss the different entities and processes and 

use a toy example – the throwing of a baseball and the calculation of its trajectory – for 

illustration.   

 

 

Figure 3: Schematic description of the phases of modelling and testing of a computer simulation. The 

rectangles in the figure represent entities in the process; the ovals describe process steps by the 

modeler. The arrows describe the general direction of the process; there are, however, many possible 

loops in the actual process. 

 

                                                           
15 The construction of a computer simulation will in practice of course not always strictly follow the scheme I 
develop here. I do, however, believe that all the steps will usually be at least implicitly present. 
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The figure is similar to reconstructions by other authors.16 The entity model of the target 

system is usually not formulated as an entity of its own but subsumed in either the target 

system or the simulation model. For a distinction between verification and validation it is, 

however, helpful to have it separated as I describe below. Verification and validation feature 

prominently in my reconstruction, because they are the main processes that provide trust in 

the results of computer simulations and thereby epistemic value. In my understanding of 

verification and validation I follow Sargent (2013) (many other definitions are very similar): 

Verification is designed to ensure that the simulation is implemented correctly and works as 

specified. Validation is designed to test whether the simulation reproduces the data of the 

simulated phenomenon as accurately as intended.    

Let us now discuss the individual elements of Figure 3. The starting point of most simulations 

is a phenomenon of interest to the researcher. The goal is to build a simulation model that 

represents the relevant parts of the phenomenon and its context adequately. If this is the 

case, the researcher can use simulations to learn about the model and then use this 

knowledge to infer something about the behaviour of the phenomenon from the behaviour 

of the model. The phenomenon is what I call the target system in Figure 3.  

The first step in the process of building a simulation model is to specify a model of the target 

system. The term ‘target system’ is usually used in the debate to stand in for whatever the 

model shall represent. It is important, however, to distinguish the target system from the 

model of the target system. Whilst the target system can be almost anything we can describe 

with natural language, the model of the target system is something more formal. The 

formalisation is necessary for the implementation. The model of the target system has to be 

describable by a computer language. The researcher has to specify which entities or processes 

are used for a representation of the target system. This is not a deterministic choice, but one 

that will be guided by experience and knowledge about the target system and possibly also by 

intuition or pragmatic motivations.   

In the toy example I will use here, the target system is the phenomenon of throwing a baseball. 

The researcher wants to predict the trajectory of the baseball. For the model of the target 

system one has to specify which properties of the ball will be a part of the model (the 

                                                           
16 Compare e.g. Boge (2019), Sargent (2013), Oberkampf and Barone (2006) or Oberkampf et al. (2004). 
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modelling choice can range from the ball being modelled as a point-mass to a detailed 

modelling of shape, spin, and structure of the surface of the ball) and which forces are included 

in the model (e.g.: gravity, aerodynamic forces). As can be seen from this example already, 

choosing the target system does not lead to a straightforward definition of the model of the 

target system. Many different models of the target system are imaginable, which could be 

adequate for different contexts.  

Once the model of the target system is specified, in the next step – the implementation – the 

chosen specifications have to be implemented to create a simulation model. In this step, errors 

and uncertainties can occur due to practical constraints. The computer is a machine that can 

only calculate discretely, therefore every equation that was written in a continuous way in the 

model of the target system has to be discretised for the implementation.17 Another source of 

errors are constraints due to limited calculating power or calculating time. Abstractions and 

idealisations have to be introduced in the simulation model to accommodate for that.18  

There exists a growing literature about how the modelling should work and how verification 

processes can be designed to test whether the resulting simulation model fulfils the 

requirements specified by the model of the target system19 (Oberkampf and Roy 2012, Roy 

2005, Sargent 2013). How convincing the arguments are that the simulation model is an 

adequate representation of the model of the target system is not the question I want to focus 

on in this paper. Frigg and Nguyen (2017) offer a comprehensive overview on the topic, 

reviewing different accounts of how models can be understood and working out respective 

definitions of what a model has to fulfil to be seen as a (adequate) representation. For the 

purpose of this paper, I will assume that it is possible to verify the simulation model.20 

                                                           
17 Mathematicians have developed various techniques for discretisation – Morrison mentions “finite element 
methods, finite difference methods, particle methods” (Morrison 2015, 254) as some of the methods. 
18 Compare e.g. Winsberg 2010, p. 7-28 for examples. 
19 The verification can justify the choices that have been made concerning abstractions, idealisation, 
discretisation etc. during the modelling process for the implementation of the specifications of the model of the 
target system into a simulation model. Verification, however, cannot help to justify the first step, the 
specification of the model of the target system. 
20 Oreskes et al. (1994) argue that verification of “numerical models of natural systems is impossible” (641). They 
claim that “[t]o say that a model is verified is to say that its truth has been demonstrated” (641). They conclude 
that “[i]n its application to models of natural systems, the term verification is highly misleading”, since it 
“suggests a demonstration of proof that is simply not accessible” (642). Even without going into the details of 
the question of what it would mean to say that ‘the truth of a model has been demonstrated’, it seems 
reasonable to assume that this is not the aim of the technical term ‘verification’ as can also be seen in (Roy 2005, 
Oberkampf and Roy 2012, Sargent 2013). 
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Once there is a verified simulation model, meaning that we can be confident that everything 

specified in the model of the target system is implemented in the simulation model and works 

as intended, the next step is the simulation run. A number of technical challenges can 

introduce uncertainties in this step. Apart from the possibility of human errors, there are also 

more principled problems, mostly originating from the fact that the computer has to calculate 

discretely and in the internal representation, numbers can only be computed and saved with 

a limited number of digits. Numbers therefore have to be cut off or rounded and the errors 

that are created by this can lead to significant deviations from the correct result if large 

amounts of computations are made.21 The simulation run produces data – the simulation 

results – which are ideally in the same format and include the same variables as the data that 

can be gathered from the target system via experiments.  

The final step in the reconstruction is the validation. The choices we made for the model of 

the target system in the very beginning (specification) cannot be verified within the modelling 

process. They have to be validated by a comparison between the simulation results and data 

gathered from measurements and experiments that were made on the target system. In the 

toy example this means that we have to go outside and throw the baseball, measure the 

trajectory and compare it to the predictions that the simulation results provide. The validation 

step is not possible within the method of simulation as was the case for verification. External 

validation through experiments (or other means of data collection such as measurements or 

observations) is necessary to validate the choices that have been made prior to the modelling 

process and thereby confirm the adequateness of the simulation model for the target 

system.22  

Based on this reconstruction of the modelling and testing of a computer simulation, I will now 

structure and discuss the arguments in the debate about the epistemic hierarchy between 

computer simulations and experiments.  

  

                                                           
21 Thomas Ludwig presented this claim at the “SAS Workshop 2018 – Epistemic opacity in computer simulation 
and machine learning”. Cf. also Oestreichers (2007) discussion of Lorenz’ discovery of the chaotic behaviour of 
weather models.   
22 Experimental practices have their own difficulties of course and a good understanding of the measurement 
apparatus is needed. This is the topic of a wide range of work and will not be included in this paper. Compare 
e.g. Hacking 1983, Franklin 1986, Galison 1987.  
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3 Epistemic privilege of experiments – the methodological perspective 

In the following, I will structure the debate about the epistemic status of computer simulations 

by presenting and assessing three of the most relevant arguments for an epistemic privilege 

of experiments over computer simulations.  

I start with the “materiality argument”. Morgan (2005) argues in the context of laboratory 

experiments that experiments have an ontological privilege, which translates into an 

epistemic privilege:  

We are more justified in claiming to learn something about the world from the experiment 

because the world and experiment share the same stuff. In contrast, inference from the model 

experiment is much more difficult as the materials are not the same – there is no shared 

ontology, and so the epistemological power is weaker. (Morgan 2005, p. 323) 

“Same stuff” is a very loose formulation.23 Let us try to understand what Morgan means with 

it. Following Harré, Morgan has experiments in mind that are of the same materials, yet 

“simpler, more regular and more manipulable” (Harré 2003, p. 27) in their laboratory version 

than in their natural environment. One can see how the use of the same physical material can 

be helpful if there exists little knowledge about the phenomenon as, for example, in the case 

of the testing of new drugs. It seems clear that testing drugs on animals or, if possible, on 

humans is epistemologically preferable to computer simulations. The assumption that seems 

to underlie this argument is that with the “same stuff” involved, the same causal mechanisms 

are automatically at work in experiment and phenomenon. In the simulation, on the other 

hand, only the mechanisms, which are implemented in the model will be at work, and these 

are not necessarily the same as the ones in the phenomenon.  

It is however not clear what defines two materials to be same materials. The sameness would 

have to originate from shared properties, but it is unclear which of the properties should be 

chosen. Take the example of drug testing. In some instances, an animal might share enough 

relevant properties with humans to treat them as being of the same material. In other 

instances, it might not even be reasonable to speak of one human as being from the same 

material as another human in the context of drug testing. The underdetermination of this 

                                                           
23 One could argue that an intuitive understanding of “same stuff” might work. However, I believe that basing 
the epistemic hierarchy on an intuition about the term “same stuff” would lead to misunderstanding due to 
differing intuitions.  
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notion of being from the same material is as much of a problem as the one of “shared stuff”. 

If it boils down to the necessity of defining the relevant properties for each case, nothing is 

gained by introducing an argument that is based on two things being from the same material. 

This leads to the conclusion that the materiality argument should not be considered as an 

epistemic argument, but rather as a heuristic. Using the same materials that constitute the 

target system might be heuristically advantageous, but since what qualifies as the same 

material has to be defined, the problem of identifying the epistemically relevant aspects of 

the target system remains. 

A second argument for an epistemic privilege of experiments is the “surprise argument”. This 

argument is made in different strengths, but always comes down to the statement that 

simulations cannot surprise in the same way experiments can. One could argue that 

simulations can surprise the researcher based on his epistemic state, but as Parke (2014) 

points out, this could lead to the undesirable situation that we would have to classify the same 

simulation as surprising or not surprising, depending on the researcher’s epistemic state. 

Therefore, an argument for an epistemic privilege of the experiment based on the ability to 

surprise should be made independently of the researcher’s background knowledge. 

In a simulation the researcher who uses the simulation can be surprised by what the 

simulation result reveals about the consequences of the model decisions and input 

parameters. The user might be surprised by the result even if she is the one who wrote the 

simulation because the process by which the simulation result is reached can be epistemically 

opaque.24 This can be the case because the computations by the computer are made 

significantly faster than calculations could be done by humans and the user of the computer 

simulation is usually not able to examine every step of the computational process that leads 

to the result of the simulation. In principle, however, such an examination would be possible 

and all the simulation results can be explained by the modelling choices. All the epistemically 

relevant elements are available to the user and an epistemic agent with unlimited resources 

                                                           
24 I follow Humphreys‘ definition of epistemically opaque: “[A] process is epistemically opaque relative to a 
cognitive agent X at time t just in case X does not know at t all of the epistemically relevant elements of the 
process.” (Humphreys 2009, p. 618) 
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and calculation speed would not be surprised by any computer simulation result (Boge & 

Grünke forthcoming).25   

This is different in the case of the experiment. Even though the result of the experiment is also 

determined by the experimental setup, the mechanisms that are involved are not 

programmed by the experimenter and cannot be accessed directly. There might exist hidden 

mechanisms, which become relevant and can be discovered in the process of experimenting. 

Events or patterns might occur that do not conform to any previous experiences. The history 

of physics offers many examples of surprising experimental results that led to discoveries and 

new theories (some examples: the Michelson-Morley experiment, the Rutherford gold foil 

experiment, or the double-slit experiment). The surprise argument points to an epistemic 

difference between experiments and computer simulation. There might exist principled 

opaqueness in the case of experiment, but not in the case of computer simulations. Surprise 

in the case of computer simulations would be a surprise about the deductive consequences of 

the initial conditions. Surprise in the case of experiments can be caused from a feature of 

nature the experimenter did not and could not know about. 

A third argument can be based on the role of experiments in the above presented 

reconstruction (Figure 3) – the argument of epistemic priority. If an experiment produces a 

result, this result can be validated with the same method by recreating the same experimental 

setup and testing whether the result still shows up. A reproduction of the results from a 

second experimental setup increases the trust in the result significantly. The same process 

would be of nearly no effect for a simulation. Rerunning the same code on the same 

computational model and getting the same result would not strengthen the trust in the 

correctness of the simulation result in the same way that it does for an experiment. Rerunning 

a computer simulation with exactly the same parameters can check whether the result was 

an artefact of the computer, especially if it is rerun on a different computer.26 As a further 

testing mechanism, it is also possible to check whether the result is robust against small 

                                                           
25 Imagine a Laplacean demon that comprehends all the lines of code and is able to calculate all of the determined 
consequences instantly.  
26 Ludwig gives an example of a climate simulation that is run four times with exactly the same configuration and 
produced four similar yet not identical results. In this example it is not completely clear from what the differences 
in results originate and the general assumption is still, that rerunning the same simulations should lead to getting 
the same results (Presentation at the “SAS Workshop 2018 – Epistemic opacity in computer simulation and 
machine learning”). 
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changes of the input parameters. None of these results will however further the trust in the 

real-world occurrence of the results. This can only be gained via an experiment. 

This means that in order to argue for drawing an inference from the simulation result to the 

phenomenon the use of experimental methods is necessary, while in the case of an 

experiment, no additional methods are necessary. Winsberg (2009) describes this as 

“epistemological priority of experiments” (p. 591). The knowledge we need to learn something 

from a simulation is knowledge that we gained from experiments and observation.  

To summarize this section: There are three main arguments for those who argue for an 

epistemic privilege of experiments. The materiality argument is based on the practical 

assumption that we can identify materials as the same materials and that this sameness 

translates into the same causal mechanisms being at work in experiment and target system. 

Since it is not possible to pin down the sameness concretely, I consider this as a heuristic and 

not an epistemic argument. The surprise argument can be understood as an in-principle 

argument. Experiments and computer simulations can both surprise their users. In the case of 

the experiment however, this could be a surprise that not even an epistemic agent with 

unlimited resources could have predicted confidently. The argument for an epistemological 

priority of experiments points to the fact that computer simulations are dependent on the 

results of experiments to generate trust in their results. Following the methodological 

perspective, it seems therefore very reasonable to speak of an epistemic privilege of 

experiments. 

  

4 Epistemologically on a par – pragmatic perspective 

The same reconstruction (Figure 3) can be considered from what I want to call a ‘pragmatic 

perspective’. This perspective includes the knowledge that exists in the epistemic community, 

which is gained from previous experiments, and the theories that have evolved from them. In 

the case of throwing balls of a certain shape there is a lot of experience and data27, and the 

choices for the model of the target system are already validated for a number of specific 

contexts. Therefore, at this point in time, if we want to find out what happens to the trajectory 

                                                           
27 Complex computer simulation programs exist e.g. for the analysis of curve balls in baseball as well as for many 
other sports (Miller 2013).  
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of the baseball if we change the direction in which we throw the baseball by a few degrees we 

do not have to go outside anymore and throw the ball. Based on the large amount of data we 

can confidently use a verified and validated simulation model and trust that the simulation 

results are good descriptions of what would happen in the real world. In this context it does 

make sense to say that the simulation is epistemologically on a par with experiments. 

Morrison (2009), Parker (2009) and others argue against the materiality argument by saying 

that in both experiments and simulations there is a target of interest and an object, which is 

investigated and intervened on. Therefore, both in experiments and simulations, it has to be 

argued why knowledge that is gained about the object that is used as a stand-in for the target 

of interest can be transferred onto the target of interest itself. They argue against Morgan’s 

position that the same materiality justifies this in the case of the experiment (“Materiality is 

not enough”). They do not problematize the definition of “same stuff”, but claim that the 

involvement of the “same stuff” does not guarantee that the inferences back to the world are 

more justified. There might be pragmatic reasons for that, as in the case of weather 

forecasting where it is impossible to create a laboratory experiment that consists of the “same 

stuff” and replicates the actual configuration of the atmosphere adequately to create 

predictions from it (Parker 2009). More principled reasons could be fundamental limitations 

of measurement accuracy, which limit experiments for example in the case of cosmology or 

fluid mechanics. Simulations can be more exact in their predictions in these fields in some 

contexts. In both computer simulations and experiments, an analogy between the target and 

the stand-in has to be drawn and it is not clear a priori why this should be easier in an 

experiment than in a simulation. It is rarely contested that computer simulation can be more 

useful for specific practical purposes. This should not be mixed up with the epistemic value of 

the results however. 

Morrison (2009) argues that theoretical modelling is not only relevant for simulations but also 

equally important for experimental activities. Using the measurement of the gravitational 

acceleration with a plane pendulum as an example, she illustrates the numerous corrections 

and idealisations that have to be applied after the measurement with the physical apparatus 

is done. She argues that essentially the model is the device that measures the gravitational 

acceleration in the experimental setup and concludes, “simulations, as a form of modelling, 

can fulfil the same role” (Morrison 2009, p. 55). Defenders of this position typically do not 
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claim that simulations are in general epistemically on a par with experiments, but rather argue 

that this is possible in specific contexts. Massimi and Bhimji (2015) for example do this for the 

case of the Large Hadron Collider and the discovery of the Higgs boson.  

This claim of an equal level of epistemic power only works as long as we stay in the context in 

which the choice of the model of the target system (cf. Figure 3) has been validated. If we 

want to understand what happens if a baseball is thrown at a speed close to the speed of light, 

then our model will not be helpful, because it is not validated for this scenario. We actually 

know about physical phenomena that would appear in this case that we did not include in our 

model of the target system (Munroe 2014). We can tie this back to the surprise argument. As 

long as we use the computer simulation in a context, in which we know the target system very 

well and do not expect any surprises if we conduct a new experiment, the computer simulation 

can be granted the same level of trust as an experiment.28 There are a number of contexts in 

which the knowledge about the phenomenon is so comprehensive and the computational 

models have been validated sufficiently to say that the simulation results in this specific 

context are as trustworthy as experiments would be. In these cases, it does make sense from 

a practical perspective to call the computer simulation epistemically on a par with 

experiments. 

 

5 Computer simulations and Beyond the Standard Model searches in high-energy physics 

In this Section, I will illustrate that both perspectives discussed above are present in scientific 

practice. For this, I will describe two examples from high-energy physics research to provide 

an insight into how computer simulations are used in scientific practice and what epistemic 

purposes they serve. The examples will revolve around the Standard Model of particle physics 

(SM) and Beyond the Standard Model (BSM) searches, therefore I will first provide a short 

description of the SM and the need for BSM searches.  

The SM is the theory that describes the elemental particles in the universe and three of the 

four fundamental forces (all but the gravitational force) governing them. It was developed in 

the second half of the 20th century and has successfully predicted and explained experimental 

                                                           
28 We can of course never be completely certain about the results of new experiments; therefore a small 
possibility of a surprising result in an experiment will remain. This possibility might be deemed epistemically 
irrelevant at some point, but it underscores the in-principle nature of the surprise argument.  
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results since then. The discovery of the top quark in 1995 and the tau neutrino in 2000 further 

confirmed the SM and with the discovery of the Higgs boson in 2012 (ATLAS Collaboration 

2012), the last elementary particle of the standard model of particle physics has been found.  

At the same time, the SM fails to answer some questions that are central to fundamental 

physics: Can the fundamental interactions be unified? How did matter originate? What is the 

nature of dark matter and dark energy? What is the origin of neutrino masses? Why is there 

more matter than antimatter in the universe? There are also questions concerning the newly 

found Higgs boson: How to react to the fine-tuning problem of the Higgs mass? What exactly 

does the Higgs sector look like? 

The SM has been tested experimentally to a precision of 10-9 in almost all sectors (Mättig 

2019), making it one of the best-tested theories that science has seen so far. Models, which 

are designed to answer the above questions, therefore usually start with the SM and extend 

it in one way or another. These models are referred to as models Beyond the Standard Model 

(Lykken 2010). Since the tests of the SM in the energy levels that the LHC could reach, were 

done extensively and successfully, the extensions or modifications to the SM are often made 

at energy levels beyond that.  

The first example is a part of the simulation infrastructure of the LHC that is used in an area of 

the SM that is well tested and understood: an event generator as it is used in the ATLAS 

experiment at the LHC. Two kinds of simulations are essential for the ATLAS experiment: the 

event generators simulate the collision of two protons and the development of the resulting 

particles until they reach the detector; the detector simulations simulate the reactions of the 

real-world detector on the particles that result from the collisions and the following decays.29 

In the experiment the order of the two processes is somewhat turned around. The 

measurements, which are gathered through the experiment, are the detector signals. They 

are then used to reconstruct the event that has occurred inside the beam pipe that cannot be 

observed directly. The simulation of events and their respective detector responses is mainly 

used to improve the quality of, and the confidence in, this reconstruction. For this there has 

to be a high confidence that the event generator and the detector simulation produce data 

that accurately represent the actual events.  

                                                           
29 A detailed description of the simulation infrastructure at ATLAS can be found at (ATLAS Collaboration 2010). 
Boge and Zeitnitz (2021) offer a presentation in a philosophical context.  



Chapter 2: Computer simulations and experiments: Epistemologically on a par or not? 

35 
 

The ATLAS Collaboration has a number of validation procedures to ensure the correctness of 

the event generators. Systematic tests of the individual components (unit testing) as well as 

technical tests of their interactions are performed (small-scale and large-scale integration 

testing). There are three independent frameworks for testing: AtNight, Kit Validation, and the 

Run Time Tester, which all run on different environments (ATLAS Computing Group 2005). For 

the validation of the simulations at ATLAS, factorization is crucial, meaning that the validation 

of the individual steps of the simulation is sufficient for a global validation of the simulation. 

This factorization is based on theoretical arguments about the physics processes (Mättig 

2019). There are different methods to validate the individual steps of the simulation. Results 

of previous experiments are used together with model assumptions; the simulations are 

adjusted to data of previous precision measurements. It is also possible to validate the 

simulation using results of the LHC by using measurements that are complementary to the 

process that shall be validated, or via in-situ measurements of detector properties (Mättig 

2019, p. 645). The combination of these methods, and especially the constant validation 

against experimental data, allows particle physicists to assign a very high confidence to their 

simulations, and therefore a very high probability to the interpretations of the measurements, 

e.g. the discovery of the Higgs boson.  

The confidence in the simulation in this example is based on theoretical understanding of the 

target system (allowing for the factorization argument), extensive verification, and validation 

against experimental data. In this example, the trust in the simulation is so high that we could 

call the simulation epistemically on a par with an experiment. Nevertheless, physicists are 

always careful to assign some remaining systematic uncertainty to the results of the 

simulation.  

The second example is the use of simulations in BSM searches at the LHC. In many cases, a 

BSM model introduces a new heavy particle that is produced in the collision and decays within 

the beam pipe, or it predicts a new scattering process or the modification of a SM process. In 

both cases, one way to test a BSM model is to implement the new particle or process in an 

event generator and compare the simulation results with detector data. Every new process or 

particle creates a specific signature in the detector and the BSM model predicts how often this 

signature should appear.  
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The most prominent example for the introduction of new particles is supersymmetry (SUSY). 

The implementation of a new particle or process in an event generator is very time-consuming 

and most of the time has been spent on SUSY models. SUSY is a principle that proposes that 

each boson and each fermion has a superpartner in the other group. These partners would be 

new particles, which have not yet been discovered. One major downside of SUSY is that is has 

at least 300 free parameters, which means that the model can be fitted to almost every 

observation and it is very difficult to rule out the concept completely. A further problem is 

that some processes cannot be separated from SM background processes at the LHC. In these 

cases, claims about the proposed SUSY process can only be made via the rate of the different 

processes (Barr et al. 2016). 

What is the status of the simulations in these BSM searches? The structure of the event 

generators is the same as for the SM cases. Let us assume that we have two different event 

generators for SUSY models. These models are neither validated, nor does data exist that 

contradicts their predictions. There are no clear arguments why one should prefer one or 

another model. The only way to decide between different models in this situation is via 

experimental data. In BSM searches, experiments are therefore clearly epistemically superior 

to simulations.  

BSM searches also serve as an example to illustrate that modelling choices are not directly 

defined by the target system. In most of the BSM models, very high energies are required to 

produce a deviation from the SM, and they can therefore not (yet) be empirically tested yet. 

Physicist have very different expectations and preferences concerning BSM models. BSM 

models with supersymmetry are the most popular ones, but many other concepts are pursued 

as well (Chall et al. 2019). Asked for the criteria regarding their model preferences, “elegance” 

and “naturalness” were the most popular answers. Although all of these physicists have the 

same target system in mind (the interaction of particles), they choose different equations or 

entities for their models of the target system (Mättig and Stöltzner 2019).  

 

6 Epistemically relevant differences between computer simulations and experiments  

Both the arguments in Sections 3 and 4 and the examples in Section 5 are not leading towards 

a completely clear conclusion about the epistemic status of computer simulations. There are 
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certain contexts in which an experiment provides epistemic work that a computer simulation 

could not, there are contexts in which both simulations and experiments can be used, and 

there are contexts in which the use of a simulation could be epistemically advantageous to 

the use of an experiment. In all these cases it depends on the context, on the question that 

has to be answered, and on the experiences that have already been made in the domain in 

question. A conclusion that makes a general statement about the epistemic hierarchy 

between computer simulations and experiments would not do justice to these different 

contexts and to the different epistemic tasks that experiments and computer simulations can 

fulfil. I therefore suggest that it is more useful to consider different epistemic tasks that can 

be fulfilled by both experiments and computer simulations and evaluate computer simulations 

and experiments in each concrete context based on their respective usefulness for each of 

these tasks. 

I suggest three concrete formulations that describe aspects of the use of computer simulations 

or experiments that are epistemically relevant and connect them to the different perspectives 

and arguments. Further aspects are imaginable. 

 

Epistemic Aspect 1: The necessity of the method for a certain goal 

One aspect is the necessity of a method for a certain goal. If Method A is necessary to acquire 

knowledge about a certain phenomenon, but Method B is not, then Method A has a greater 

epistemic value in this setting. If both methods are necessary, nothing can be said about their 

hierarchy in terms of epistemic value in respect to this aspect. 

Both Morrison (2015) and Massimi and Bhimji (2015) use the argument, that simulations are 

necessary for the discovery of the Higgs-boson and should therefore be understood as 

epistemically on a par with experiments. Since none of them deny that experiments are also 

necessary, this argument does not hold. One cannot make conclusions about the epistemic 

value of Method A in respect to Method B from the fact that both are necessary for a certain 

task.30  

                                                           
30 Apart from that, it is debated whether computer simulations were actually necessary for the discovery of the 
Higgs-boson (Gregor Schiemann, Christian Zeitnitz and Michael Krämer, personal communication 2019). 
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In the context of the methodological perspective, the necessity of experiments for certain 

tasks is an argument for their epistemic privilege, as there are many contexts in which one can 

argue that an experiment is necessary to acquire knowledge. This is especially relevant in areas 

which have not been investigated, or not been sufficiently investigated in an empirical way. 

There are, however, also contexts in which a simulation is the only method that enables the 

scientist to acquire certain knowledge because a domain in question is not experimentally 

accessible or for all practical purposes the amount of calculation needed requires the use of a 

computer.    

 

Epistemic Aspect 2: Discovery potential 

A second epistemic aspect of a method is the potential for the discovery of new knowledge 

through this method. If Method A has a higher potential to discover new knowledge than 

Method B, then Method A has a greater epistemic value. 

This aspect, in connection with the surprise argument, can be used to argue for the epistemic 

superiority of experiments, since experiments can produce completely new and unexpected 

results in a way computer simulations cannot. The discovery potential of experiments is 

therefore one of the main arguments in the methodological perspective.  

There are, however, also contexts in which it can be claimed, that computer simulations have 

a greater potential to discover new knowledge than experiments simply in virtue of the fact 

that a computer simulation can be performed while no comparable experiment is possible. In 

these contexts, it can be argued that computer simulations have an epistemic advantage over 

experiments. In practice this seems to be the case in some scientific disciplines. In astrophysics 

for example, the epistemic status of simulations is a lot higher simply because experiments 

are often not possible. Apart from that, a special kind of models, namely targetless fictional 

models, can enable us to learn something about situations that do not, and maybe cannot, 

occur in the real world, and are therefore not accessible via experiments, for example: three 

sex populations, Norton’s dome, a world without gravity.31 One could show that a 

phenomenon is not stable in a system by creating it in a model world and showing that it 

                                                           
31 Michela Massimi presented this in her keynote lecture “What Scientific Models Are For” at the “Models and 
Simulations 8” conference at the University of South Carolina, March 2018. 
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dissolves. In a setting like this, one can gain knowledge via the simulation that one could never 

gain via an experiment.  

 

Epistemic Aspect 3: The degree of trust in the results of the respective methods 

If two methods are concerned with exactly the same phenomenon and both methods are 

used, the question of trust in the method can be reduced to the question of whether we trust 

Method A or Method B in case the two methods have different results. Alternatively, a 

situation can arise where the trust in the result of Method A is so high, that there is no need 

to employ Method B as well.  

In case of disagreement between the results of an experiment and a computer simulation, the 

scientific practice clearly favours the experiment. The trust in simulation results is based on 

the validation through experimental results (“epistemic priority”) and therefore experimental 

results that disagree with the results of computer simulations lead to doubt about the 

correctness of the computer simulation. In principle, this situation of disagreement can always 

occur, no matter how rigorously the computer simulation has been validated with 

experimental results beforehand. The likelihood of this situation occurring does become very 

small, however, if the simulated phenomenon is very well known and understood, and the 

computer simulation has been extensively validated and successfully used. In this situation 

scientists trust the results of a computer simulation to a degree that there is no need to 

perform an experiment as well.  

 

7 Conclusion 

In this paper I have offered a reconstruction of the modelling and testing process of a 

computer simulation. Using the insights from this reconstruction I have structured and 

evaluated the arguments in the debate about the epistemic hierarchy between computer 

simulations and experiments and identified two perspectives. These two perspectives, the 

methodological and the pragmatic perspective on what it means for an experiment and a 

computer simulation to be epistemologically on a par, can explain why different authors think 

differently about the epistemic hierarchy of computer simulations and experiments. Both 

perspectives have their merits, and having both perspectives available is helpful for a good 
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understanding of the relationship between computer simulations and experiments. The 

pragmatic perspective cannot be generalised and a sufficient validation of the model for one 

specific context has to be proven to treat the simulation as epistemologically on a par.  

The term ‘epistemologically on a par’ itself is problematic, because epistemically relevant 

aspects are subsumed under it and consequently not addressed in enough detail. I therefore 

suggest discarding the term ‘epistemologically on a par’ and rather explicate epistemologically 

relevant aspects. Some of these aspects, which are used in the debate about epistemic 

hierarchy, but are not discussed explicitly, are: the necessity of a method for a certain goal, 

the discovery potential, the degree of trust in the results of a method.  
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Examination of the “Argument View” on Simulation 
 

Abstract  

The epistemic characteristics of computer simulations (CSs) in practices of scientific 

knowledge acquisition have given rise to lively debates in philosophy of science. In contrast to 

the prominent claim that with regard to epistemic characteristics CSs are comparable to 

ordinary experiments, Beisbart has recently proposed that CSs can be reconstructed as 

arguments, which fully capture their epistemic power. In this paper, we critically examine this 

“argument view” on CS and argue that while it does indeed capture some significant 

characteristics of CSs, its answer to the question of how CSs can contribute to the acquisition 

of knowledge remains unsatisfying. Nevertheless, we show that critically discussing the 

argument view and its limitations offers fruitful insights on two central topics in the 

philosophical literature on computer simulations: their (allegedly) opaque character and the 

role of inductive reasoning in the context of CSs.  

 

 

1 Introduction 

Over the last several decades, computer simulations (CSs) have increasingly gained a foothold 

in numerous scientific areas. Given that they have shaped and continue to shape practices of 

knowledge acquisition in various respects (e.g., in the climate sciences or materials sciences), 

it is not very surprising that their epistemological characteristics have sparked lively debates. 

Many philosophers have addressed questions concerning the epistemology of CSs by pointing 

out their similarities to or differences from experiments (see, e.g., Massimi und Bhimji 2015; 

Morrison 2009; Morgan 2005; Parker 2009).  

A different approach, however, has been suggested by Claus Beisbart (2012; see also Beisbart 

and Norton 2012). Rather than locating the epistemological characteristics of CSs in proximity 

to those of experiments, Beisbart proposes that in terms of the way in which they enable 

acquisition of new knowledge CSs are comparable to deductive arguments. Not only, so 
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Beisbart (2012, 403) argues, can they be reconstructed as arguments, they also have the same 

epistemic power as arguments. 

Considering the deterministic character and the algorithmic structure of CSs, comparing them 

to arguments in terms of epistemology certainly has some immediate appeal – and 

unsurprisingly, Beisbart is not the only scholar to emphasize the inferential nature of CSs. For 

example, Winsberg (1999, 275) points out that CSs “involve a complex chain of inferences that 

serve to transform theoretical structures into specific concrete knowledge of physical 

systems”, while Stöckler (2000, 369) explicitly states that “[s]imulations are arguments, not 

experiences”. Moreover, examining the epistemic role of models in science more broadly, 

Kuorikoski and Lehtinen (2009) argue that “the epistemic reach of modelling is precisely the 

same as that of argumentation” (122) and that regarding models as “surrogates” for target 

systems on which we experimentally intervene may even lead us to overestimate their 

epistemic power (125). Finally, Kuorikoski (2012, 175) states that “in principle, every 

simulation run is just a long deduction”.  

However, while there is clearly something to be said for the comparison between arguments 

and CSs, does this comparison really answer the question of how CSs enable us to gain new 

knowledge? Florian Boge (2019, 12), for example, points out that while CSs – given their 

“algorithmic nature and the implied rigidity of the input-output relation” – are certainly 

“respecting the logics of arguments”, they clearly differ in their pragmatics. Moreover, even 

Beisbart (2012, 417) himself admits that in certain respects, the argument view abstracts from 

relevant epistemological issues.  

In this paper, we discuss the argument view and its limitations in order to examine how and 

to what extent drawing parallels between deductive argumentation and simulations can help 

to clarify the epistemological characteristics of CSs.  

Our assessment is two-sided. On the one hand, we agree with Beisbart that the relationship 

between simulation input and output can fruitfully be compared to the relationship between 

the premises and conclusion of a deductive argument. Moreover, we argue that by taking this 

very circumstance seriously, one can gain insight on a prominent topic of discussion in the 

literature on CSs, namely the oft-asserted epistemic opacity of simulations.  
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On the other hand, however, we do not fully agree with Beisbart’s statement that the 

epistemic power of CSs is that of deductive arguments. Although we grant that simulation 

outputs are generated by means of deductive inference, acquiring knowledge with the help 

of simulation often requires adopting practices of inductive reasoning, such as when a wide 

variety of “raw” simulation outputs is referred to in order to make claims about a general 

pattern or rule of behavior. Here, the analogy between arguments and simulations appears to 

falter – and promoting an “argument view” on CSs may even mislead us into overlooking the 

inductive leap that exists in simulation-based practices of reasoning. 

Ultimately, we argue that Beisbart’s suggestion of comparing CSs to arguments is clearly 

enriching when it comes to an understanding of their general functioning and the process of 

output generation. The comparison does have its limits, however, and cannot 

comprehensively explain how new knowledge can be obtained by the use of a CS. 

 

2 The argument view on CS 

As motivation for adopting an argument perspective on simulation, Beisbart (2012, 396) 

observes that it is puzzling that computer simulations allow scientists to acquire knowledge 

about physical systems without directly observing them. He argues that despite CSs’ manifold 

applications in various fields of research and their apparent success in contributing to scientific 

knowledge acquisition, it is no trivial matter to explain how computer simulations enable 

scientists to obtain knowledge about physical targets. According to Beisbart (396), we face the 

following question (Q_CS) “How can scientists gain new knowledge by running computer 

simulations?”  

Starting from the idea that CSs bear a pre-theoretical similarity to thought experiments and 

taking into consideration Norton’s (2004) argument view on thought experiments, Beisbart 

(2012, 401) proposes that CSs enable acquisition of new knowledge because they are 

arguments:32 since it is “uncontroversial that we can obtain new knowledge by running 

                                                           
32 One may object that in the case of deductive arguments, the conclusions are already in some sense “entailed” 
in the premises and that, therefore, the idea that CSs do their epistemic work in the same way as arguments 
does not show how they contribute to the acquisition of new knowledge. Yet, with examples from mathematical 
argumentation in mind, we grant to Beisbart that it seems largely uncontroversial that elaborate deductive 
inferences can lead to new insights. 
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through an argument”, identifying CSs with deductive arguments would provide an answer to 

(Q_CS).  

Beisbart (403) states that the argument view on CS consists of two claims, namely that (I) 

“each computer simulation can be reconstructed as an argument such that the epistemic 

power of the CS is that of the argument” and (II) that running a simulation is to execute the 

reconstructing argument. Boge (2019) has convincingly pointed out that the first claim should 

more appropriately be divided into two distinct claims, so that we can reconstruct the 

argument view as consisting of three central claims, namely: 

(1) that CSs can be reconstructed as arguments (R_CS),  

(2) that their epistemic power is that of the reconstructed argument (EP_CS) and  

(3) that running a CS is to execute the argument (Ex_CS).  

Before we examine whether computer simulations can convincingly be compared to 

arguments, let us elucidate what precisely is meant by ‘computer simulations’ in the context 

of Beisbart’s view. He points out that there are at least two ways of speaking about CSs:  

In a narrow sense, to run a computer simulation is to run a suitable simulation 

program. In a broader sense, we may […] think of programming, testing the program 

and evaluating the results as part of a CS too. (Beisbart 2012, 398) 

Beisbart explicitly states that within the scope of the argument view, CSs are referred to in the 

narrower sense. Following Parker (2009, 488), he suggests using the term ‘computer 

simulation study’ as a broader overarching notion for various activities involved in the 

scientific usage of simulation programs such as the examination of how the outputs of a 

simulation process are affected if several runs are performed with different parameters. 

Interestingly, he claims that the argument view abstracts from such activities and focuses 

solely on the run of simulation programs (Beisbart 2012, 398).  

Against this backdrop, it seems that the central motivation for comparing CSs (in the 

aforementioned narrow sense) with arguments is the idea that the relationship between the 

inputs and results of simulation runs bears a certain similarity to the relationship between the 

premises and conclusions of deductive arguments. In the following two sections, we will 
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further clarify this supposed similarity as well as Beisbart’s claim that the epistemic power of 

CSs is that of the reconstructing argument. 

 

2.1 The reconstruction thesis 

In order to illustrate the idea that computer simulations can be reconstructed as arguments, 

Beisbart (2012, 404ff.) discusses the example33 of a simulation of the (approximated) behavior 

of a driven and damped pendulum based on an implementation of the Euler method.34  

Structurally, the implemented algorithm of the Euler method consists of two assignment 

statements (which set the values of two respective variables that specify the initial conditions 

of the pendulum) and a foreach loop (which specifies how the values of these two variables 

change over n iterations).  

As Beisbart (406ff.) argues, the simulation program can be reconstructed as a deductively 

valid35 argument about the position of the pendulum after a certain number of time steps. 

According to Beisbart, the ‘simulation argument’ consists of four premises, with two premises 

specifying (1) the initial angular position 𝜑0 and (2) the initial angular velocity V𝜑0 of the 

pendulum at a certain time point, and two further premises (3, 4) specifying how the values 

of these two characteristics at each time point depend on their value at a respectively earlier 

time point. Depending on whether one focusses on a single run of the simulation with 

concretely specified initial values or on the general structure of the simulation program, 

Beisbart suggests conceiving of CSs as arguments or argument schemes: 

The idea is that 𝜑0 and Vφ0 are place-holders for values of the physical characteristics 

in a suitable coordinate frame. We obtain different arguments (or argument schemes) 

if we insert different values. This then is the picture we have come up with: The 

execution of an algorithm by a computer simulation program using concrete input 

values can be reconstructed using an argument or an argument scheme, depending on 

                                                           
33 See Boge (2019) for another reconstruction based on an example from high-energy physics.   
34 In the simulation model, the second-order differential equation that describes the motion of the pendulum is 
replaced by two coupled first-order equations which are, in turn, approximated by two difference equations 
(with time being discretized). 
35 Beisbart explicitly states that CSs are deductive arguments rather than, for example, inferences to the best 
explanation: “If we abstract from roundoff and truncation errors and the arguments used in validation, CSs are 
deductive arguments” (2012, 427). 
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how the scientist thinks of the simulation. [...] I will for simplicity assume that the single 

run is properly reconstructed in terms of one argument rather than an argument 

scheme. (409) 

Through the simulation process, the argument that describes the trajectory of the pendulum 

is executed. Accordingly, the results of the simulation run constitute the conclusion of the 

simulation argument. 

 

2.2 The epistemic power thesis 

Given the aim of clarifying the role of CSs in contexts of knowledge acquisition, the heart of 

the argument view consists in the idea that computer simulations can not only be 

reconstructed as arguments ([R_CS]), but also in the notion that they have the same epistemic 

power as the reconstructing argument ([EP_CS]). For Beisbart (2012, 404), the second thesis 

seems to be directly implied by the first: as he argues, “the reconstructions fully capture the 

epistemic power of the underlying computer simulations.” But what precisely does it mean 

for CSs to be ‘epistemically powered’ in a certain way?  

Let us approach this question by clarifying the success criteria that Beisbart formulates with 

respect to his comparison between the epistemic power of CSs and arguments. According to 

Beisbart, we can determine that the epistemic power of a CS is that of the reconstructing 

argument if we show that one of the following two statements is true: (1) the reconstructing 

argument captures all epistemically relevant aspects of the CS, or (2) “[all] epistemic work that 

a computer simulation does could also be done by executing the reconstructing argument 

without computers” (416). 

Regarding the first claim, Beisbart argues that it is implausible to assume that anything of 

epistemic relevance is lost when CSs are reconstructed as arguments. Given that CSs perform 

computations that are usually taken to “trace the values of empirical characteristics” of some 

physical system and therefore can be ‘translated’ into empirically substantial statements36, 

and assuming that the process of result generation can be understood as a deductive 

                                                           
36 We will address this claim about translatability in more detail below. 
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inference, nothing that is epistemically relevant seems to be lost when reconstructing CSs as 

arguments (416). 

Looking at the second claim, Beisbart admits that a significant challenge lies in the fact that, 

even if computer simulations can indeed be reconstructed as arguments, the premises of 

these simulation arguments often turn out to be false because they are based upon 

approximated, idealized or abstracted assumptions. If the epistemic power of arguments 

stems from their capacity to inferentially transform prior knowledge and if CSs contribute to 

knowledge acquisition in the same way as arguments – how can their epistemic power be 

captured in this way when they are, in many cases, built upon false premises (418)?  

According to Beisbart, we can maintain (EP_CS) if we grant that the argument view is limited 

to explaining how scientists can acquire knowledge about models: 

Admittedly, the argument view does not explain why scientists are justified to transfer 

knowledge from the model to the target. Additional considerations are necessary to 

justify this inference. But it should be possible to present these considerations as 

arguments too. Further, even if it is not, this does not mean that the argument view 

stumbles. The argument view can explain how scientists gain new knowledge about a 

model. It can thus explain how computer simulations make a contribution to new 

model-based knowledge about the real world. (419) 

Two points are crucial here: Firstly, Beisbart emphasizes that ‘justificatory considerations’ 

typically have the form of arguments, too. Thus, the fact that we require additional 

considerations with regard to what is usually called the validation of a CS does not preclude 

comparing CSs to arguments with respect to their epistemic power. Secondly, the key idea of 

(EP_CS) seems to be that by regarding CSs as arguments, we can – even if we do not capture 

all activities involved in working with CS – learn how they can act as a means of scientific 

knowledge acquisition in general: even if we abstract from the fact that additional validatory 

activities need to be performed in order to ensure that CS can help to acquire new knowledge 

about the world rather than only about a model, the argument view still teaches us about the 

general means by which new insights are acquired.  

Overall, it seems that the argument view is committed to the idea that the inferential 

transformation of CS inputs is the source of epistemic gains. In the case of ordinary arguments, 
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according to Beisbart, we can learn something new about the world by drawing on known 

premises and transforming these in a truth-preserving manner. We would usually consider 

arguments successful if they are sound, i.e., if their premises are true and all inferential steps 

valid. This process appears to be structurally similar in the case of CS: “If the […] premises are 

known to be correct, we obtain a sound argument the conclusion of which may represent new 

knowledge. Using this argument, we can explain how the simulations produce new 

knowledge” (Beisbart 2012, 419). 

In their 2012 paper, Norton and Beisbart emphasize even more pointedly their idea that while 

ordinary experiments are epistemically powered by discovery, CSs are powered by inference: 

While in experimental contexts we prepare and manipulate an apparatus and “observe the 

world to learn about it,” CSs contribute to the acquisition of knowledge by referring to prior 

knowledge and enabling us to draw inferences based on this knowledge (Beisbart und Norton 

2012, 9). Moreover, they argue that while discovery-based knowledge acquisition practices 

“[go] directly to the world” (9), CSs provide new knowledge in that they inferentially transform 

known premises rather than relying on an interaction with the world.  

In summary, the central ideas of (EP_CS) seem to be that (1) to advocate an argument view 

on CS is to emphasize that new knowledge is generated inferentially rather than by means of 

discovery and that (2) the comparison of the epistemic power of CSs to arguments asserts that 

we learn from CSs and from arguments in a generally similar way. 

 

3 Can CSs be reconstructed as arguments? 

Beisbart is aware that his suggestion of reconstructing CSs as arguments raises (at least) two 

immediate doubts: How can a run of a simulation be reconstructed as an argument if “what 

the computer program takes as input are of course mere numbers” (2012, 407)? And how are 

we entitled to say that the conclusion deductively follows from the premises given that 

computers will produce roundoff errors?  

Addressing the first concern, Beisbart (407) specifies that while the premises of the simulation 

argument are represented as numbers, they should at the same time be empirically 

meaningful for the working scientist. Thus, if we want to maintain that simulations can be 

reconstructed as arguments, we need to show that their premises can be ‘translated’ into 
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statements with empirical meaning, e.g., statements about properties of a physical system or 

about the way in which various such properties are connected. According to Beisbart, it can 

easily be shown that this “condition of translatability” is met: for the scientist who runs a CS, 

the initial conditions and algorithmic statements of a given computer program “encode the 

values of physical characteristics of the system in certain units” (407).  

In the example discussed above of the CS of a pendulum, the variable initialization ‘set phi[0] 

= 𝜑t=0’ (with 𝜑t referring to the angle between the thread and a plumb line at time t) can be 

regarded as a premise, according to Beisbart, in that it can be interpreted as a statement about 

the value of the initial angular position of the pendulum after zero time steps. During the 

simulation process, the value of 𝜑 is updated according to the transformation rules (which, as 

indicated above, themselves constitute premises of the simulation argument). Although the 

results of the pendulum simulation will take the form of numerical values, we would generally 

understand these values as denoting physical characteristics of the system under 

investigation, namely the position of the pendulum at different time steps expressed in 

suitable coordinates, i.e., its trajectory. 

Looking at the second objection, however, Beisbart admits that the reconstruction thesis has 

to be refined in order to take into account the fact that the results delivered by a computer 

program will differ from the results that would have been provided if the computational 

process had followed the algorithms and transformed the original numerical inputs in an exact 

way. 

Naturally, computational processes will produce roundoff errors or truncation errors. Thus, in 

order to maintain the idea that simulations can be reconstructed as deductively valid 

arguments, Beisbart (411f.) suggests that the reconstructing argument and its conclusion need 

to be modified so as to account for the circumstance that the algorithmic rules are followed 

only approximately. For example, the premise of the ‘simulation argument’ that specifies how 

the angular velocity of the pendulum changes over n iterations must be refined such that it 

entails that the angular velocity of the pendulum at a given time step will approximately take 

a certain value.  

Beisbart defends his view that the reconstruction thesis can be upheld despite this 

modification. He argues that scientists are usually not interested “in the exact numbers” but 
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in making general statements about the behavior of the system which the simulation 

represents (411).  

Overall, we agree with this consideration and with the general idea that the relationship 

between simulation output on the one hand and initial conditions and algorithms on the other 

can profitably be compared to the relationship between (deductively derived) conclusions and 

their premises. As Boge (2019, 13) has pointed out, “[the] evidenced possibility of 

reconstruction in terms of arguments speaks in favor of CSs respecting the logic of arguments. 

This may be understood perfectly well in terms of their algorithmic nature and the implied 

rigidity of the input-output relation, similar to truth preservation in deductively valid 

arguments.”  

 

4 Epistemic opacity and the inferential character of CSs 

It is often claimed that despite their central role in studying the behavior of complex systems, 

among other things, CSs have the disadvantage of being epistemically opaque. In recent 

debates, much has been said about the sources of this opacity as well as about the ways in 

which the opaque character of CS may constitute a threat to our epistemic ends (see, e.g., 

Humphreys 2004, 2009; Kaminski 2018; Lenhard 2006, 2019). Before we proceed with an 

examination of the epistemic power thesis, let us first elaborate on how the idea that CSs can 

be reconstructed as arguments might contribute to a better understanding of why and in what 

respect the oft-stated opaque character of complex computing systems is of epistemological 

importance. 

A prominent definition of epistemic opacity has been proposed by Humphreys:  

A process is epistemically opaque relative to a cognitive agent X at time t just in case X 

does not know at t all of the epistemically relevant elements of the process. (2009, 

618) 

Which elements should be considered “epistemically relevant” remains an open question. In 

the strictest interpretation, every computational step of a simulation process is epistemically 

relevant since an error in any of the steps could corrupt the simulation result. In the case of 

CSs, it seems that Humphreys assumes that opacity in fact stems from a lack of access to 

individual steps of the simulation and from the inability to examine how specific elements of 
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the computational process affect the results. As he puts it, the “dynamic relationship between 

the initial and final states of the core simulation” is in many cases epistemically opaque 

because “most steps in the process are not open to direct inspection and verification” 

(Humphreys 2004, 147f.).  

Against this backdrop, CSs seem to differ clearly from ‘ordinary’ arguments: one would 

normally say that arguments are epistemically transparent in the sense that the steps involved 

in inferring the respective conclusions are accessible or traceable by cognitive agents. In the 

case of CSs, however, it seems that due to their complex dynamics or the sheer number of 

computational steps involved, such transparency usually cannot be achieved.  

Responding to the potential concern that the epistemic opacity of some CSs renders it 

untenable to maintain that they are arguments, Beisbart and Norton (2012, 416) simply state 

that “[there] is no requirement that an argument be humanly comprehensible. All that is 

required is that it is a sequence of propositions conforming to the rules of the applicable logic.” 

By definition, the soundness of an argument does not depend on anything other than the 

validity of the inferences it contains and the truth of its premises. Does this, however, imply 

that epistemic opacity should be of no concern?  

In order to better identify the challenges related to the non-traceability or inaccessibility of 

the steps that occur when computing systems enter the stage of scientific knowledge 

acquisition, let us take a brief look of the widely discussed historical example of Haken and 

Appel’s computer-assisted mathematical proof of the four color theorem. The four color 

theorem (4CT) is a famous theorem in graph theory stating that only four colors are required 

to color any map such that no two adjacent regions have the same color. In 1976, Kenneth 

Appel and Wolfgang Haken announced their proof of this theorem, which was based on the 

idea of reducing all possible map configurations to a limited number of configurations, each 

of which could then be verified separately (see Appel and Haken 1989). The proof was, 

however, contested by mathematicians among other things because of its extensive reliance 



Chapter 3: How do we learn from Computer Simulations? A Critical Examination of the “Argument 
View” on Simulation 

55 
 

on computer assistance37 and because of the fact that it was impossible or at least infeasible 

for humans to verify all the steps involved in it.38 

The example of 4CT is interesting for two reasons. Firstly, it was the first time that a 

mathematical proof was performed with extensive computer assistance and therefore raised 

questions about the status of computer-generated deductions. Secondly, mathematical 

proofs are prime examples of deductive reasoning. Since we agree with Beisbart that 

simulation processes can be reconstructed as deductive arguments, the reservations about 

the proof of 4CT are relevant to computer simulations as well.  

In his discussion of the philosophical implications of Appel and Haken’s computer-assisted 

proof of 4CT, Tymoczko (1979) points to an interesting ambivalence: on the one hand, by and 

large, most mathematicians seem to have considered Appel and Haken’s computer-assisted 

approach to be reliable enough to show that the 4CT is correct; on the other hand, many have 

emphasized that the proof does not adhere to the same standards as ‘ordinary’ mathematical 

proofs, because “[i]t has not been checked by mathematicians, step by step, as all other proofs 

have been checked. Indeed, it cannot be checked that way.” (70) 

Interestingly enough, Tymoczko suggests that it is not the chosen mathematical approach 

used in Appel and Haken’s proof that is in itself opaque or of questionable reliability: “There 

is a very clear idea of what the computer is supposed to be doing – we have a good 

understanding of reduction techniques” (74). Discussing the question of how the reliability of 

the computer-assisted proof differs from that of ‘traditional’ proofs, he states: 

The reliability of the machine is ultimately a matter for engineering and physics to 

assess. Of course, even if we grant that the machine does what it is supposed to – 

follow the program – there remains the question of whether the program does what 

it is supposed to. This question can be difficult to answer. The task of evaluating 

programs is a topic of computer science, but at present there are no general methods 

for accomplishing it at this level. Programs themselves are written in special 

                                                           
37 Appel and Haken’s proof depends on the existence of reducible configurations of maps. The main role of the 

computer was to check each of the 1936 relevant configurations for reducibility, which took over 1000 hours of 

computing time. 

38 By now a simpler proof with the same general approach has been found and the theorem is widely accepted 
as proven. 



Chapter 3: How do we learn from Computer Simulations? A Critical Examination of the “Argument 
View” on Simulation 

56 
 

‘languages’, and many of them can be quite complex. They can contain ‘bugs’ or flaws 

that go unnoticed for a long time. The reliability of any appeal to computers must 

ultimately rest on such diffuse grounds as these. (74) 

Tymoczko’s insightful assessment indicates some differences between reservations about the 

4CT proof on the one hand and reservations that scientists may have when confronted with a 

new ‘traditional’ proof on the other hand. Traditionally, a central reason for demanding that 

each step of a mathematical proof be verified is that an inferential misstep might have 

occurred at some point.  

In the case of inferences drawn by means of computers, it seems that, on the one hand, one 

could argue that as soon as (I) the premises of a simulation program are regarded as accurate 

and (II) computational processes are assessed as being sufficiently reliable, there is no need 

to verify all inferential steps individually (and this seems to be what underlies Beisbart and 

Norton’s statement mentioned above). One might even stress, perhaps, that computers are 

usually inferentially more reliable than human agents due to their strict adherence to 

algorithmic rules (consider for example that often we use pocket calculators precisely to 

confirm ‘manual’ calculations).  

On the other hand, it seems that the crucial challenge of working with sophisticated 

computing systems is that the very practice of determining if (I) and (II) are fulfilled becomes 

much more difficult. As Tymoczko’s considerations suggest, a central element of the 

reservations about the 4CT proof arose due to the concern that programming languages may 

contain bugs or that hardware malfunctions may be present.  

What can we learn from this? The example of 4CT and scientists’ discomfort with its 

computational proof indicates that the mere fact that some computationally-assisted 

deductions are too difficult for a human agent to perform may not inherently be an epistemic 

defect. Rather, one important elephant in the room seems to be that relying on complex 

computing systems crucially involves dealing with uncertainty: the lack of observability of the 

4CT proof seems to constitute a challenge not ‘in itself’ but in that – due to its complexity and 

the sheer number of computations involved – it is difficult to estimate whether and where 

potential sources of errors occur. As Tymoczko (1979, 74) puts it, the reliability of the 4CT 

proof “rests on the assessment of a complex set of empirical factors.”  
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Let us now apply these findings to the case of CSs and to the issue of epistemic opacity. In the 

case of the 4CT, it seems that scientists’ discomfort was not primarily about the fact that the 

deduction was too lengthy for human agents to perform, but had to do, inter alia, with 

uncertainty about whether the deduction had been performed as intended. This seems 

important for the case of CSs. By accepting the reconstruction thesis and acknowledging the 

algorithmic nature of CSs, we have reason to claim that once we are certain enough that the 

reconstructing argument is actually deduced, it is not necessary to directly inspect and verify 

each step of the process. At the same time, such certainty is not always easy to attain as CSs 

are often quite complex. This, however, suggests that the worries underlying the diagnosis 

that computer simulations are epistemically opaque might be fruitfully addressed not 

primarily by striving for an investigation of single deduction steps but by performing suitable 

practices of error and uncertainty management (Newman 2016; see also Kroll 2018).  

 

5 Going beyond the reconstructing thesis 

Thus far, we have suggested, in accordance with Beisbart, that the relationship between 

simulation input and output can be compared to the relationship between the premises and 

conclusions of deductive arguments. Moreover, we have outlined how reconstructing CSs as 

arguments can help shed light on the often-asserted challenge of epistemic opacity.  

However, recall that Beisbart’s claim goes further: not only can CSs be reconstructed as 

arguments, the argument view can furthermore illuminate how CSs enable scientists to learn 

something new about the world. We will argue that while the reconstruction thesis can be 

maintained, the situation is different when it comes to this second aspect. 

Our examination consists of two parts. First, we focus on the validation of CSs. Even though 

Beisbart admits that the argument view remains largely silent about validation, he seems to 

suggest that setting aside validation issues is compatible with the idea that the argument view 

offers insight into the general epistemological functioning of CSs. We view this response with 

some skepticism and suggest that the often “motley” (Winsberg 2019) nature of validation 

raises doubts about whether the epistemic power of CSs can be captured by focusing on the 

way in which simulation outputs follow from given inputs.  
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Second, we outline that when using CS as a means to acquire new knowledge one often also 

draws on practices of inductive reasoning whose role does not consist in demonstrating the 

truth of the premises of the reconstructing argument. To the extent that the argument view 

falls short of properly incorporating these practices, it fails to meet its own demand of 

satisfactorily answering (Q_CS). 

 

5.1 Validation  

Remember that for Beisbart, the statement that a computer simulation has the same 

epistemic power as an argument implies that computer simulations and arguments contribute 

to the acquisition of new knowledge in a similar way. So far, we have agreed with Beisbart 

that the relationship between simulation input and output is comparable to the relationship 

between the premises and conclusions of deductive arguments. Yet, if our interest concerns 

the general way in which CSs contribute to acquiring new knowledge, do we not need to take 

into account more than just the way in which a single simulation run generates its output? 

It seems clear that validation, broadly understood as comprising “the efforts to show that a 

computer simulation represents its target appropriately” (Beisbart 2019, 36), plays a crucial 

role in assessing the way in which CSs contribute to knowledge acquisition. Beisbart himself 

admits that by abstracting from validatory activities, the argument view does not answer all 

of the relevant epistemological questions about CSs:  

Our reconstructions abstract from the problems of validation. They do not explain how 

the working scientists come to think that the algorithm used in the simulations reflects 

the dynamics of the target […]. In this sense, our reconstructions abstract from 

important epistemological problems about computer simulations. (Beisbart 2012, 417) 

Nevertheless, Beisbart proposes that the additional considerations needed to draw a 

connection between CSs and their targets also take an inferential form. As he puts it, 

“validation is typically inferential too” (417). Furthermore, he stresses that while the 

“argument that reconstructs the one run of the simulations will be deductive, […] the further 

inferences run by the simulationalist are likely to be inductive” (413). 

Indeed, one would certainly (and almost trivially) grant that in justifying that the simulation 

model is an adequate means of learning about a physical target, one crucially relies on drawing 
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additional inferences beyond those that lead to the simulation results as their conclusion. 

However, consider that in the case of experiments, one would likewise say that validatory 

arguments are usually required when claiming that experimental results help us learn about 

the respective subject of scientific investigation. While there is a debate as to whether the 

arguments given as legitimization for the inference from result to target in CSs differ in nature 

from those given for experiments (cf. Morrison 2009; Winsberg 2009a), it seems clear that 

arguments are central when claiming that knowledge about a physical target has been 

generated. If at the same time, however, a central idea underlying the argument view is to 

understand their epistemic functioning precisely by setting them apart from experiments, 

then pointing to the fact that validation is inferential too confuses the issue rather than 

clarifying it.39 

Still, Beisbart proceeds by providing an additional reason that setting aside validation does 

not threaten the argument view. He argues that despite the need for further validatory work 

to be done in order to “transfer knowledge from the model to the target” (Beisbart 2012, 419), 

comparing CSs to arguments informs us about the general epistemic functioning of CSs.  

Considering that he explicitly states that performing validatory activities means verifying 

whether the premises of a CS are true, it seems that to him, admitting the need for epistemic 

activities that go beyond drawing deductive inferences generally fits in the CS-as-arguments 

picture rather than contradicting it:  

Simulation scientists have […] to show that their simulations faithfully reflect the target 

in the intended respects. In the framework developed in this paper, this is to show that 

the premises of the reconstructing argument are true. […] This part is called validation 

of the simulations. Validation is supposed to make a case for the results of a computer 

simulation study in relation to its target. (Beisbart 2012, 417, emphasis in original) 

Let us put these pieces together: Beisbart explicitly grants that additional non-deductive 

practices usually play a role when referring to CS as means of knowledge acquisition. At the 

same time, he suggests that these additional practices serve to evaluate the truth of the 

                                                           
39 Interestingly enough, it has indeed been suggested that experiments can be characterized as arguments. As 
Hon (2000) argues, experiments can be cast as arguments because the conclusions of an experiment “may be 
seen as the result of a chain of reasoning concerning the behavior of some material system.” While we cannot, 
in the scope of this paper, further elaborate on Hon’s proposal, it seems clear that characterizing validation as 
inferential does help to make a distinction between CSs and experiments. 
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premises of the reconstructing argument. To summarize, the key idea seems to be that if all 

epistemic activities relevant to the capacity of CSs to generate new knowledge concern the 

process of either drawing inferences or showing that the premises of a CS are true, then one 

can maintain the idea that, overall, the epistemic power of the CS should be that of the 

respective reconstructing argument. 

We can make sense of CSs’ contribution to knowledge acquisition precisely by acknowledging 

that they enable new insights by means of ‘inferentially reliable’ processes rather than 

through interaction with the world. The idea seems to be that the argument view provides an 

answer to (Q_CS) indirectly because it renders intelligible how CSs help us gain new knowledge 

about a model, which is then transferred to a target. More precisely, as indicated above, 

Beisbart suggests that within the framework of the argument view, performing validation 

activities is equivalent to verifying that the premises of an argument are true. It is acceptable 

to abstract from validation because validatory activities play a “confirmatory” role with regard 

to the inferences drawn: by promoting an argument view on CS one emphasizes the fact that 

knowledge is being generated inferentially, and that to validate a CS is to show that the 

premises of the respective inference are true.  

Does this claim hold? Consider that in the philosophical literature there is a debate on whether 

the verification and validation (V&V) of CSs can be separated. For example, Lenhard (2019, 

208) argues that “it is not possible to first verify that a simulation model is ‘right’ before 

starting to tackle the ‘external’ question of whether it is the right model.” Consider, for 

example, the case of parameter assignments. On the one hand, according to Lenhard, the 

adjustment of parameters is part of an improvement of the performance of a discretized 

computational model, i.e., the part where one makes sure that it appropriately ‘fits’ the 

theoretical model. At the same time, however, the assignment of parameters also concerns 

the way in which the model is being characterized and thus also concerns validatory questions. 

As Lenhard puts it: “without the assignment of parameters, neither the question about 

representational adequacy nor the question about behavioral fit can be addressed” (207).  

In a similar direction, Winsberg (2009b, 839) states that in cases in which one finds that the 

computational model does not account for experimental data, it may be unclear whether one 

should “blame the underlying model or […] the modeling assumptions used to transform the 

underlying model into a computationally tractable algorithm.” However, in contrast to 
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Winsberg’s and Lenhard’s positions, Margaret Morrison (2015, 285ff.) holds that by stating 

that V&V are inherently entangled, one mistakenly suggests that performing V&V is a 

“piecemeal activity” when in fact it is important for the credibility of CSs to stress that these 

activities are usually undertaken in a sequential manner40 and can be clearly distinguished 

conceptually as well as methodologically. 

Yet, whether or not one agrees with Morrison that Winsberg and Lenhard overestimate the 

entanglement of V&V, it is remarkable that she herself points out that one should not simply 

think of validation as mere ‘hypothesis testing’: “the validation process involves providing 

evidence for the accuracy of a particular model rather than establishing a ‘true/false’ 

conclusion” (Morrison 2015, 282). Rather, as she observes, a central challenge lies in the fact 

that different sources of uncertainty are involved and that the goal of V&V methodology is to 

manage uncertainties that arise, for example, due to parameter choice or a loss of information 

in the process of discretization (250ff.). Moreover, she points out that in many cases, 

validation experiments “have poorly characterised or very little data input for computational 

simulations” which may be associated with the need for a “probabilistic treatment of 

uncertain parameters in the computational submodels, initial conditions, or boundary 

conditions” (278). As she puts it, the question whether a validation experiment legitimately 

confirms that a computational model is accurate often depends crucially on how ‘accuracy’ is 

defined (Morrison 2014, 945). This, in turn, seems far from an easy and straightforward task. 

Related to such concerns, Winsberg (2019) emphasizes that “most model equations chosen 

for simulation are not in any straightforward sense ‘the right equations’” as they may result 

from compromises between what is considered an adequate description of the phenomenon 

on the one hand and computational tractability on the other.41 

Against this backdrop, the assumption that validation consists in checking whether the 

premises of an argument are ‘true’ seems to be a simplistic description of the challenges that 

are encountered in the process of validating a CS. Far from being straightforward or ‘linear’, 

modeling in the context of CSs is a complex process that presents the modeler with varying 

                                                           
40 Morrison argues that if validation were performed before verification, one would run the risk of arriving at an 
untenable result and being unable to assess where the problem lies (cf. Morrison 2015, 265). 
41 For example, the theoretical model with which the modeling process usually begins in the context of CSs often 
has the form of some differential equations, which describe the dynamic behavior of the target system. These 
equations usually will not have analytic solutions, which comes with the challenge of relying on modeling 
decisions that tend to be “theoretically unprincipled”, but at the same time is a central reason for the usefulness 
of CS (Winsberg 2010, 7ff.) 
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degrees of freedom in their modeling choices at different points in the modeling process as 

well as with the challenge of dealing with a variety of uncertainties. While we may well 

abstract from challenges arising in the context of validation if the aim is solely to capture 

certain aspects of CSs, it is doubtful whether we can do so when trying to answer (Q_CS). 

 

5.2 CSs and the inductive leap 

Thus far, we have argued that although the argument view addresses the need for additional 

validatory activities in order to formulate knowledge claims on the basis of the results of a CS, 

it does not adequately capture the epistemic importance of these activities. In the following 

discussion, we offer an additional reason for rejecting the idea that the argument view 

provides a coherent picture of how CSs contribute to knowledge acquisition. We do so by 

demonstrating that there are often other inferential practices involved in dealing with CS that 

are crucial for assessing the role of CSs in contexts of knowledge acquisition. These practices 

of reasoning are, as we will show, not appropriately addressed by the argument view as they 

are neither limited to a validatory role nor fully captured by what can be inferred deductively 

from the input of single simulation runs42. 

Let us begin with a rather abstract example. In his 1997 paper, Mark Bedau argues that some 

CSs grant epistemic access to weakly emergent phenomena. According to Bedau (1997, 377f.), 

a macrostate P of a system S with microdynamic D is weakly emergent iff P can be derived 

from D and S’s external conditions but only by means of simulation. In order to illustrate the 

concept of weak emergence, Bedau discusses the case of Conway’s Game of Life, a cellular 

automaton that consists of a grid of cells whose states change depending on the states of their 

neighboring cells over a number of discrete time steps. When simulating the evolution of Life 

configurations over time, one can observe the emergence of interesting macropatterns such 

as gliders.43 

As Bedau argues, whether patterns such as gliders will emerge in instances of Life is fully 

dependent on (a) the initial state of the system (in this case, the microstates of the cells of a 

                                                           
42 Beisbart (2012) did of course not forget about these practices. In his paper he focuses “on one single run of a 
simulation and not on a CS study” (424) and thereby excludes the inductive reasoning practices we are discussing 
in this section. We believe, however, that it is an important part of the answer to (Q_CS). 
43 Gliders are patterns (consisting of ‘live’ cells) that travel diagonally across the Life grid.  
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Life instance after zero time steps) and (b) the microdynamics (in this case, the rules according 

to which the states of the respective cells change). However, he points out that having 

complete information about the microrules and initial configuration does not suffice for an 

epistemic agent to estimate whether random initial Life configurations will spawn certain 

macropatterns such as gliders. 

Even though it seems that in principle the occurrence of patterns could be predicted on the 

basis of such information, Bedau observes that in practice studying the evolution of Life 

configurations over time by means of computer simulation is the only way for epistemic 

agents to determine whether a certain microconfiguration will lead to the occurrence of 

weakly emergent phenomena.44 

In the case of Life, we may be interested in knowing the likelihood that a given random initial 

configuration will spawn gliders after a number of iterations. We may thus seek a law that 

specifies the probability of an initial configuration quickly leading to a macrostate in which 

gliders appear. As Bedau (1997, 385) states, the fact that patterns such as gliders are weakly 

emergent “does not prevent us from readily discovering various laws” about them. By means 

of “extensive enough observation”, one can see, for example, that for most configurations 

gliders will spawn quickly, and summarize this information in the form of a probabilistic law. 

However, as he puts it, “[empirical] observation is generally the only way to discover these 

laws” (385). 

Thus, in the case of Life, computer simulations play not only a heuristic role in illustrating the 

development of Life configurations over time but also an epistemically irreducible role in 

identifying laws according to which the emergence of certain patterns can be quantified. 

Even though we are not primarily interested in the conception of “weak emergence”45, 

Bedau’s considerations are particularly interesting for two reasons: 

                                                           
44 There is a debate about whether weakly emergent phenomena in fact qualify as emergent. We do not want to 

delve deeper into this discussion here. As we are interested in the question of how scientists as epistemic agents 

can learn from CSs, it suffices to say that it does not seem possible for them to proceed in any way other than an 

inductive manner when seeking to learn about the emergence of certain patterns or phenomena. 
45 We do not mean to imply that CSs’ contribution to knowledge generation goes beyond what can be deductively 
inferred from their ‘premises’ only in cases in which one is interested in phenomena that qualify as ‘weakly 
emergent’. Rather, we suggest that Bedau’s argumentation indicates particularly clearly that, more generally, 
scientists may often be interested in general rules of pattern emergence rather than in a single simulation output 
and that in such cases inductive inferences are central despite outputs being derived deductively.  
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(I) Given that weakly emergent structures or macropatterns can in principle be 

derived from a complete knowledge of the initial conditions and algorithmic rules 

of a system, CSs that serve as a means of tracing the behavior of such structures 

can be described in full accordance with the reconstruction thesis. 

(II) Following Bedau, CSs can serve as a means of acquiring knowledge about rules that 

describe the occurrence or behavior of such weakly emergent phenomena. These 

rules can, however, be identified by no other means than empirical observation of 

the CSs’ behavior. 

The second point raises questions that are relevant to the discussion of similarities between 

CSs and arguments: If we want to maintain that the epistemic power of CSs is the same as that 

of deductive arguments, then how can we make sense of the fact that learning about 

interesting characteristics of Life depends on empirical observation of the simulation? 

Moreover, if formulating empirical laws about the behavior of Life requires studying numerous 

simulation runs with different initial configurations, does the fact that single runs of a 

simulation can be reconstructed as arguments satisfactorily illuminate how they contribute to 

knowledge acquisition? 

An obvious objection to these concerns is that studying the emergence of Life patterns does 

not really address the acquisition of knowledge about – in Beisbart’s words – ‘real-world 

phenomena’. Yet there are interesting parallels to other cases in which one attempts to 

generate ‘model-based knowledge’ about the world.  

Discussing the role and characteristics of theoretical models in economics, Sugden (2000; 

2009) criticizes the idea that the central mode of knowledge acquisition about real-world 

targets is to deductively draw conclusions from well-founded assumptions. Sugden considers 

cases such as Akervlov’s market for lemons or Schelling’s checkerboard model of residential 

segregation. The latter is an agent-based model consisting of a grid with cells ‘inhabited’ by 

agents that are members of one of two groups and are ascribed a certain preference for living 

beside agents of the same (e.g. ethnic or economic) group. Over the course of time, agents 

‘move’ across the board according to their preferences. As Sugden argues, “we have to realize 

that results that [Akerlov and Schelling] derive deductively within their models are not the 
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same as the hypotheses that they want us to entertain” (2000, 18). Even though concrete 

‘outputs’ are generated by means of deductive inference, he suggests that usually it is not 

these outputs themselves that are the sole subject of interest. Rather, he claims that one is 

often interested in drawing more general statements about the world that are inferred 

inductively. In the case of the checkerboard model, for example, Sugden (17) argues as 

follows: Rather than starting with a set of well-grounded premises and ending with 

deductively inferred conclusions that follow from these premises, it seems that one is often 

interested in reaching more general conclusions and thereby relies on drawing explanatory, 

predictive or abductive links. If, for example, in real-world contexts, one can observe some 

phenomenon X and if X is – within the scope of a model – induced by Y, then one might want 

to generally infer that Y may be the central cause for the occurrence of X. In this case, 

however, an ‘inductive leap’ is present. What is relevant for Sugden is that in either case, 

despite model results being inferred deductively, certain (relevant) statements about real-

world targets seem to depend on further inferences that are inductive. Taking the example of 

the checkerboard model, he suggests: 

[H]aving experimented with Schelling’s checkerboard model with various parameter 

values, I have found that the regularity described by Schelling persistently occurs. 

Having read Schelling and having thought about these results, I think I have some feel 

for why this regularity occurs; but I cannot give any proof that it must occur (or even 

that it must occur with high probability). My confidence that I would find similar results 

were I to use different parameter values is an inductive inference. (22f.) 

Based on Sugden’s considerations, let us consider two important ways in which the 

checkerboard model may be regarded as a (potential) means of providing new knowledge 

about the world: Firstly, given that segregation is observed in real-world cities, the 

checkerboard model might indicate that individuals’ preferences may be one relevant driving 

force for this phenomenon. Secondly, by studying the dynamics of several model instances 

with different parameters, one might infer that Schelling’s model provides insights on the 

surprising rapidity with which segregation occurs even if people’s preferences for living next 

to members of their own group are rather mild (see Aydinonat 2007, 437f.). In both cases, 

knowledge claims would rely centrally on drawing inductive inferences and, especially in the 



Chapter 3: How do we learn from Computer Simulations? A Critical Examination of the “Argument 
View” on Simulation 

66 
 

second case, on making a general statement about segregation dynamics based on an 

observation of the outcomes of different model ‘runs’.  

One might still worry that concentrating on theoretical models in economics sets a too narrow 

focus and that the situation is different for most scientific practices in which CSs are used to 

learn about real-world phenomena. Consider, however, a final example that focusses on some 

aspects of the use of CSs in climate science and meteorology.  

Climate science was one of the first fields to use computer simulations on a large scale. 

Already in the 1950s a computer model existed, which was used to simulate the dynamics of 

the atmosphere. Wendy Parker (2014: 337) describes that the scientists who used these 

simulations were interested in weather forecasts and the development of the climate as well 

as advancing their theoretical understanding of the climate system. One main impact of the 

introduction of the computer in climate science was that it enabled the scientists to get 

approximate solutions for the theoretical equations they assumed to govern the climate 

system, which would have taken too much time to calculate by hand. The computer “helped 

scientists to see what followed (or failed to follow) from the physical assumptions reflected in 

different mathematical models of the atmosphere or climate system” (341). According to Jule 

Charney (1955), one of the meteorologists who developed these early models, the “radical 

alteration” that was happening in meteorology with the introduction of CSs was grounded in 

“its ability to serve as an inductive device.” (798 f.) Controlled meteorology experiments are 

difficult or impossible, but the CSs allowed for hypothesis testing and thereby permitted “a 

wider range of inductive methods”. (799)  

As Parker (2014: 348 ff.) has discussed, climate models have for example been used to test 

the hypothesis that human activities are causally connected to the global warming in the 

second half of the twentieth century. In order to test this hypothesis, one could first use a 

climate model with the dynamics of the natural forcing factors but with fixed anthropogenic 

forcing factors and observe how global warming develops in this simulation. In a second 

simulation, one adds the anthropogenic forcing factors. If global warming could be observed 

in the second simulation but not in the first one, this would be evidence for the hypothesis.  

The above example fits the structure of eliminative induction (Pietsch 2004). Therefore, if we 

conclude from the results of the proposed simulations that human activities are causally 

connected to global warming, this conclusion is an inductive one. 
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Given the aforementioned examples, it seems that CSs are commonly used to make 

statements about real-world targets that go beyond what is deductively derived from initial 

assumptions (and thereby that it is common to rely on practices of inductive reasoning).  

If we were to argue that simulations contribute to knowledge acquisition specifically by 

deductively inferring an output from some initial conditions and transformation rules, would 

we not be missing an important aspect of their contribution to knowledge acquisition? To the 

extent that simulations are considered a means of drawing more general conclusions – for 

example, about the key forces that cause some macroscopic pattern to occur or about the 

relationship between different characteristics of a physical target – and to the extent that the 

argument view fails to take these practices of reasoning into account, it cannot satisfactorily 

answer (Q_CS). 

 

6 Conclusion 

In this paper, we have critically discussed Beisbart’s argument view on CS. The argument view 

consists of three different claims: the reconstruction thesis, the epistemic power thesis and 

the execution thesis. Based on these three theses, Beisbart seeks to provide an answer to the 

question of how scientists can gain new knowledge when using a CS.  

We grant that, as Beisbart suggests, CSs can be reconstructed as arguments whose premises 

are the initial state and the transformation rules upon which the respective simulation is 

based. However, we disagree with the epistemic power thesis. Beisbart claims that CSs have 

the same epistemic power as arguments because they can contribute to the acquisition of 

new knowledge in the same way as arguments. This analogy falters in an essential respect: 

while one might grant that the relationship between simulation input and output can be 

understood as a relationship between premises and deductively derived conclusion, the 

character of this relationship alone does not provide a satisfactory account of how CSs 

contribute to the acquisition of new knowledge. 

In order to substantiate this claim, we have illustrated that clarifying the role of CS in 

knowledge acquisition requires properly taking account of the central involvement of 

practices of reasoning that are genuinely inductive. We have pointed to different cases in 

which the role of CSs in helping epistemic agents to gain new knowledge can only be 
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satisfactorily understood if one takes into account practices of inductive reasoning that go 

beyond what is deductively inferred in the course of a single run of a CS. We therefore 

conclude that the reconstruction argument does not fully capture the epistemic power of CS. 

In addition, the argument view largely disregards the epistemological problems concerning 

the validation of CS, which, however, seem to be central to a proper grasp of the contributions 

(and challenges) of CSs in contexts of knowledge acquisition. This casts further doubt on the 

capacity of the argument view to answer (Q_CS). 

Nevertheless, Beisbart’s suggestion of reconstructing the simulation run as an argument does 

have its benefits, as it indicates that the central challenge of epistemic opacity might be less 

about the necessity of checking every computational step of a simulation than it is about the 

importance of facilitating strategies to manage and address sources of uncertainty and error 

that are present in the modeling process.  
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Chapter 4: Model building in theoretical ecology: Is ‘species’ a good 
observable?  
Or: Why grass is not less important than rabbits 

 

Abstract 

The main goal of theoretical ecology is to understand and explain phenomena of the living 

world. One central epistemic tool for this purpose are models. In this paper, we discuss two 

difficulties of the relations between models, theory and observation. The first challenge, 

shared among all data-based models, is the difference between the phenomenon and the data 

of the phenomenon that we use to build the model. Secondly, we address a problem that is 

more specific to ecological models, namely the choice of ‘species’ as the central observable in 

ecology. Organisms, which are easily observable, are described in greater detail and with 

clearer distinction than less easily observed organisms, leading to a skewed representation in 

the data. Nevertheless, ecological models and theories have shown to work well across a 

range of gradients and scales. To understand this seeming contradiction better, we address 

general problems of model building using food web ecology as an example case.  

 

1 Introduction 

The main goal of theoretical ecology is to understand and explain organismal diversity and 

interactions among organisms and their environment (Begon and Townsend 2021). By 

combining results from descriptive observations of natural ecosystems and empirical studies 

both inside and outside of the lab, theoretical ecologists detect patterns in natural complexity 

and attempt to build models based on biologically realistic assumptions, which reproduce 

these patterns. These idealised model-representations of ecological systems aim to improve 

the understanding of the natural world by uncovering fundamental mechanisms and biological 

processes.  

The process of gathering knowledge in theoretical ecology is based on two main assumptions. 

The first assumption is the existence of fundamental processes in ecology. Only if there are 

general underlying mechanisms generating natural complexity across species and ecological 

environments, theoretical ecology can ever be able to detect any of these in observable 
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phenomena. Fundamental research has a long tradition in the sciences in general as well as in 

ecology (Scheiner and Willig 2008; Marquet et al. 2014) and has contributed to deepened 

understanding of natural phenomena, has led to economic, social and political progress and 

has served as a source for innovation (Courchamp et al. 2015). Hence, this first assumption is 

widely acknowledged as acceptable and useful across scientific disciplines. 

The second assumption is shared among all observation- or data-driven sciences. Models in 

data-driven sciences are built based on data of phenomena that has been gathered via 

observations. The assumption is that one can gain knowledge about the phenomenon from 

this data by using inductive and possibly abductive reasoning (Mazzocchi 2015). Thus the 

success of a model as a tool for understanding natural phenomena relies on the relation 

between the phenomena and the observations of the phenomena. The aim of this paper is to 

discuss this second assumption in the scope of ecology using insights from the philosophy of 

science discussion about model building. We believe that this contribution to the philosophy 

of ecology can benefit both the philosophy of science by adding an example with new facets 

to the discussion about the role of models in science and the field of theoretical ecology by 

reflecting on the assumptions and idealizations of model building in ecology.   

In the next section, we describe the problems of incomplete data sets and the role of species 

as an observable in theoretical ecology. In section 3, we introduce the model building process 

from a perspective of philosophy of science before we combine the two parts in section 4 

using the example of food web ecology.  

 

2 Data and Observables in Theoretical Ecology 

Ecological theory building is heavily dependent on the quality of the underlying data. 

Ecosystems are highly complex systems with a vast number of agents and interactions, 

feedbacks and nonlinear responses. Biological organism sizes, habitat areas and temporal 

scales span a huge range. Furthermore, ecological systems are open systems with regards to 

energy and nutrient fluxes as well as indirect interaction effects. All these key characteristics 

of ecological phenomena make it close to impossible to gather exhaustive observational data 

of ecosystems. On top of the fact that ecological data sets are generally incomplete, they are 

very dependent on the chosen system boundaries. All of these factors heavily complicate 
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theory building and theory unification across scales (Turner et al. 1989; Proulx 2007; Marquet 

et al. 2014).  

While the problem of incomplete data sets for the relation between phenomena, data and 

models applies to most empirical sciences, ecological data sets have an additional 

complication: the choice of ‘species’ as the central observable in ecology. A species is typically 

defined genetically or by the capability to reproduce with fertile offspring. Naturally, species, 

which are easily observable, are described in greater detail and with clearer distinction than 

less easily observed organisms. Human perception makes it easier to distinguish the common 

rabbit (Oryctolagus cuniculus) from the European hare (Lepus europaeus) than the perennial 

ryegrass (Lolium perenne) from the Kentucky bluegrass (Poa pratensis) - two common grass 

species found on middle European lawns. As a consequence, ecological data sets are not only 

incomplete but also highly skewed. When looking for example at food webs46 and predicting 

the ratio of predators and prey species, the bias for larger species - which happen to often be 

higher up the food web than smaller species - systematically affects the empirical distribution 

and hence the derived models and theories (compare Figure 4). 

 

 

 

Figure 4: Three representations of a food web with one rabbit and one hare species, feeding on grass. 

The simplest representation is to lump all grass species into one data point (a). If you know, that the 

two most common grass species in European lawns are present, you could decide to treat them 

separately (b). In reality however, lawns and meadows are usually very diverse with regards to their 

species composition (c), even though the different grass species look very similar at first sight. If one 

wants to analyse the ratio of primary producer to consumer species in the current examples, one 

arrives at ranges from ½ (a) to 5 (c). 

                                                           
46 For a definition of food webs, see for example Hui (2012, 6): “Food web is an important conceptual tool for 
illustrating the feeding relationships among species within a community, revealing species interactions and 
community structure, and understanding the dynamics of energy transfer in an ecosystem.”  
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The two problems – incomplete data sets and a systematic resolution bias for larger, more 

easily observable species – pose fundamental challenges to the formation of ecological 

theories. Nevertheless, theoretical ecology has developed a large diversity of models and 

theories, which provide good predictions both for specific systems and across systems and 

scales, which have tremendously advanced the field and natural sciences in general (Hastings 

and Gross 2012). Interestingly, ecologists even have theories, which predict the degree 

distributions in food webs accurately (Williams 2010).  

This seems to be surprising given the described problems with the data. Explaining how 

ecologist are able to describe ecosystems well and make good predictions about them with 

these skewed models would not only be valuable for ecologists but is also of interest to 

philosophers of science. Of course, this is not the only case in which scientists aim to learn 

something about phenomena with models, which contain misrepresentations. Philosophers 

of science give different explanations why this can be a fruitful undertaking (see for example: 

Cartwright 1983; Morgan 1999; Frigg and Hartmann 2020). Let us look at some of the cases:  

It is quite common for models to contain artificial parameters, which do not represent a 

specific part of the phenomenon. One such example is the Arakawa operator, which was 

introduced by Akio Arakawa (1966) to fix issues with the stability of the dynamics of one of 

the first ever simulations of the circulation of the earth’s atmosphere. The assumptions 

Arakawa had to add to the model to introduce his operator were neither compatible with 

physical theory nor founded in experimental experience but rather went strictly against them. 

They were only accepted because of the success of the resulting model (Lenhard 2007). This 

is different from the case of species in ecological models however since no artificial 

component has been introduced. Even though some of the parameters are simplified, all of 

them refer to actual properties of the system. 

Another interesting comparison are early meteorologist models and Lorenz’ discovery that 

humans cannot measure the relevant input data (for example temperature or humidity) exact 

enough to achieve successful long-term predictions. Even arbitrarily small differences in 

parameters can influence the entire system significantly (later phrased as the ‘butterfly 

effect’). This discovery contributed significantly to the development of chaos theory (Lorenz 

1963). The measurement problems that ecologist have with species of different sizes do 



Chapter 4: Model building in theoretical ecology: Is ‘species’ a good observable? 

75 
 

however not fall in the same category. There is no principle reason why species cannot be 

distinguished with equal precision on different scales.  

There has also been some discussion in philosophy of ecology on the matter. Colyvan et al. 

(2009) offer two possible answers why simplified and idealized models might still give us 

useful information about the phenomenon. Using the example of assuming a constant 

carrying capacity in the model for a system with a varying carrying capacity, they argue that 

the modeler might – with experience and through trial and error – find simplifications, which 

do not impact the model predictions significantly and thereby generating a useful model. They 

also offer a more positive answer: Simplifications might be useful abstractions from irrelevant 

details to reveal the core mechanisms of the system. Again, none of these descriptions fit well 

for the case of species as it does not seem to be the case that the modelers actively decide to 

misrepresent smaller species in the food webs but are rather forced to do so because of the 

available data. All in all, it seems that the example of species in ecological models might be a 

useful addition to the philosophical debate about models and should be discussed in some 

more detail.  

To understand the underlying problems more rigorously and to analyse potential solutions 

and future implications for theoretical ecology, we will first look at model formation from the 

perspective of the philosophy of science and epistemology and then discuss the application to 

theoretical ecology using food web theory as an example. 

  

3 Models in philosophy of science 

Models have become a central epistemic tool in many scientific disciplines. One of their 

functions is to represent phenomena. The goal is to learn about features of the target system47 

by studying and experimenting with the model. Whether knowledge that has been acquired 

about the model can be transferred onto the target system at all is the source of ongoing 

debates in philosophy of science (Giere 2004; Bailer-Jones 2009; Frigg and Nguyen 2017). A 

central aspect to this debate is the question how models relate to the target system, i.e. how 

they represent. This relation has to be understood before the question of a possible 

                                                           
47 Target or Target system has become the established notion to refer to the real-world phenomenon or system 
that is investigated with scientific methods and represented by the model. 
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knowledge transfer from model to target system can be addressed properly. The model 

building process is fundamental to understanding the relation of a model to its target system. 

In the following we discuss the model building process and the challenges one has to face 

especially in data-driven sciences to get from the target system to a model of the target 

system.  

  

 

Figure 5: Central elements of the model building process (target system, data, model) and their 

relationships (observation, model building, representation). The arrows describe the dependencies 

between the elements.  

  

Figure 5 displays the relationships of central elements of the model building process. The 

target system is a phenomenon the scientist is interested in. Data is the empirical information 

that has been gathered about the target system via observation. A model is a representation 

of the target system, built from theoretical considerations as well as empirical data and 

validated against the existing data. 

All of these elements as well as the relationships between them bring about epistemic 

challenges. Without claiming to be exhaustive, we will touch upon a selection of these 

challenges. We will discuss them theoretically at first and give examples of these problems 

from the praxis of theoretical ecology in the next chapter. 

  

3.1 Observation 

The target system is a selected phenomenon that we choose to investigate. It can be nearly 

everything that can be of scientific interested, e.g. the neural network of the human brain, the 
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melting point of a specific metal or the dynamics of populations in a predator-prey interaction. 

We use observation and experiments to gather data about instances of these phenomena and 

try to find patterns in the data to learn something about the phenomena. In the case of the 

melting point of a metal for example, the scientist will perform a number of experiments, 

heating the metal and measuring the temperature at which the metal starts melting. The 

results of the measurements will most likely differ by a small margin, but using the mean of 

the collected data-points, the scientist will get a good estimate of the phenomenon he tries 

to learn something about – the “true” melting point of the metal. It is important to note the 

difference between the phenomenon itself, an assumed fundamental process in reality, and 

the data of the phenomenon, the results of the observation that include known and unknown 

errors (Bogen and Woodward 1988). 

If we want to learn about the target system via data, we are dependent on experiment and 

observation. This dependence brings with it a new set of epistemic challenges that have been 

discussed at length in philosophy of science48. The data that is acquired via observation will 

always be incomplete, because it can never be guaranteed that all instances of the 

phenomenon have been observed, all potential constellations of the chosen variables have 

occurred or even that all the relevant factors have been identified and are observable in the 

chosen target system. Furthermore, the data will always be biased by the choice of 

observables49, because this choice leads to a categorization of the data that affects the 

structure and the description of the data. In this way the choices how the models are built 

have influence on future observations (see example in the next chapter). 

 

3.2 Model building 

The construction of the model is based on theories, which describe the phenomenon under 

investigation and on data, which has been gathered about the target system. The impact of 

theories on the model building process depends on the status of the theories in terms of 

development and reliability in relation to the phenomenon under investigation. If the theory 

is well-developed and extensively tested, the model will typically reflect the equations of the 

                                                           
48 For an overview see: Bogen 2017.  
49 Observables in this context describes the variables that are used to describe the state of a system. Examples 
for observables in physics are momentum and position, for ecology it would for example be species.  
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theory50. In this case, the main purpose of the model is to test the hypotheses and predictions, 

which follow from the theory against the data. In case there are no detailed theoretical 

descriptions of the specific phenomenon or the existing theory cannot be modelled, data is 

the driving force in the model building process. The model will include general theoretical 

principles and assumptions about structural features of the phenomenon. The main input 

however will be from patterns and regularities in the observed data and the fitting of the 

model to the existing data. The second case is more commonly found in ecology, as ecological 

theories are mainly understood as patterns or regularities across models. In both cases, the 

model is partially independent from both theory and data as it is neither defined purely 

through the theoretical equations nor is it a reconstruction of the data alone. Models have 

therefore been phrased as mediators between theory and experiment (Morgan and Morrison 

1999). 

There is no algorithm, which defines how to construct a model given a set of theoretical 

sentences and a set of data, and there is more than one way to construct a consistent model 

that fits a specific set of data (problem of underdetermination). The modeler has to choose 

the equations that shall represent the phenomenon and has to decide which parameters in 

the model are fixed and which are variable and can be adjusted to fit the data. This means 

that in particular the choice of observables is not given by the target system. Different sets of 

observables are possible and will have different strengths and weaknesses.  

  

3.3 Representation 

Once the model has been completed, one has to make sure, whether assumptions about the 

represented phenomenon are correctly implemented (verification) and whether the model 

correctly describes the gathered data (validation). Both of these processes can be far from 

trivial51. 

                                                           
50 This does not imply that the process of model building is trivial in this case. For each case the modeler has to 
choose which parts of the theory are relevant for the specific modeling task while at the same time keeping the 
model sufficiently simple, so that is practically useful.  
51 Oreskes et al. (1994) have even argued that verification of models of natural system is impossible. Furthermore, 
there is a large amount of literature discussing how verification and validation is done properly: i.e.: Oberkampf 
and Roy 2010; Roy 2005; Sargent 2013.   
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An additional complication for the representational function of the model arises if the target 

system consists of a large number of dynamically interacting individuals. Through self-

organising processes, so called emergent phenomena can arise, which cannot be predicted 

from the behaviour of single organisms alone, but are a non-linear product of the agents’ 

interactions. This often puts limitations on the potential for generalisation and scaling of 

models because the emergent effects might appear or disappear if certain thresholds are 

passed. 

What do models actually represent? We want to argue that in many cases there exists a 

discrepancy between the modelers goal and the results. The goal is that the model represents 

the target system and that processes that govern the phenomenon we are interested in are 

represented in the structures of the model. What happens however is that the modeler 

models the data that have been acquired about the target system and tries to fit the model as 

good as possible to this data even though the data are flawed and biased through the process 

of observation. We want to illustrate this discrepancy in the following chapter with an example 

from ecology before we discuss possible reactions. 

  

4 Model building in ecology 

To understand the specific relations between target system, data and models in theoretical 

ecology, we focus on the field of food web ecology. 

Food webs describe network representations of feeding (“trophic”) interactions between 

species coexisting in defined habitats (Dunne 2009). The two main observables are species or 

groups of species and the feeding interactions between them, carrying energy, carbon, 

nutrient or other matter flow. Also in- and outflows to the environment and external 

compartments such as detritus can be included. Species sit at different positions in the food 

web, the so-called trophic levels. The bottom trophic level of a food web is comprised of 

autotrophs, which produce complex organic compounds from an external energy source such 

as light and simple inorganic molecules such as carbon dioxide. The higher trophic levels of 

food webs consist of heterotrophic organisms, which ingest organic carbon for energy 

production and biosynthesis. Food webs are generally represented in the language of graph 

theory and conceptualized as networks, where species are represented by vertices or nodes, 
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and the trophic interactions by directed weighted edges or links. This allows embedding the 

field within the discipline of complex network analyses, using tools from network theory to 

quantify, analyse and model the structure and dynamics of food webs. Common described 

food web properties are for example the number of species and links in a food web, food web 

connectivity, the number of trophic levels, chains and cycles, clustering coefficients, degree 

distributions and degrees of nestedness and hierarchy (Dunne 2009). 

  

4.1 Target system 

The represented target system of food web ecology is the species community including all 

individuals and their feeding interactions. According to the UN Millennium Report, ecosystems 

are defined as “a dynamic complex of plants, animals and microorganism communities and 

the non-living environment, interacting as a functional unit. Humans are an integral part of 

ecosystems” (UNEP 2006). Complexity is hence an integral part of an ecosystem. Ecosystems 

are open systems with regards to energy, mass and information exchange, which means that 

any drawn system boundaries on the planet earth are arbitrary and need to be carefully 

assessed. Furthermore, ecosystems grow and develop, making them dynamic and any static 

description only a snapshot in time. Species abundances as well as their feeding preferences 

vary over time, depend on the current external and internal conditions of the ecological 

community and lack universality. Due to the interconnectivity of ecological networks, these 

dynamics include feedbacks, stochasticity and complex responses to disturbances, which lead 

to non-linear responses and impede predictions of detailed ecosystem behaviour (Jørgensen 

et al. 2007). 

  

4.2 Data 

The beginnings of food web ecology were merely descriptive studies of single food webs, 

aiming at increasing knowledge about species occurrences and their interactions at specific 

sites. The derivation of ecological theories about food web characteristics however needs to 

be based on larger data sets of different food webs, to be able to find common properties and 

fundamental mechanisms and patterns. Comparative food web studies have a short history 
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(starting in the 1970s (Cohen 1977)), not least because of the difficulties connected with the 

translation of ecological communities into data sets. 

The regarded key characteristics of ecological systems (openness, size, spanning of scales) 

make it close to impossible to gather exhaustive observation data of ecosystems. 

Furthermore, data collection in ecology is very labour- and time-intensive. Food webs need to 

be studied across seasons and over different years to account for environmental and weather 

variability. Complete species lists need to be compiled and feed interactions need to be 

derived based on observations, gut samples or expert interviews. More complete data sets 

can be deducted from less complex target systems such as model food webs in the lab. In the 

controlled environments, food webs can be kept very simple with only a few species and 

control over in- and outflows. This gain in completeness of data however comes at the cost of 

completeness of the target system: the model food webs are generally so low in degrees of 

complexity compared to real-world ecosystems, that conclusions and generalisations are not 

necessarily possible. 

Grounding food web description in graph theory, ecologists have found a straightforward way 

to reduce much of the complexity of food webs. The basic observable is ‘species’. While in 

principle, biological species are defined genetically or by the capability to interbreed, some 

food webs explicitly lump species with the same predator and prey species into so called 

functional species. Depending on the questions that should be answered with the model, this 

can be appropriate and enhance the functionality of the resulting model. Very often however, 

the choice of species resolution follows no clearly defined protocol and is based on available 

observations. This regularly leads to the overrepresentation of better detectable species such 

as large mammals in contrast to small autotrophs or other animals with low body size. There 

is thus a bias in the resolution of data towards species, which are better detectable by the 

observer and the bias is strongly dependent on the scale of human perception. 

Apart from the incompleteness and bias of food web data sets, another complication arises 

from the intrinsic dynamics of ecological communities. In reality, neither species abundances 

nor feeding preferences are static properties. Especially the latter are heavily dependent on 

the current configuration of the food web, the presence and absence of preferred prey 

species, the spatial distribution of individuals and further restrictions in prey availability and 

starving pressure. What is established as a feeding link in a food web representation is in fact 
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only a propensity of a species to predate on another, which exceeds a certain threshold 

leading to an observation in the field. Most food webs which comparative food web analyses 

are based on are “cumulative” food webs, being time- or spatially averaged or cumulated 

(Dunne 2009). While this non-rigidness of presence or absence of interaction links between 

species questions the whole concept of a graph representation of a food web itself, it certainly 

has to be born in mind, that current theoretical food web ecology analyses is only a subset of 

the potentially possible, but an average of the at any moment actually occurring species 

interactions. 

  

4.3 Model  

Ecological models are designed and explored to reproduce patterns, which are found in 

observations of natural ecosystems. Observational patterns in food web data are for example 

the relationship between the number of species and the number of interaction links, the 

distribution of feeding links across species and species across trophic levels, the clustering of 

species and their centrality in the food web as well as characteristics of species interactions, 

matter transfer and cycling. These numbers, ratios or functions are analysed across datasets 

of different food webs for general unifying patterns. In parallel, theoretical ecologist 

hypothesize the main mechanisms and processes driving ecosystems, develop according 

models and attempt to recreate the observed patterns with their models by solving 

differential equations or running computer simulations. Should the patterns be found both to 

be consistent across spatial and temporal scales and to be regenerable by mechanistic models, 

the described patterns are elevated to the status of a theory. 

It has for example been assumed for a long time, that connectivity52 must be linked to key 

survival criteria of ecosystems such as stability, resilience and functionality. This is the reason 

why the relationship between links and species has been of long-standing interest. Early 

comparative food web research and theoretical stability considerations hypothesized a 

constant ratio of the number of links L and species S (L = a*S). In studies of about 130 food 

webs, a constant relation of L/S ~ 2 has been found and backed up by different food web 

assembly models (Dunne 2006) – a theory was about to come into being. However more 

                                                           
52 In this context, connectivity refers to the ratio between the number of species and the number of feeding 
relationships between species in the ecosystem.   
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comprehensive data sets shifted this notion of generality as they rather suggested 

relationships of L ~ S2. More data, more studies and reanalyses of old data sets complicated 

the situation further, reporting exponents a (L ~ Sa) ranging between ⅔ and 2. More recent 

models therefore focus on finding mechanisms which can reproduce different exponents 

based on external criteria, potentially finally establishing L ~ Sx(conditions) as a theory (Dunne 

2006). 

From these considerations behind one of the most basic applications of models and theories 

in ecology, it becomes obvious, how strongly ecological theories depend on the choice of 

species and species interactions. Depending on the included links and the aggregation of 

species, completely different statistical patterns emerge. The sensitivity of different food web 

theories to data quality and resolution varies between target food web properties (e.g. 

connectance, food chain lengths, number of species per trophic level), but all food web 

theories are affected (Dunne 2006). 

As discussed in the previous section, any models in data-driven sciences aim to explain 

phenomena in the actual target system, but in fact describe and assess observations or data 

of the target system, and ecological models are no exception. Over the last decades with the 

improvement of ecological field methods and increased scientific interest in ecosystem 

functionality, food web data resolution has increased tremendously. Nevertheless, the initially 

discussed shortcomings of ecological data (incompleteness, bias and disregard of dynamics) 

could not be resolved yet. In the following, we will discuss the implications and offer three 

possible solutions for the discrepancy. 

  

5 Conclusion & Outlook 

Models are a central epistemic tool in theoretical ecology and are used with the goal to 

represent, explain and predict behaviour of phenomena in target systems. In this paper, we 

highlighted a number of problems the use of models in theoretical ecology has to face. Data 

about the phenomena are required for building and validating the models. The data in 

theoretical ecology is biased, incomplete and disregards certain dynamics in the target system 

leading to known and unknown errors and misrepresentations of the phenomena. We argue 

that the bias and many of the known errors in the data occur due the choice of species as 
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observables that led to a very fine-grained and detailed description of organisms that are 

easily accessible due to their size and habitat in comparison to a more coarse classification of 

less accessible organisms. Species aggregation in practice very often depends on the 

accessibility of the target systems. The flawed data is used to find patterns and regularities 

that in the absence of a detailed theory constitute the basis for the models. This leads to the 

situation that the model is a model of the data rather than a model of the phenomenon and 

its explanations and predictions are therefore contrary to the original goal also targeted on 

data of the phenomenon. 

We can imagine three different way to address these problems in theoretical ecology. 

The first path would be to accept the limitations, which come with the choice of species as 

observable and continue to work with data of phenomena the way it is done now rather than 

try other ways to learn more about the phenomena themselves. The consequence would be 

to operate based on flawed data consciously. With the collection of more data, the models 

can be improved further and better explanations and predictions for the data can be given. 

This has been a successful method in theoretical ecology and could continue this way. The 

representational function of models in theoretical ecology is limited to the data of the 

phenomena in this case and expectations and goals have to be formulated accordingly.  

The second path is a more radical one: to discard species as the main observable since too 

many biases and flaws in the data follow from this choice. What could alternative observables 

be? The goal has to be that observables can be observed and described equally well on all 

scales. Finding such a new observable and establishing it is a very challenging task. If 

successful, this would however eliminate one major reason for flaws in ecological data. One 

first try in this direction has been made at the intersection of theoretical physics and microbial 

biology. Here mathematical frameworks are under development, which attempt to describe 

a more continuous genotype space, eradicating the dependence on clearly defined species for 

theory development (Tikhonov 2017). 

The third path follows the goal of the second one but does not give up species as the main 

observable. Developments in gene-sequencing and big data analysis enable ecologists to 

gather very precise data for species of all sizes. New types and amounts of data will be 

available for the classification of species. Observational data, which are generated through 

these methods can be equally precise on all scales and could avoid the bias of current data, 
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which has its source in the current preference for human-scale organisms. The challenge for 

the theoretical ecologists is to come up with a definition of species, which makes use of this 

observational data to distinguish between species.  

Models in theoretical ecology offer plenty of opportunities for philosophers of science to find 

fruitful examples and research questions. More cooperation between the two fields would 

not only be beneficial for ecologist but might also offer new insights in epistemological 

questions about models and their representational function.  
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1 Introduction 

High energy physics (HEP), the study of the scattering of material particles at high energies, is a 

field of research in which the use of computer simulations (CSs) abounds, a fact that has attracted 

the attention of a bunch of philosophers (Karaca, 2017; Massimi and Bhimji, 2015; Morrison, 

2015). In recent years, machine learning (ML) techniques have become more and more important 

in HEP as well, e.g. for the discrimination of signal from background data. Even more recently, 

the HEP community has begun to explicitly acknowledge the “black box”-nature of ML (Chang et 

al., 2018, p. 1), i.e., the opacity associated with it. CS and ML (including supervised techniques, 

on which we focus on in this paper) share methodological features as well as epistemological 

challenges. Both can be used for the exact same purposes (recognition and prediction of 

statistical patterns) and both raise concerns of opacity, uncertainty, and robustness. This makes 

HEP a natural study case for investigating philosophical concerns of opacity associated with both 

CSs and ML in modern science. 

In this paper, we will pursue the following three general aims: (I) We will define a notion of 

fundamental opacity and ask whether it can be found in HEP, given the involvement of ML and 

CS. (II) We will identify two kinds of non-fundamental, contingent opacity associated with CS and 

ML in HEP respectively, and ask whether, and if so how, they may be overcome or at least greatly 

reduced. (III) We will address the question of whether any kind of opacity, contingent or 

fundamental, is unique to ML or CS, or whether they stand in continuity to kinds of opacity 

associated with other scientific research. In short, we will argue that (I) there is a fundamental 

kind of opacity, that (II) contingent kinds can be overcome in HEP, to a certain extent, and that 

(III) all identified kinds of opacity are continuous with opacity in non-computer aided science. In 

(II) we will also establish that even though the two opacities associated with CS and ML are both 

contingent, the origins and nature of the respective opacities are significantly different. As a 

consequence, there are differences in how to overcome the contingent opacity associated with 

CS and ML respectively. Notably, in the overcoming of contingent opacities associated with CSs 

we will focus closely on HEP, as it presents a field of research in which this is done exceptionally 

well, whereas the opacities to be overcome in ML are a current hot topic for the ML community, 

not specifically for physics. 
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1.1 Computer simulations in high energy physics in a nutshell 

CSs53 are used in HEP for various purposes, ranging from the design of equipment or the guidance 

of searches and analyses to the estimation of expected ‘backgrounds’ in experiments, i.e., 

measurable activity in detector and ‘(particle) beam pipe’ to be expected in the absence of 

phenomena of interest. For concreteness, let us briefly zoom in a little more detail on the 

complex simulation infrastructure used by CERN’s ATLAS experiment.54 Here, as in the other 

experiments at the Large Hadron Collider (LHC), different stages of a collision event and 

subsequent happenings55 will be overall separated into event generation and detector 

simulation. Event generators then again factor into hard process, the highest-momentum 

scattering between two constituent ‘partons’ (quarks or gluons) inside the protons, parton 

shower, the production of a large number of additional partons produced in subsequent decay 

and radiation events, hadronization, the formation of complex particles (‘hadrons’) out of this 

shower of partons, and the decay of hadrons not stable enough to reach the detector. In addition, 

an underlying event may be simulated, meaning a second comparatively high-energetic 

interaction between two further partons which leads to added activity in parton shower, 

hadronization, and decay. 

The detector simulation then uses all stable particles from the final stages as input and simulate 

their interaction with the real-world detector, as well as known background fluctuations. This is 

done based on a vast range of models coming from atomic, solid state, nuclear, and particle 

physics respectively, which will sometimes be largely based on theory, sometimes rather 

phenomenological, in the sense of being somewhat independent from theory in construction 

(Suárez and Cartwright, 2008, p. 70), and sometimes just collections of parametrized data.56 The 

main detector simulation software used at ATLAS (GEANT 4) also includes a model of the 

geometry, in order to adequately simulate the spatial distribution of these interactions. There is 

also the possibility of choosing specific physical conditions of the detector, to test the impact of 

these on one’s experiment. 

                                                           
53 We will here not offer a general account of what counts as a CS, since this has been done in various places in the 

philosophical literature. The reader may be referred e.g. to Humphreys (2004, Chap. 4) instead. Boge (2019) also 
offers some insights. 
54 E.g. ATLAS (2010). For a detailed presentation in a philosophical context cf. also Boge and Zeitnitz (2020).  
55 In fact, whole ‘bunches’ of 100,000 million protons, with a bunch being of the size of 64 microns, will travel in two 
beams accelerated to 7 TeV inside the LHC. These will cross every 25 ns which results in around 600 million collisions 
per second (cf. https://lhc-machine-outreach.web.cern.ch/lhc-machine-outreach/collisions.htm; checked 11/18). 
56 To get an impression, one may consult the GEANT physics reference manual (cf. GEANT Collaboration, 2016). 
 

https://lhc-machine-outreach.web.cern.ch/lhc-machine-outreach/collisions.htm
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1.2 Deep learning in a nutshell 

ML techniques are today involved in many areas of science and social life, with applications 

ranging from risk management of water distribution systems or the prediction of severe weather 

conditions to more straightforward recognition and classification tasks (e.g. Baldi et al., 2014; 

Goodfellow et al., 2016; Rudin and Wagstaff, 2014). Deep learning (DL) is a specific kind of (ML) 

using connectionist (or ‘neural’) networks, in which the network includes multiple hidden layers 

(the number of which defines its depth).  

A neural network can be understood as an arrangement of nodes (or ‘neurons’) which are 

ordered into different layers. The neurons of one layer all execute the same (typically non-linear) 

function on their input and then hand the result over to one or multiple nodes of the next layer.57 

A standard way to represent these relations is by appeal to directed graphs, wherein the nodes 

correspond to labeled vertices and the input-output relation corresponds to directed edges (cf. 

also Figure 6). If there is no previous or next layer, the layer in question will be an input or output 

layer respectively. All other layers are called ‘hidden’. 

Let’s consider a simple example.58 Assume that one’s network were supposed to learn the 

exclusive-or function 𝑋𝑂𝑅: {0,1}2 → {0,1}, which gives 1 for the pairs (0,1), (1,0) and 0 else. Such 

a network could be mathematically represented as taking an input vector 𝑥 ∈ {0,1}2 and as 

successively transforming it by applying a sequence of functions. Each entry 𝑥𝑖of 𝑥 would then 

correspond to an input node, and the successively executed functions would correspond to 

hidden- or output layers respectively. 

A simple network capable of performing this task can be constructed with only one hidden layer 

that executes a vector valued function  

𝒉(𝒙; 𝑾, 𝒄) = 𝑾𝒙 + 𝒄.             (1) 

The letter ‘h’ here indicates that the layer is hidden, W represents a matrix of weights that the 

inputs receive, and c a vector of biases that may output some (non-zero) value even if s = 0. 

Because of the nature of matrix multiplication, both inputs may contribute to both nodes (hi) of 

                                                           
57 Strictly speaking, this is only an ideal limit; a network may, for instance, have “skip connections” which jump from 
layer i to layer i+2 (Goodfellow et al., 2016, p. 196). We here also eschew the discussion of other kinds of networks, 
such as recurrent ones, which may not be organized into proper layers at all. Our discussion will be restricted to 
feedforward networks. 
58 Cf. Goodfellow et al. (2016, p. 166) for the following, which is our main reference on ML/DL here. 
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the hidden layer, depending on the weights 𝑤𝑖𝑗 

contained in 𝑊. If the output layer now executes 

the function 

      𝑓(𝑥; 𝑊, 𝑐, 𝑤, 𝑏) = 𝑤 ∙ max{0, ℎ} + 𝑏,       (2) 

where 𝑤 and 𝑏 are a vector and scalar with 

analogous roles as 𝑊 and 𝑐, · represents the 

standard scalar product on ℝ2, and the max-

function is applied component-wise, there is a 

choice of all the parameters (the quantities 

specified behind the semicola of h and ƒ ) such 

that the network performs the specified task. 

Establishing that choice through an iterative, 

adaptive procedure (see below) may be called 

learning. 

A function executed by a hidden layer is generally called an activation function, and these are 

often times non-linear. In many cases these are sigmoidal functions, which “ensures there is 

always a strong gradient whenever the model has the wrong answer.” (Goodfellow et al., 2016, 

p. 177) 𝑔(𝑧) = max{0, 𝑧} is another “default choice” (ibid., p. 186) called the rectified linear unit 

that allows for several generalizations (cf. ibid., p. 187). All in all the network may be said to 

execute the composite function 𝑓 ∘ ℎ on {0,1}2, which correctly represents XOR for a certain 

choice of the parameters. 

How is this choice of parameters, sometimes collectively denoted by 𝜃, achieved? The standard 

method is to let the network optimize a loss or cost function over values of 𝜃, i.e. a function that 

specifies how far the network’s output is from a desired result. The error defined by this loss 

function is the so called training error, which occurs during the stage where the network is 

confronted with preselected data on which it is tuned for fulfilling the specified task. Neural 

networks also face the danger of a generalization error, which refers to the “expected value of 

the error on a new input.” (Goodfellow et al., 2016, p. 107; emph. added) Striking a balance 

between over- and underfitting, i.e. being too specific or not specific enough to the data the 

network is trained on, is one major practical task one faces in the design-stage of DL algorithms 

(ibid., pp. 108 ff.). 

Figure 6: Representation of the network 
described below by a directed graph. The edges 
may be interpreted as feeding forward a 
weighted and biased version of outputs received 
from a set of ‘parent’ nodes (vertices). Each 
‘hidden’ vertex may be thought of as computing 
an activation function on its input. (Reproduced 
with added detail from Goodfellow et al., 2016, p. 
169.) 
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Quite usually, optimization is performed by using iterative, gradient-based methods, where one 

‘walks along’ the negative gradient in predefined steps.59 The most important instance certainly 

is stochastic gradient descent, where one updates 𝜃 in small steps 𝜃 → 𝜃′ = 𝜃 − 𝜖𝑔, with 

𝑔 =
1

𝑚
∇𝜃 ∑ − ln 𝑝 (𝑦(𝑖)|𝑥(𝑖); 𝜃)𝑚

𝑖=1 .                                                        (3) 

Here 𝑝(𝑦(𝑖)|𝑥(𝑖); 𝜃)defines the likelihood of output 𝑦(𝑖) given input 𝑥(𝑖)(parametrized by 𝜃), 𝜖 is 

a predefined step size also called the learning rate,60 and m is either the cardinality of the training 

set, the set of data which the network encounters (and is configured on) before it is put to its 

actual task, or that of a ‘minbatch’, a (comparatively small) subset of examples form the (possibly 

huge) training set. In order to strike a balance between over- and underfitting, it may be useful 

to add a regularizer 𝜆Ω(𝜃) to the loss function, with 𝜆 a tunable parameter. Stochastic gradient 

descent effectively means approximating the value of 𝜃 for which the obtaining of 𝑥(𝑖) makes the 

corresponding output 𝑦(𝑖) most likely. 

The gradient may here be computed with the backpropagation algorithm, which “allows the 

information from the cost to [...] flow backward through the network” (Goodfellow et al., 2016, 

p. 197), by computing for each node its partial derivatives w.r.t. parent variables and combining 

them by an appropriate chain rule. This includes observing possible changes of the network’s 

output under changes of the weights. Insofar as the optimization task involved in (stochastic) 

gradient descent is executed exactly by adjusting these weights (cf. Rumelhart et al., 1986), the 

algorithm lends a certain autonomy to the network: it can adapt its own infrastructure to perform 

better at a particular task, i.e., ‘learn’ a successful performance. 

The network discussed above is not really deep but rather ‘shallow’, as it only has one hidden 

layer. Deep networks (DNs) used to suffer from a so-called vanishing gradient problem in the 

past, which can be understood roughly as follows: Assume that the network repeatedly multiplies 

a vector of data by the weight matrix W .61 In case W has n linearly independent eigenvectors 

𝑣(𝑗)with eigenvalues 𝜆𝑗 respectively, we can write 𝑊 = 𝑉diag(𝜆𝑗)𝑉−1, where V is a matrix with 

the 𝑣(𝑗) as columns and inverse 𝑉−1, and 𝑉diag(𝜆𝑗) a diagonal matrix with the eigenvalues on 

                                                           
59 Recall that the gradient ∇𝑓 of some function ƒ points in the direction of ƒ ’s steepest ascent, so moving along −∇𝑓 

will get one in the right direction. Of course one may instead hit a saddle point in this way, so finding (local) minima 
strictly requires investigating the Hessian as well. 
60 Some algorithms make the steps size a function of prior steps, e.g. by scaling each component by the inverse 

absolute value at the prior step, so that descent in steep/shallow directions will decrease faster/slower. 
61 This is of course a quite restrictive assumption, but if the weights are similar enough, the problem will arise in 
similar ways. 
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its main diagonal. After m repeated applications of W, the effect will be (𝑉diag(𝜆𝑗)𝑉−1)𝑚 =

𝑉diag(𝜆𝑗
𝑚)𝑉−1, which will vanish quickly in case the 𝜆𝑗 are smaller than 1. When computed by 

the chain rule, however, the gradient can equally be seen to scale with the weights of previous 

layers; so the learning may get stuck in early layers of a DN. Today, there is a number of ways to 

handle this problem, e.g. training the network on simpler tasks first, or even training a simpler 

network that is made more complex once the simpler one has successfully learned. Cf. Baldi et 

al. (2014, p. 2) and references therein for further examples. 

Moreover, it is not always convenient to specify a fixed set or even a fixed number of parameters, 

whence some models incorporate non-parametric methods where no such restriction is imposed. 

An example is nearest neighbor regression, where the network classifies data points x by 

associating them with entries from the training set that have the minimal distance to x in some 

chosen norm. 

Finally, in the task described above the examples encountered in the training stage are associated 

with targets, i.e., specific outputs y the network is supposed to achieve, when confronted with a 

respective x. Similarly, a network may be required to learn to predict a specific target y from an 

input x, usually by learning a conditional distribution 𝑝(𝑦|𝑥). Algorithms of this kind are 

sometimes referred to as supervised, whereas algorithms that merely gather information about 

the distribution 𝑝(𝑥) of a set of data s are called unsupervised. Supervised applications include, 

for instance, classification tasks, regression tasks (essentially: the prediction of a value), or 

transcription tasks in which a relatively unstructured representation of relevant data is 

transcribed into textual form. Unsupervised learning tasks include probability density estimation, 

learning to draw samples from a distribution, or denoising data. 

Although it is not generally known which nodes represent what, neural nets imply the possibility 

of a distributed representation, meaning that different sets of nodes can become specialized to 

processing different features of an object. For instance, in describing different types of vehicles 

with different colors one set may represent the values of the variable ‘color’ whereas another 

may represent the values of the variable ‘vehicle type’. Similarly, when representing a group of 

people, one set may handle person identities whereas another their relationships (cf. Rumelhart 

et al., 1986, p. 534). The output layer will then indicate the learned relationships, and the network 

may be said to represent them as distributed patterns of activity in the nodes. Factoring inputs 

in such a way can have several advantages, particularly when it comes to computational cost and 

flexibility. 
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1.3 The rise of deep learning in high energy physics 

As can be seen from this brief discussion already, the ML community today has developed a wide 

range of methods, tuned to specific tasks. Indeed, ML techniques have long been used in high 

energy physics (HEP), but have here received increased interest in recent years, due to the 

advances in handling vanishing gradients and the associated performance increase of DNs. Uses 

of ML in HEP include the identification of jet-substructures, which can be used to probe the 

Standard Model (SM) and increase sensitivity in finding evidence for physics beyond the SM 

(Larkoski et al., 2017), uncertainty estimation and combination, or the determination of parton 

density and fragmentation functions (Carrazza, 2018). Maybe the most important HEP 

application is, however, in the (ongoing) search for new particles (cf. Baldi et al., 2014, p. 2). In 

such a search, physicists need to “isolate a subspace of their high-dimensional data in which the 

hypothesis of a new particle or force gives a significantly different prediction than the null 

hypothesis, allowing for an effective statistical test.” (ibid., p. 1) 

The crucial quantity for significance evaluation here is the likelihood ratio, i.e., the ratio 

𝑝(𝐷|Θ)/𝑝(𝐷|Θ0), where D represents the data, Θ the hypothesis to be tested, and Θ0 a null 

hypothesis. In the case of searches for exotic particles in LHC’s proton/proton scattering, these 

take the generic form of scatterings and decay-chains: 

Θ: pp → ‘known debris’ + (intermediate) exotic particle(s) 

Θ0: pp → ‘known debris’ 

For the purposes of experiment, both Θ and Θ0 have to be translated into suitably connected 

hypotheses about a test statistic, such as total mass or (missing) transverse momentum (cf. 

James, 2006, p. 255, and below). The two steps indicated in Θ andΘ0, moreover, may themselves 

be intermediate steps in a larger chain of decays that involves only known (and measurable) 

‘debris’ as final state products. These are typically jets, meaning conical distributions of hadronic 

particles, leptons such as electrons or muons, together with missing transverse momentum from 

corresponding (anti-)neutrinos, and photons, all of which will be registered by appropriate parts 

of the detector in use. 

Quite often, however, the relevant likelihoods “cannot be expressed analytically, so simulated 

collision data generated with Monte Carlo methods are used as a basis for approximation of the 

likelihood function.” (Baldi et al., 2014, p. 1) Still, the “high dimensionality of data [...] makes it 

intractable to generate enough simulated collisions to describe the relative likelihood in the full 

feature space”. (ibid.) 
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Statistical hypothesis testing may be seen as kind of classification task: if a certain set of 

parameters exceeds certain bounds, we call our observations ‘significant’ and think of them as 

possibly indicating the presence of some phenomenon of interest. In the same way, an ML 

classifier may take “a complicated, high-dimensional input s and summarize it with a single 

category identity y.” (Goodfellow et al., 2016, p. 233) Hence physicists in HEP use ML classifiers 

as a means of ‘dimensionality reduction’: a set of criteria is used to define a hypersurface in the 

feature space beyond which data will count as signal, and below (or on) which they will count as 

‘background’. This hypersurface then defines a cut-value for a suitable test statistic in hypothesis 

testing, which equally defines the cut-off between the two classes of the classifier. 

In learning to classify correctly, the network may be said to effectively learn to represent the 

corresponding likelihood functions. This should be compared to the toy-example discussed in 

section 1.2, where the network may equally be said to represent the XOR function in terms of 

the functions executed by the individual layers, when the parameters take on appropriate values. 

One should caution against reading too much into this notion of ‘representation’, however, since 

it does not involve any implication of intentionality that one might intuitively associate with the 

term. We will return to this issue below. 

So ML classifiers in HEP searches can learn to distinguish ‘signal’ from ‘background’ data. But 

what exactly does that mean? By ‘background’, one means any kind of data present in the 

relevant region in which distributions of quantities of interest are measured, but which is not 

connected to the process of interest. For instance, this could be data with identical (measurable) 

final state products, but where the distributions of kinematical features will be different from 

those in the signal data, because of the occurrence of exotic particles as intermediate states in 

the latter case and their absence in the former. Baldi et al. (2014), in fact, considered two 

benchmark cases of exactly this kind in order to evaluate the performance of a DN with five 

hidden layers as a classifier against that of a shallow one with only one hidden layer. 

One of these benchmark cases, which we shall discuss in a little more detail, concerned processes 

that would involve new theoretical Higgs bosons. As is well known, a ‘light’ Higgs boson, 

compatible with the predictions of the SM of particle physics, has been found in 2012 by ATLAS 

and CMS (cf. Aad et al., 2012; Chatrchyan et al., 2012). However, it is a theoretical possibility that 

there exists a more massive electrically neutral Higgs boson, H0, which decays into the known 

‘light’ Higgs boson, h0, via (positively or negatively) electrically-charged Higgs bosons, H±. More 

precisely, a set of possible decay chains would be 
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      𝑔𝑔 → 𝐻0 → 𝑊∓𝐻± → 𝑊∓𝑊±ℎ0 → 𝑊∓𝑊±𝑏𝑏̅,                                              (Θ) 

where 𝑔 are gluons contained in the scattering protons, 𝑊± are electrically charged intermediate 

vector bosons, and 𝑏, 𝑏̅ are (anti-)quarks known to produce characteristically broad jets (e.g. 

Llorente and Cantero, 2014). This was to be contrasted with background processes of the form  

𝑔𝑔 → 𝑔 → 𝑡𝑡̅ → 𝑊∓𝑊±𝑏𝑏̅ ,                                                             (Θ0) 

with t the weak isospin-partner62 of b, in which the heavier Higgs’s would not be present, but 

where the final-state products would be the same. Since neither Ws nor bs are directly 

detectable, one would have to make a selection on the decay modes of these. The selection in 

place was on events with one lepton (ℓ) and missing energy from the corresponding neutrino63 

(𝓋) from the decay of one of the Ws, two jets from the decay of the other one (𝒿𝒿), and two 

further ones from the decay of the bs (bb). These were required to satisfy the following 

characteristics: (i) Exactly one electron or muon, with transverse momentum pT > 20 GeV and 

pseudorapidity satisfying |𝜂| < 2.5;64 (ii) at least four jets, each with pT > 20 GeV and |𝜂| < 2.5; 

and (iii) jets that could be ‘tagged’ as resulting from bs rather than gluons or lighter quarks. 

Transverse momenta, the reconstructed missing transverse momentum for the neutrino, as well 

as the ‘b-tagging’ information were regarded as ‘low-level’ features, since transverse momenta 

are more or less directly inferred from electric activities in the detector. 

Process (Θ) could, however, also be associated with rather different hypotheses regarding 

higher-level features than process (Θ0), meaning features that are not measured or directly 

inferred from measured quantities (like missing momentum) but rather defined as (typically 

nonlinear) functions thereof. An example are reconstructed invariant masses, where the 

invariant mass of particle 1, decaying into (detectable) particles 2 and 3, for instance, is 

reconstructed in natural units as 𝑚1
2 = 𝑚23

2 = (𝐸2 + 𝐸3)2 − |𝑝2 + 𝑝3|2, due to the relativistic 

energy-momentum relation and conservation laws. According to both, (Θ) and (Θ0), there should 

be peaks in the 𝑚ℓ𝓋 and 𝑚𝑗𝑗 distributions at the known mass 𝑚𝑊 . However, (Θ0) would predict 

                                                           
62 The weak isospin is a concept similar to the isospin, which was introduced to understand the many similarities 
between protons and neutrons (up to their charge). 
63 Recall that neutrinos are only detectable through very subtle measurements. Hence, one usually infers their 
existence rather from (‘missing’) energy and momentum not measured but expected on account of conservation 
laws. 
64 𝑝𝑇 = √𝑝𝑥

2 + 𝑝𝑦
2 is the transverse momentum, i.e., the momentum component particles carry in the plane 

transversal to the beam direction, where (𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧)𝑡is the particle’s three-momentum in a laboratory frame and 

𝑝𝑧 lies in the beam direction. The pseudorapidity 𝜂 is defined as − ln tan (
𝜃

2
), where 𝜃 is the polar angle of a right 

handed coordinate system with origin at the interaction point. 
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peaks in 𝑚𝑗ℓ𝓋 and 𝑚𝑗𝑏𝑏 distributions at the known value for 𝑚𝑡, whereas (Θ) would predict peaks 

at known 𝑚0 in 𝑚𝑏𝑏 as well as at 𝑚𝐻± in 𝑚𝑊𝑏𝑏 and at 𝑚𝐻0 in 𝑚𝑊𝑊𝑏𝑏 respectively, for assumed 

masses 𝑚𝐻± = 325 GeV and 𝑚𝐻0 = 425 GeV of H± and H0 respectively. 

Lower level features usually have a limited discrimination power: Often the pT-distributions 

corresponding to signal and background hypotheses differ only slightly, so classification 

according to these features is difficult. Shallower networks are hence usually trained on higher-

level features, and performance can be further increased if both high- and low-level features are 

available to them. 

Baldi et al. (2014) now compared the performance of shallow and deep networks, where low-

level features were used as inputs for the DNs and higher-level ones for the shallow networks. 

To assess the advantage of adding hidden layers, both kinds of networks were trained with the 

same number of hidden units and the same hyper-parameters, i.e., parameters of the network 

to be determined in an optimization procedure outside the training for the actual task. Different 

classifiers were trained on low-, high-, or combined features respectively, in order to assess which 

training-strategy would yield the best performance. They each encountered 2.6 million training 

examples from Monte Carlo data, and the training was validated on 100,000 further ones. The 

performance was then tested on 500,000 simulated events (ibid, p. 5). 

In addition, performance was compared to boosted decision trees, where decision trees are 

“tree- structured classifiers that consist of a series of binary splits”, effectively dividing “the multi-

dimensional observable space into many (rectangular) volumes that are attributed to either 

signal or background.” (Voss, 2013, p. 178) Boosting these means consecutively defining 

additional trees by increasing the weights on misclassified events and obtaining the final 

classification as a weighted average of outputs from all these trees. This is done to compensate 

individual trees’ sensitivity to statistical fluctuations in training data, and has lead to “dramatic 

performance increases.” (ibid., p. 179) 

DNs fed with low-level inputs now significantly outperformed both boosted decision trees and 

shallow networks fed with the full feature set on two significance metrics: the discovery 

significance and the area under the receiver operating characteristic curve (AUC), where the 

former is the well known measure for the probability of false positives (high discovery 

significance = low probability), and the latter a joint measure for the probability of correct 

positives and negatives under changes of a cut-value on the test statistic (large area under the 

curve meaning a large range of cut-values for which both quantities are high; e.g. Voss, 2013, for 
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details). DNs trained with the full feature set performed even slightly better, but those trained 

only on the high-level features surprisingly performed worse. The increase in performance upon 

adding the high-level feature was always less than the difference between the performance of 

DNs trained with low-level data and that of shallow ones or BDTs trained on high-level data. 

The upshot is that while boosted decision trees and shallow networks are already very useful 

tools when fed with adequately predefined variables, handing over the task of discovering 

physical connections between measured (or immediately inferred) quantities to a DN will lead to 

an even better performance. In other words: increased success in using ML techniques comes at 

the price of giving up more (immediate) insight into the relations between physical variables. 

Despite this remarkable usefulness of ML techniques for HEP, physicists have recognized that 

they essentially 

function as a black box: send in some data and out comes a number. While this kind of 

nonparametric estimation can be extremely useful, a physicist often wants to understand 

what aspect of the input data yields the discriminating power, in order to learn/confirm 

the underlying physics or to account for their systematics. (Chang et al., 2018, p. 1; emph. 

added) 

A different way of putting things is that ML is epistemically opaque: some amount of insight into 

what is going on is not being made available to any user. To delineate the nature of this opacity 

in more detail however, and to what extent or in which sense it may or may not be overcome, 

we will now first turn to the philosophical debate, which has mostly focused on computer 

simulations (CSs). We will then define the unique sense in which ML or DL is opaque, beyond the 

sense already present in CSs, and subsequently discuss the (in)eliminability of both kinds of 

opacity. 

 

2 Opacity in computer simulation and deep learning 

What could it mean that ML, and particularly DL, is effectively a ‘black box’, i.e., epistemically 

opaque? Intuitively, we might refer to any kind of procedure as epistemically opaque if we cannot 

fully comprehend how a certain input leads to a certain output. Indeed, several authors in the 

philosophical literature (e.g. Humphreys, 2004, 2011; Kaminski, 2018; Lenhard, 2011; Saam, 

2017) have claimed that this precisely applies to CSs. 
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From a certain vantage point, however, this seems counterintuitive: the structures involved in 

CSs are all algorithmic, and hence fully determined by the program code. For every step n it is 

predefined how to get to step n + 1, and all the rules are written down and can be reviewed by 

any agent who has access to the code. Following Lenhard (2011, p. 137), we may refer to this as 

the algorithmic transparency of CSs. The very same may be said, e.g., about a neural network: 

the execution of functions and optimization of parameters will be implemented as an algorithm, 

so it is transparent in the same sense. How could CSs and ML create results in an epistemically 

opaque way in spite of their algorithmic transparency? 

A crucial first step to seeing this is to realize that opacity is intuitively relative to a (set of) 

cognitive agent(s): we do not understand the input-output relation in a certain procedure. This 

is reflected also in the classic definition by Humphreys (2011, p. 139): 

a process is epistemically opaque relative to a cognitive agent X at time t just in case X 

does not know at t all of the epistemically relevant elements of the process. A process is 

essentially epistemically opaque to X if and only if it is impossible, given the nature of X, 

for X to know all of the epistemically relevant elements of the process. 

Using this definition, it is clear that many complex CSs come out as prima facie epistemically 

opaque. In CSs used by CERN’s ATLAS experiment at the LHC, for instance, no human being will 

presumably ever be able to review all the steps of the computer program by herself, as O(106) 

lines of code, written in different programming languages, can be relevant for the full simulation 

of events and detection (cf. ATLAS, 2010, p. 835).65 

Saam (2017, p. 79), moreover, points out that “while the program code (with several tens of 

thousands of lines of code) may be epistemically transparent, the compiled code is not (several 

million lines of code are possible)”, where by ‘compiled code’ one means the translation of the 

program code into machine code, i.e., into a set of instructions the computer can actually execute 

(e.g. Clements, 2006, p. 205). Hence compilation may increase the amount of code by two orders 

of magnitude, so that the code instructing the machines used for CS at ATLAS may require up to 

O(108) lines.  

                                                           
65 This code is managed by the Athena framework, which allows users to specify properties of the intended 
simulation through the JobOptions service, but also to some extent in the form of additional Python scripting (cf. 
ATLAS Computing Group, 2005, Sect. 3.3). 
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However, what about the notorious Laplacean demon, who would not be subject to human 

restrictions? For him, studying even complied code would not present an obstacle, and so he 

would be capable of grasping the content of even the most complex program. 

With that, we do not mean to claim that the Laplacean demon would immediately gain insight or 

understanding by executing the algorithm by hand (say). However, it is usually far easier to 

understand what an expression says or means when one is aware of what it ‘does’. 

For instance, take a differential equation (DEQ), such as that for the damped harmonic oscillator. 

It is possible to get some idea of what a system obeying this equation will do, but it is only when 

one has the solutions in hand that one sees, quite immediately, the three possible behaviors 

(underdamping, overdamping, critical damping). Similarly, the ability to scrutinize each and every 

step of an algorithm should equip the demon with an excellent basis for understanding its 

workings, given his immense computational power. 

Invoking the demon in this way, we can see that even essential opacity is closely tied to the 

epistemic conditions of an actual agent, and thus, in a specific sense, not a principled 

inaccessibility. As a first step towards clarification, we may therefore distinguish between 

contingent kinds of opacity, which depends on the actual epistemic conditions of a given 

cognitive agent X, or a community thereof, and principled or fundamental ones, which would 

apply to any agent X, regardless of their cognitive facilities. 

Is not obvious that indisputable instances of principled opacity exist at all. However, in Bohmian 

versions of quantum theory, for instance, the precise values of quantities such as the velocity of 

an elementary particle cannot be found out by any conceivable experiment, despite the fact that 

they exist according to the theory (cf. Dürr et al., 2012, p. 139). Hence there are at least candidate 

cases of principled opacity. 

To capture the relevant differences more clearly, let us try and make things more precise by 

formalizing the relevant notions. Humphreys’ definition of opacity O of process p for agent66 X at 

time t, with X having nature N = n at t and some piece of information ip about p being 

epistemically relevant, R, to X but not known, K, by X at t, is relational and triadic: 

                     𝑂(𝑝, 𝑋, 𝑡) ↔ ∃𝑖𝑝 (𝑁(𝑋, 𝑡) = 𝑛 → ¬𝐾(𝑋, 𝑖𝑝, 𝑡) ∧ 𝑅(𝑖𝑝, 𝑋, 𝑡))                          (4) 

                                                           
66 Humphreys intends his definition to include human as well as non-human agents. For the purposes of our paper 
we will only consider human agents. 
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The agent’s nature doesn’t do any real work here and could be omitted, but it seems nice to keep 

it in place, because it will do all the work in the subsequent definitions. 

In the definition of essential opacity, Humphreys doesn’t appeal to time anymore, so it is merely 

dyadic. Moreover, Humphreys assumes the impossibility for X of acquiring everything that is 

epistemically relevant. Since impossibility implies non-occurrence already in the second weakest 

modal system however (cf. Hughes and Cresswell, 1996, pp. 41–2), we take it that one may 

replace talk of impossibility by talk of factive unavailability at all times without buying into any 

strong modal commitments. A nice (metaphorical) way of putting it is hence that in essential 

opacity, Oe, time is ‘marginalized for’, qua being bounded by a universal quantifier:67 

                  𝑂𝑒(𝑝, 𝑋) ↔ ∀𝑡∃𝑖𝑝 (𝑁(𝑋, 𝑡) = 𝑛 → ¬𝐾(𝑋, 𝑖𝑝, 𝑡) ∧ 𝑅(𝑖𝑝, 𝑋, 𝑡))                            (5)  

Our definition of fundamental opacity, Oƒ, now goes a step further in ‘marginalizing’ for both X 

and t: 

                  𝑂𝑓(𝑝) ↔ ∀𝑋∀𝑡∃𝑖𝑝 (𝑁(𝑋, 𝑡) = 𝑛 → ¬𝐾(𝑋, 𝑖𝑝, 𝑡) ∧ 𝑅(𝑖𝑝, 𝑋, 𝑡))                            (6)  

In words: given any agent with any nature, at no time will the agent be able to obtain all relevant 

pieces of information about p. Only ‘supernatural’ beings could possibly overcome fundamental 

opacities, for if one was to overcome one’s own nature, one would still end up having some 

different agent’s nature, and hence still miss some piece of information ip. 

Notably, we have chosen to represent an agent’s nature by a dynamical variable here, and this 

may certainly raise some controversy. For should an agent’s very nature not be fixed once and 

for all? What could a sensible alternative formalization that respects this intuition look like? The 

work done by the mention of an agent X’s nature here is to point to certain facilities and 

restrictions that X faces. The intuition says that these restrictions/facilities should be somewhat 

strongly tied to X itself. An obvious alternative would hence be to formalize X’s nature by letting 

X’s biological and cognitive state, 𝑆(𝑋, 𝑡), range exclusively over a set 𝑁̅ such that 𝑁̅ := {n|n is 

nomologically/metaphysically accessible to X }: 

                  𝑂𝑒(𝑝, 𝑋) ↔ ∀𝑡∃𝑖𝑝 (𝑆(𝑋, 𝑡) ∈ 𝑁̅ → ¬𝐾(𝑋, 𝑖𝑝, 𝑡) ∧ 𝑅(𝑖𝑝, 𝑋, 𝑡))                            (7)  

                                                           
67 Note that the right-pointing arrow stands for several different relations in this paper: here, it stands for material 
implication, in other cases it indicates limiting behavior, in yet other cases a mapping, and sometimes even a decay-
chain. It should, however, be clear from context what is meant in each case. 
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However, accepting this definition of X’s nature would render the impossibility of knowing ip 

somewhat trivial: Given the fact that quantification over time is supposed to track 

impossibility, the definition in (7) basically says that obtaining ip is impossible for X if it is 

impossible for X. Moreover, locutions like ‘it was unnatural for me but I did it anyways’ suggest 

that one’s nature does not connect too intimately to an impossibility of sorts. Neither does 

the fact that transhumanism is, for all we know, both a nomological and metaphysical 

possibility, and it would be an obvious way to overcome (and thereby change) one’s nature. 

Hence we find definition (5) preferable, and the intuitions motivating (7) somewhat 

misguided. 

Given this level of precision, what is the significance of our earlier appeal to the Laplacean 

demon? The Laplacean demon, to recall, is “an intelligence sufficiently vast [so that] for it, 

nothing would be uncertain and the future, as the past would be present to its eyes.” (de 

Laplace, 1814, p. 4) Gillies (2000, p. 14), moreover, points out that the Laplacean demon, at 

least in Laplace’s sense,68 is just an extrapolation of a human agent’s capabilities. Indeed, we 

find Laplace state that: “The human mind offers, in the perfection which it has been able to 

give to astronomy, a feeble idea of this intelligence.” (de Laplace, 1814, p. 4) 

Of course, Laplace was concerned only with deterministic theories, containing rather ‘tame’, 

solvable DEQs. Today, this is not feasible anymore for the vast majority of physical theories. 

However, we are here interested in CSs and ML, methods that can be defined in terms of 

algorithms. Once this level of algorithm has been reached (say by translating the approximate 

content of a physical model into computer code for simulation), it seems that Laplace’s demon 

would have an easy time figuring out the algorithm’s workings. 

Given also the connection we have drawn between algorithmic transparency and 

understanding, algorithmic transparency is hence enough to render even essential opacity 

contingent, qua contingent on an agent’s nature. The Laplacean demon, who would be 

capable of biting through every step of the algorithm, would likely be able to digest and 

comprehend the algorithm’s workings, and so may serve as an ideal point of reference for a 

                                                           
68 There are various precisifications of the notion of a Laplacean demon in the literature: Frigg et al. (2014, pp. 
33-4), for instance, define the demon to have access to initial conditions, possess a perfect model, and be able 
to compute arbitrarily fast. For our purposes, a more modest demon suffices that could come to know the 
boundary conditions of a given algorithm, compute vastly faster than any human being, and provide a highly 
detailed error analysis regarding hardware and software induced artifacts or the like. This will cover insight into 
the details of any realistic, humanly written computer program. 
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‘natural’ being here. Only if a method was opaque to him as well could it count as 

fundamentally opaque in our sense. 

 

2.1 Computer simulations: Opacity induced by complexity 

So CSs and ML come out as contingently opaque (qua algorithmically transparent) on our 

account. However, are the contingencies that lead to them the same? Indeed, there seems to 

be a major difference, which relates to the kind of code, i.e., to its purpose and associated 

definitions. 

To see the difference, let’s briefly recall the key features of the ATLAS simulation 

infrastructure: An ‘event generator’, factored into hard scatter, parton shower, hadronization, 

decays, and possibly an underlying event, feeds simulated ‘final state particles’ into a detector 

simulation, which then models the interaction of these particles with elements of the ATLAS 

detector, as well as its geometry. 

However, as we noted above, detector simulations will rely on a vast range of different 

models, coming from different parts of physics. In some cases, such a ‘model’ will be highly 

phenomenological, i.e., not based on fundamental physical principles, or even simply amount 

to a function with free parameters, fitted to measured data. Reasons are that detailed 

information of the microphysics is unavailable because of the material composition and the 

complexity of interactions, or even missing information about the exact composition and 

purity of the material and the distribution of type impurities therein. 

Moreover, while the structure of the hard scatter is basically dictated by perturbative 

quantum chromodynamics (QCD), one has to make certain assumptions, such as the 

transferability of factorization theorems to various unproven cases, which imply the 

factorization of proton/proton cross sections into calculable, elementary ones and a 

remainder called patron distribution functions. This factorization assumption in turn implies 

the need for a choice of an arbitrary factorization scale, where the choice has less and less 

influence with the inclusion of higher terms in the perturbation series. 

Similarly, one can use either the separation angle between two partons or their transverse 

momenta as an evolution variable in parton showers, and different choices have traditionally 

proven fruitful in the two standard general-purpose generators PYTHIA and Herwig. There is 
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also the need to cut the evolution off at some point, as relevant quantities otherwise diverge 

and cannot be interpreted in terms of the (probabilistic) Markov evolution that is the basis of 

standard shower-algorithms. In hadronization, finally, the energies are too low to use 

perturbative QCD at all, and one has to resort to one out of a range of phenomenological 

models, with a number of additional free parameters, to bridge the gap. 

In midst this jungle of choices of modeling assumptions, parameters, conditions etc., who can 

really tell what a given simulation set up at ATLAS is precisely going to do? What is the effect 

of choosing certain parameters? Certain models/parametrizations in detector simulations? 

Certain (versions of) event generators? Combinations between them? On top of all that, 

documentation is usually sloppy, and quite a large number of people will have contributed 

individual pieces to this huge amount of code; so it is not straightforward to read up on the 

details and impossible to ask a (small group of) developer(s) about the full code in a simulation 

chain. 

The source of this apparent opacity seems to reside in the complexity of the CSs, as well as of 

the underlying problem set. Complexity is here to be understood, first and foremost, in the 

sense that there will be numerous variables, parameters, and relations between these on the 

level of physics modeling (which includes models of measuring instruments; see GEANT 

Collaboration (2016)), and even more so on the level of implementation (which may require 

additional parameters to be integrated by appeal to further relations). Furthermore, this 

complexity is amplified, in a way, by the fact that there is a strong division of labour, i.e., that 

different programmers will be in charge of implementing the physics variables in terms of 

parts of the total code. 

It seem that ATLAS is just a paradigmatic example in this respect though: in many detailed CSs 

in science, the interplay of a vast number of components, the complexity of the problem set, 

and the associated division of labour, will make it very hard to determine the precise goings 

on during the simulation, if not impossible for non-Laplacean demons. 
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2.2 Deep learning: Opacity induced by the method 

The nature of the opacity associated with ML and DL has so far scarcely been addressed in the 

philosophical literature,69 a fact which is presently changing, as reflected by the contributions 

to this volume. 

A brief footnote-remark can be found e.g. in Schembera (2017, p. 60): 

machine learning could change the whole picture. Nevertheless, in terms of the 

algorithms, there is still strong transparency: All the steps of a computer program are 

determined, but the opaqueness of the paths of the steps as well as of the results, is 

increased so that they become not traceable. 

This remark underscores our earlier observation of ML’s algorithmic transparency: The 

functions implemented in DNs or other learning algorithms are laid down beforehand, and so 

ML is in the same sense algorithmically transparent as are CSs. Nevertheless, ML may be 

additionally accompanied by a special kind of opacity, which Schembera locates in the 

“opaqueness of the paths”. 

Humphreys (2004, p. 149) similarly hints at a unique kind of opacity associated with DNs: 

Epistemic opacity [...] plays a role in arguments that connectionist models of cognitive 

processes cannot provide an explanation of why or how those processes achieve their 

goals. The problem arises from the lack of an explicit algorithm linking the initial inputs 

with the final outputs[...] at a level that correctly captures the structural aspects of the 

surface representation[...], together with the inscrutability of the hidden units that are 

initially trained. 

Humphreys here of course has in mind Fodor and Pylyshyn’s (1988) influential paper on 

connectionism and classical cognitive architecture (cf. his Fn. 22), and interesting issues arise 

in this connection indeed.70 However, Humphreys blames the lack of an explicit algorithm at 

a humanly understandable or ‘conceptual’ level (cf. ibid.), whereas ML is algorithmically fully 

transparent at the level of programming, as we have seen. Similarly, Burrell (2016, p. 2) speaks 

of a “mismatch between mathematical optimization in high- dimensionality characteristic of 

                                                           
69 Exceptions are, for instance, Kaminski (2014) or, more recently, Sullivan (2019). 
70 We will return to these only in section 3.5, when scrutinizing the use of ‘representation’ in the context of DL, 
and only to a limited extent. 
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machine learning and the demands of human-scale reasoning and styles of semantic 

interpretation” 

Hence, given ‘demonic’ computational powers, it might well be possible to figure out the 

workings of a learning algorithm on the basis of their algorithmic transparency, as was argued 

to be the case with CSs. However, with human-scale capacities, diverse tricks may be 

necessary for gaining understanding. 

Another way to put the problem is that there is no (human-scale) algorithm that renders the 

flow of information through the net transparent to the epistemic agent. Again, complexity is 

at least in part to blame for the occurrence of opacity in this sense: the DNs used by Baldi et 

al. (2014), for instance, included five hidden layers with 300 units each. Assuming that each 

node in one layer was connected with nonzero weight to each node of the successor layer, 

this makes 𝒪(1012) paths along which information can travel between hidden layers. This 

makes it hardly conceivable that a simple algorithm can be found that allows any human agent 

to track the flow of information through the net. 

However, complexity alone does not seem to 

be the culprit here: In stochastic gradient 

descent, for instance, we equip a DN with, 

e.g., backpropagation and parameter-

updating algorithms and then let it ‘learn’ 

itself, based on these algorithms. Hence we 

convey a partial- or quasi-autonomy on the 

system, by letting it perform itself the 

iterative tuning of parameters that ultimately 

leads to success in the given task. This is 

different in CSs: here the scientist herself will 

intervene over and over, to tune a simulation 

program better to a specific task.71 If this kind 

of control is given up, it becomes opaque in 

which ways the network was able to achieve 

                                                           
71 It may be remarked here that the same usually still applies to a network’s hyperparameters (cf. above). 

Figure 7: Pseudo-computational graph for 

stochastic gradient descent in a shallow 

network with sigmoid activations. (The 

backpropagation algorithm is not resolved in 

detail.)  
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the desired success. It is hence a kind of opacity induced by the method that is specific to 

‘learning’ algorithms. 

For concreteness, consider the simple, shallow network depicted in Figure 7, similar to the 

one from Sect. 1.2. In the network depicted here, the hidden units execute sigmoid functions, 

which makes their partial derivatives non-trivial. Figure 7 also displays an additional loop from 

the output back to the input, representing backpropagation together with stochastic gradient 

descent, which establishes the development of the network during the training phase. 

Assuming that the training is supervised, a loss function (denoted L in Figure 7) will be 

computed which compares the output to a target output t. For simplicity, assume also that 

the likelihood is Gaußian with variance 1 around t and the output binary. Then the loss 

function in formula (3) would, up to the regularizer term, yield 𝐿 =
1

2
(𝑦 − 𝑡)2, where y is a 

function of b, the 𝑤𝑖, 𝜎(ℎ𝑖), 𝑐𝑖, and 𝑊𝑖𝑗. Derivatives w.r.t. all parameters in 𝜃 will now have to 

be computed successively, which, by the chain rule, implies the need to compute derviatives 

such as 
𝜕𝐿

𝜕𝑦
= 𝑦 − 𝑡 or 

𝜕𝜎(ℎ𝑖)

𝜕ℎ𝑖
= 𝜎(ℎ𝑖)(1 − 𝜎(ℎ𝑖)) and chain them up appropriately to compute 

the derivatives further down.  

The goal of the training phase, to recall, is to minimize L, thereby effectively searching for a y 

s.t. y ≈ t. The stochastic gradient descent will now use the entirety of derivatives computed by 

backpropagation, plug them into a gradient ∇L,72 and update the set of parameters 𝜃 by 

subtracting 𝜖∇𝐿 from 𝜃. This process will be iterated through a number of ‘epochs’ until a 

predefined proximity between y and t is reached. All this will be done without any intervention 

by the researcher, and therefore quasi-autonomously. 

Despite the fact that more hidden layers can speed up the training, 10000s of epochs may be 

needed, producing a huge amount of individual steps that would need to be reviewed to track 

exactly how the final network is reached. Note also that we have here not only restricted our 

presentation to a shallow network, but also to supervised learning. In the case of unsupervised 

learning, where no target t is specified, it will likely be even more opaque how a network 

reaches its final configuration.73 

                                                           
72 Since derivatives will be taken also w.r.t. matrix elements, one would, strictly speaking, first have to ‘flatten 
everything out’ into a column vector to use the procedure exactly as described here. This is just a matter of 
representation though. 
73 There are already applications of unsupervised learning in HEP. An example for the use of unsupervised 
learning in discrimination tasks is discussed, e.g., in Andreassen et al. (2018). 
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Supervised or not, it seems impossible to retrodict, from the final configuration, the steps 

taken by the network, and since individual steps are executed without direct guidance by the 

researcher, it is also impossible to simply check corresponding records. This justifies our claim 

that this is another kind of opacity, induced by the quasi-autonomy of the machine during the 

training phase, i.e. by the method itself. While complexity obviously plays a role, opacity is not 

purely due to complexity here. 

However, this opacity induced by the method is still of a contingent nature: a Laplacean 

demon could compute all steps of the learning algorithm himself and, assuming knowledge of 

the inputs and initial weights and biases, thereby inspect all steps undergone by the network 

during the training epochs. 

 

3 (Partially) overcoming opacity 

Above, we have clarified three ‘levels’ of opacity (‘ordinary’, essential, and fundamental 

opacity) through careful analysis and formalization. Moreover, we used Laplace’s (original) 

demon as an ideal point of reference for a ‘natural’ agent, which allowed us to group opacity 

and essential opacity into a class we coined ‘contingent opacity’. Certainly, clarity is desirable, 

but what exactly is interesting about this analysis?  

The fact is that the continuity between the demon and human agents suggests that humans 

could overcome contingent opacities to a certain degree: approximating the demon’s 

capabilities by means of exploiting (second order) knowledge about the purposes and general 

properties of the code, as well as auxiliaries that one has more insight into, one may also gain 

some amount of insight into the workings of even a complex computer code. Without having 

a formal notion of degrees of opacity in mind, we shall now make it plausible that this could 

be achieved for ML methods in the future, and is in fact achieved, by some, to a remarkable 

extent for CSs in HEP. 

3.1 Epistemic relevance, justification and understanding 

The first step in this endeavor is to isolate the epistemically relevant elements that figured 

crucially in all three definitions. In this connection, Durán (2018, p. 108; emph. added) has 

recently pointed out that “researchers are only interested in a limited amount of information 

that counts for the justification of results.” A detailed knowledge of the program code is 
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presumably not relevant for justifying the results of a CS. Rather, validating well-designed code 

against known data and available benchmarks may justify some amount of trust in its results, 

insofar as success in these procedures is transferable. Hence justification of the desired 

knowledge, typically knowledge about some real-world target of the simulation, may convey 

relevance on some piece of information ip about the simulation process p.74 

Another hint for delineating epistemic relevance comes from Lenhard (2006), who relates 

epistemic opacity directly to understanding.75 Several epistemologists (e.g. Brendel, 2013; 

Kvanvig, 2003) have indeed pointed out that we usually value knowledge not for itself but for 

its ability to increase understanding. Riggs (2003) and Pritchard (2014), moreover, connect 

understanding especially to scientific knowledge, which is certainly apt for most if not all CS-

laden sciences. 

Lenhard (2006, pp. 611–3), however, suggests to distinguish between an insight view and a 

pragmatic view of understanding. The insight view basically says that one understands a 

‘device’, such as an equation, if one can determine properties of its solution, i.e., determine 

what it does, without necessarily being able to solve it / reproduce its behavior (cf. Feynman 

et al., 1965, Vol. 2, p. 2-1). The pragmatic view rather says that one understands the device if 

one is able to use it in order to exert control over phenomena. 

Lenhard here bites the bullet and argues that CSs are accompanied by a loss of insight-like 

understanding regarding their own detailed functioning while promoting control over certain 

phenomena, thereby increasing our pragmatic understanding of these. In other words: a 

method that is opaque may render a certain subject matter more transparent: “Simulation 

offers an opportunity for ‘systematic inquiry’ that remains valid even under the condition of 

partial opacity.” (Lenhard, 2019, p. 122) 

In a very similar vein, Kaminski and Schneider argue that CS can be an opaque way to 

overcome the opacity of certain mathematical equations. To argue for this, they first 

differentiate between strategies of justification by borrowing from a distinction in the theory 

of knowledge: “Internalist strategies of justification are based on insight into the interrelation 

                                                           
74 It may be remarked here that Plato famously already highlighted this systematicity induced by justification, i.e. 
the ability to ‘stabilize’ knowledge by other knowledge through justification, as a central value of knowledge over 
mere true belief in the Menon (97A–98A). 
75 23As Andreas Kaminski has kindly reminded us, this connection is also present already in Humphreys’ original 
approach (see, for instance, Humphreys, 2004, Sect. 5.3). 
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of elements. The prototype of this is the argument and the mathematical proof. Externalist 

justification strategies are based on the reliability of a process.” (this volume; first and third 

emphasis added, second and fourth in original) 

The appeal to this distinction in the context of CSs and their opacity is that CSs can serve as 

external means of justification for certain mathematical results while remaining themselves 

entirely opaque. We will address this issue later.  However, note here already that the position 

that justification does not immediately imply an increase in understanding (and thus a 

reduction of opacity) is not entirely unrivalled: Durán (2018, p. 106) buys into the same 

premise but rejects the conclusion: “Reliabilism[...] is the most successful way to circumvent 

epistemic opacity.” 

As shall become clearer a little below, in our view, insight-like understanding is required to 

render a CS (more) transparent. Hence, if we want to argue that CSs in HEP are, or can be 

made, transparent to a respectable degree, we also need to show how physicists gain insight 

into their workings, not just how they can use them successfully. 

Note that the Feynman-approach to insight does not require the ability to solve the equation 

/ walk through the algorithm for claiming insight: It is exactly the ability to determine what 

either does without having to solve / go through it that is crucial for being able to claim insight 

into it (cf. similarly Kaminski et al., 2018, p. 260, for the difference between execution and 

understanding). In a similar spirit, Durán (2018, p. 108) has recently pointed out that a detailed 

understanding of each and every line is certainly not required to understand what some code 

does. Rather, an assessment of the way in which it functions as well as of the inter-relations 

between its different parts is in order for such a purpose. 

In sum, we take it that any piece of information ip about process p that connects some ‘input’ 

s with an ‘output’ y, where an epistemic agent X is interested in y, will only be epistemically 

relevant to X if ip either (a) conveys justification on accepting the output as serving an intended 

epistemic purpose (such as adequately representing the states of a physical system) or (b) 

serves to convey an insight into the way in which p leads from s to y. 

If all this information was available, p would be perfectly transparent. As we have shown, 

however, the right amount and level of information to seek for justification or insight 

respectively does not necessarily reside in the details of the code in a CS or ML technique. 
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This gives us an edge in approximating the demon: we do not have to acquire his immense 

computational capacities to get deeper insights into as CS or ML algorithm; clever shortcuts 

can promote understanding while leaving certain (epistemically irrelevant) details in the dark. 

For recall that the demon’s capabilities were identified only as an ideal point of reference, in 

which a particularly helpful means (immense computational power) for acquiring 

transparency is present (cf. the example of the damped oscillator DEQ and its solutions)—not 

a necessary condition. 

 

3.2 Paths to overcoming opacity 

Given these preliminaries on epistemic relevance, how could agents ‘overcome their natures’ 

to render essentially opaque processes more transparent? The most obvious answer would 

be transhumanism, i.e. the integration, say, of suitable equipment into one’s brain, or the 

‘upload’ of the mind into a supercomputer. But these are presently just science fiction 

fantasies, so we’ll leave it at that. 

More realistically, agents may team up, divide the labor, pack the results of individual efforts 

into a more accessible form, and then achieve transparency collectively. By this we do not 

mean that the collective as a whole achieves transparency, but rather, that through 

collaboration each individual from a skilled group with a good division of labor may achieve a 

good deal of transparency. 

The former option (group transparency) would be compatible with Durán’s appeal to 

reliabilism: nobody would really ‘have’ the justification, but it could still claimed that (trust in) 

the CS ‘is’ justified. However, we are skeptical about reliabilism as a general account of 

knowledge, let alone understanding. Given what was said about the individuals in dedicated 

collaborations, out position is closer to the one coined ‘reliability internalism’ by Schurz (2008, 

p. 21; orig. emph.): “a justification of X’s belief-that-p is a system of arguments which 

demonstrates that the mechanisms which caused X’s belief-in-p are reliable, thereby recurring 

to conditions which are epistemically accessible for human beings.” 

The point is that “justification [...] must be cognitively possessed [...] by some competent 

attributor [...].” However, to be a competent attributor of justification based on simulation, 

one has to understand a fair deal about the simulation, as well as what can be achieved by 
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validation, benchmarking, etc. Competent attributors could be present in the sense of a weak 

ordering of quantifiers; i.e., for every piece of information (insofar as available at all) relevant 

to the justification of some simulation result, there is a competent attributor (an expert 

sufficiently skilled in scientific communication, at the very least for the purposes of the group 

of experts) who has that information. 

When taken together, the information had by the individuals in such collaborations may serve 

as the relevant ‘system of arguments’ for justification. However, the need of a scientific agent 

who is in possession of at least part of that system underscores our earlier claim that we think 

insight-like understanding is required for (increased) transparency. A CS for which this 

situation obtains may be called (largely) ‘third-person internally justified’, following the 

terminology in Schurz (2008). 

Alternatively, an agent could also exploit auxiliary devices or techniques whose functioning is 

sufficiently transparent to her. It is a case-by-case question whether any of these techniques 

work – which Humphreys (2009, p. 619), thinks, isn’t fulfilled for most CSs. But below we will 

make a case that this (especially the possibility of collective third-person internal justification) 

is realistic at least for large chunks of CSs utilized by the ATLAS collaboration. 

Emphatically, we do not mean to claim here that, in fact, each and every physicist at ATLAS, 

say, fully understands the simulations she uses. As already emphasized earlier, we do not even 

believe that there is even one individual at CERN who has full insight into the workings of all 

the complex CSs used for the LHC. However, we do believe that in dedicated collaborations, 

individual scientists can become able to obtain a fair deal of insight into, say, a particular 

version of the Pythia event generator or the GEANT detector simulation toolkit; simulation 

programs that have been in use for a long time and extensively studied. 

Next to what we have learned from practitioners (in private communication), this verdict 

concurs, e.g., with that of Zach Marshall on the ATLAS blog: ATLAS “wouldn’t run without the 

simulation, and yet there are few people who really understand it.” (see 

https://atlas.cern/updates/atlas-blog/defending-your-life-part-1; checked 08/20) This 

quotation implies that the number of people who consider (parts of) the ATLAS simulation 

infrastructure rather transparent is small—but non-zero. 

Different verdicts have been drawn, however, by Kaminski et al. (2018), as well as Kaminski 

and Schneider (this volume), who have recently identified several sources, or aspects, of 
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opacity that they consider relevant for CSs, namely social, technological, and mathematical 

ones. The social aspects reside in the fact that one usually builds on the works of others in 

science; in a CS, e.g., on libraries or modules that one has not programmed oneself, whereby 

one typically lacks insight into them. 

The technological ones are to be understood as a want of deeper understanding of any sort 

of technical equipment or, more generally, technique that one uses. In a CS, this comprises 

the computer hardware, but also established numerical (or even coding) techniques: “Without 

having to know by whom a mathematical technique was discovered and why it ‘works’ (i.e. 

without knowing the proof), it can be used as a tool (provided the prerequisites are given).” 

(Kaminski and Schneider, this volume) The mathematical reasons, finally, reside in the fact 

that, for many mathematical equations as used in science – and especially as the basis for CS 

– it is unknown how solutions to these would behave, and whether they include properties 

such as strange attractors or bifurcations. 

For Kaminski et al. (2018), the possibility of collective or technology-aided transparency we 

have sketched above would be doubt worthy, and in a sense we agree: auxiliary devices and 

other agents may introduce another layer of sources of opacity. However, depending on the 

communication skills and technological abilities of individual agents, the opaque remainder 

may be reduced, and at least for certain aspects or parts of a complex simulation, even 

become close to negligible, depending on one’s standards for epistemic relevance. As we have 

pointed out above, this may not be so far from the truth in actual examples. 

 

3.3 Complexity: Learning about model relations 

Let’s now first consider the overcoming of merely complexity-induced opacity, as it attaches 

to the simulation infrastructure at ATLAS. Indeed, we already admitted that documentation 

may often be sloppy, which can make it hard to comprehend. Nevertheless, a tremendous 

amount of documentation exists: The ∼ 250 000 lines of code in the Athena framework 

specific to ATLAS simulations, for instance, are accompanied by some ∼ 70 000 lines of 

commentary (ATLAS, 2010), as well as various user manuals and wikis providing overall details 

on the CSs’ functioning to the user (e.g. https://twiki.cern.ch/twiki/bin/ 

view/Main/IUedaAtlasSimulation#Atlas_Simulation or ATLAS Computing Group 2005, for 

https://twiki.cern.ch/twiki/bin/view/Main/IUedaAtlasSimulation#Atlas_Simulation
https://twiki.cern.ch/twiki/bin/view/Main/IUedaAtlasSimulation#Atlas_Simulation
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examples). It seems that getting insight at least into the detailed workings of pieces of written 

code is largely a matter of personal effort, not one of principled restrictions.76  

In particular, while the code-writing is, indeed, often sloppy, there are organized efforts for 

cleaning up codes and for streamlining future code development, such as the High Energy 

Physics Forum for Computational Excellence (Habib et al., 2015). On top of that, 

communication between experimenters and dedicated software-development groups 

appears to function rather well, so a lively exchange exists between the needs of experiments 

and the writing of code for these very purposes (cf. ibid.). 

However, insight also requires knowledge of the interactions between parts, and we had also 

identified the justification of results as a second key condition for epistemic relevance. The 

Athena code will be constantly validated against benchmarks, which secures that it works as 

intended as a whole, even when new code is added. This conveys some amount of 

justification. 

More importantly, though, there is also dedicated small- and large-scale integration testing, 

meaning that, when pieces of code are replaced, their joint functioning with the remainder of 

existing code is tested for on small and large scales (cf. ATLAS Computing Group, 2005, p. 78 

ff.). In other words: when a new piece of code has been written, it will be immediately checked 

whether, and in what ways, this alters the functionality of the remaining code. 

Three frameworks are used for this, called AtNight, Kit Validation, and Run Time Tester (RTT). 

There are differences in how these are used: RTT, for instance, “is currently run daily on a farm 

at UCL”, and the “full set of RTT results currently take a number of hours to generate.” (ibid., 

p. 79) AtNight, on the other hand, is used to test the ‘nightly builds’, i.e., automatically 

generated parts of the total code that are still at an early stage of development. Developers 

have a number of choices in these frameworks as to what to test and how (cf. ibid.). 

These tools all fulfill somewhat complementary roles. For instance, while AtNight is mostly 

concerned with software-specific properties, including the interfacing with other modules of 

the overall software, RTT “sets up relatively complex jobs [...], runs them, performs post-

                                                           
76 Andreas Kaminski has pointed out to us that this does not address the interaction with the compiler yet. We 
agree, but given the above considerations on epistemic relevance, we are not convinced that these specifically 
implementation-related aspects cannot be compensated in large part by suitable testing, including and especially 
integration testing (see below). 
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execution actions and tests and finally publishes the results on a web accessible location [...].” 

(Costanzo et al., 2010, p. 2) Due to its computational expensiveness, this is done only for some 

tens of events. However, subsequently, a(n even smaller) number of full-chain test is run, 

ranging “from basic Standard Model processes [...], to exotic (and very complex) events (black 

holes production).” (ibid., p. 3) It would be quite surprising if substantial errors would remain 

undisclosed by these diverse means of addressing the functionality of the code. Moreover, 

because the ‘statistics is high’ in HEP (there is loads of data), divergences can be identified 

quite precisely. The rate of errors induced by bugs in the software is reported to lie in the 

order of some 10−4 − 10−5; numbers deemed “an acceptable failure rate” by working 

software developers in HEP (ibid., p. 5). 

That by itself would, however, only establish reliability, not necessarily (increased) 

transparency. Given the importance of insight-like understanding for human agents that we 

recognized earlier, it is thus vital to realize that the code has been written purposefully, by 

physicists, and that each part of it will derive from some sort of physics model (cf. Boge and 

Zeitnitz, 2020, for some details). 

These models either rest on a solid theoretical basis or relatively simple assumptions, and so 

may be claimed to be as well-understood as any physics model: At least for high energies and 

to the extent that it is even possible to ‘understand’ a quantum theory,77 quantum 

chromodynamics is rather well-understood, in terms of a perturbative treatment. This means 

that Feynman diagrams computed to fixed orders in (powers of) the strong coupling constant 

deliver sensible results that can be mapped to experiments, and the higher order terms left 

behind can be expected to have smaller and smaller impact on these results. 

At lower energies, this ability to compute and comprehend the theory breaks down. But there, 

simplifying, idealizing models take over. The assumptions of these models, such as the string 

model of hadronization, are typically rather ‘domestic’. For instance, in string models of 

hadronization, the ‘tearing of the string’ that represents the breakup of the color field that 

binds quarks, which in turn corresponds to the creation of two new mesons, is predicted by a 

simple probability density whose shape is derived fully from physical and simplifying modeling 

assumptions (Andersson et al., 1983). No skilled physicists will have a hard time 

                                                           
77 de Regt’s (2017) account of understanding, for instance, would allow this. 
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comprehending its origin and properties. At the level of physics modeling, there is, in other 

words, no reason to expect a special sort (or even amount) of opacity. 

The relations between these models, moreover, can also be understood in detail before 

programming, and dependencies between model parameters will be known and respected by 

job specifications allowed by Athena, or even already compensated for in the code. 

For a detailed discussion of these relations we refer the reader to Boge and Zeitnitz (2020). As 

an example of compensation of dependencies, however, consider what is called ‘matrix 

element matching’: In the simulation of an event and subsequent processes, “double counting 

can arise when the same final state can be generated both by the parton level calculation, and 

by the showering algorithm.” (Mangano and Stelzer, 2005, p. 564) The details are intricate (cf. 

ibid., pp. 579–80) and shall not be recaptured here. In essence, however, “a probabilistic 

rejection procedure [is] applied to events falling in the overlap” between phase space sectors 

associated with parton showers and hard scatters respectively, “to ensure that a given phase-

space configuration is only counted once.” (ibid., p. 579) 

Hence already on the level of physics modeling (with the goal of simulation in mind), will 

insight be gained by studying relations between different models and modeling steps in detail. 

Moreover, several pure programming artifacts are known and compensated for as well: an 

example are ‘stuck tracks’ in the detector simulation, due to an infinitely dense spacing of the 

simulated components. 

The above suggests that the study of model relations pre-implementation, together with 

integration testing after the code writing, secures some amount of insight into the code: If 

what is already understood on the physics-level is preserved in the computer code, this means 

that most of the already obtained understanding carries over. 

However, transparency is thus gained also on the side of justification; specifically, in the ability 

to attribute errors. Consider the following quote from Boge and Zeitnitz (2020, p. 30): 

Testing the integration-properties of a certain piece of code—after having taken into 

account the connections that already exist across the underlying physics models [...]—

means checking whether including this code (or the model it represents) will spoil the 

validity established for the integrated whole. When this is the case, it is possible to 
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attribute at least the failure to the new piece of code or to its connection to other 

pieces, and to re-assess it on the physics and implementation level. 

In this way, the detailed integration testing performed by ATLAS (or, more generally: LHC) 

physicists at least in part compensates the following observation by Kaminski and Schneider 

(this volume; orig. emph.): “Not all errors must be relevant, but it is not known apriori which 

errors are relevant, and which are not.” The interplay between overall validation and small- 

and large scale integration testing allows to locate errors known to impair overall functioning 

in certain pieces of code. Hence, if there are still errors contained in the code (as there always 

are), or even related to hardware limitations and the like, these can be hoped to be irrelevant 

insofar as they do not seem to (vastly) alter already secured results.  

This does not address results as yet to be secured, however. In this respect, considerations of 

robustness are helpful for sorting out artifactual results from those that can be considered 

trustworthy. We cannot go into much detail here (Boge, ms, for a deeper look); but roughly, 

the idea is that convergent results arrived at on the basis of very different idealizing and 

simplifying modeling assumptions and implementations (as available and used in HEP) can be 

considered trustworthy, i.e., probably not the result of particular programming and modeling 

artifacts, but rather consequences of a solid, common core. 

We conclude from this that, at least for CSs used at ATLAS, “acceptability” is not only judged 

“according to the model’s overall behavior,” as Lenhard (2006, p. 613; orig. emph.) has it, but 

also by the components’ behaviors and by their interrelations. In other words: pace Lenhard 

(2006) and Humphreys (2004, p. 148), high energy physicists do obtain at least a fair amount 

of the “traditional transparency” connected to an “understanding[...] based upon the ability 

to decompose the process between model inputs and outputs into modular steps, each of 

which is methodologically acceptable both individually and in combination with the others.” 

In sum: Basing epistemic relevance in justification and insight-like understanding renders 

many details of the code for ATLAS CSs epistemically irrelevant. Accordingly LHC physicists in 

dedicated collabo- rations may be said to achieve a fair deal of transparency by means of 

careful modeling, programming, documenting, and testing. 

One may wonder why this level of transparency appears to be reached in HEP, but maybe not 

so much in other simulation-heavy fields like climate science. Three reasons offer themselves 

in particular: (a) In HEP one relies on proper experiments, which implies a high degree of 
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control over the objects of study (e.g. Radder, 2009; Schurz, 2014), whereas in climate science 

one is largely limited to field observations. (b) There is some solid theoretical core in HEP (the 

Standard Model), which can be used to guide the development of CSs, whereas in climate 

science there is a plethora of models that start from rather diverse assumptions (e.g. Parker, 

2018, Sect. 4.1). And, maybe most importantly, (c) HEP experiments have a high degree of 

social organization, which allows to monitor and review, among other things, software 

developments much more closely than in disparate disciplines like climate science.78 

It is clear that several aspects, including certain sources of error, will remain opaque 

nonetheless. What we have shown, however, is that, depending on one’s stance on epistemic 

relevance, HEP simulations that haven long been in use can be viewed as transparent to a 

respectable degree, for several individuals in dedicated collaborations. Since this is the result 

of collaborative effort, good communication, and the skillful application of techniques for 

obtaining knowledge about whether the implemented algorithm can be expected to perform 

as intended (and where it will fail), it follows exactly from the set of ‘tricks’ we outlined above 

for overcoming one’s nature and approximating the demon. 

 

3.4 Method: Learning about the learning process 

Now what about the acclaimed ‘black-box’ nature of ML techniques? Worries of this kind may 

be connected to some general facts about ML, in particular that certain DNs have been known 

to suffer from robustness issues, in the sense that learned strategies will fail under even 

minute (though often specific) differences in inputs (cf. Marcus, 2018, p. 8). This first and 

foremost indicates difficulties in the justification of ML results, however, and may be 

compensated for by empirically testing for robustness in specific tasks (which is generally 

claimed to be rather high in HEP; cf. Guest et al. 2018), determining, as far as possible, the 

source of the non-robustnes otherwise, and improving on algorithms for individual tasks. 

Indeed, there is the so called “no free lunch theorem”, which “states that, averaged over all 

possible data-generating distributions, every classification algorithm has the same error rate 

when classifying previously unobserved points.” (Goodfellow et al., 2016, p. 111) The 

implication is  

                                                           
78 For a more detailed treatment of these issues, see also Boge and Zeitnitz (2020, esp. Sect. 4.3 and 4.4). 
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that we must design our machine learning algorithms to perform well on a specific 

task. We do so by building a set of preferences into the learning algorithm. When these 

preferences are aligned with the learning problems that we ask the algorithm to solve, 

it performs better. (ibid.) 

These preferences will be implemented in terms of regularizers 𝜆Ω(𝜃)79 added to the loss 

function. An example is the ‘weight decay’ regularizer 𝜆𝑥2, where 𝜆 > 0 will force the weights 

to become smaller, as ∇w2 = 2w, which will approximate zero only in case w → 0. 

We have argued, however, that the network’s ability to self-correct introduces an opacity 

different in kind from the merely complexity-based one. If opacity is hence connected to this 

partial autonomy of the network, it may be difficult to determine the source of non-

robustness. 

Moreover, empirical steps for securing that some DN or boosted decision tree achieves the 

desired goal, i.e., justifying its results, would do no good for overcoming opacity in the sense 

of conveying insight into learning processes. The case is asymmetric to that of CSs in that we 

implement a certain physics model in a CS, and by performing benchmarks and integration 

testing we get an insight into whether this model (which, to recall, we argued to be generally 

well-understood in HEP) was implemented as intended. 

Emphatically, by that we do not mean that empirical success alone produces understanding. 

Rather, against the background of the understanding gained by investigating the physics 

relations contained in / persisting between the models, and putting in effort to preserve these 

as closely as possible in programming, the empirical evidence gained through validation and 

integration testing sheds light on whether this process was successful. In that way, it confers 

the understanding had on the physics level on the implemented algorithm. 

This is different in ML: Here the algorithm is basically just a method for extracting information 

from data in a largely model-independent fashion,80 and for the reasons named above, the 

insight we may desire is exactly as to how this information was extracted. 

                                                           
79 Thomas von Clarmann (private comm., 2019) has pointed out to us that understanding the exact functioning 
of regularizers often poses additional challenges. This implies that rendering algorithms that include regularizers 
transparent may require additional effort. It does not impair (but rather underscores) our general point though: 
that there are conceivable techniques for rendering ML largely transparent, in individual cases. 
80 Cf. also Humphreys (2013) on this point. 
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How do ML scientists cope for this kind of opacity? Indeed, protocols here are not as far 

developed as is the case with CSs at ATLAS, and the quest for transparency, usually subsumed 

under the header ‘explainable artificial intelligence’ (XAI) is more of an open field of research 

(e.g. Russell et al., 2017, p. 94). Yet some remarkable approaches and results already exist that 

sketch a path to XAI and allow to render specific ML techniques more and more transparent 

(e.g. Ronen, 2017, for an overview). 

To give a concrete example, let us briefly zoom in on the approach by Schwartz-Ziv and Tishby 

(2017), which used information-theoretic quantities to track the evolution of a DN with 

stochastic gradient descent. A central insight underlying this approach was that a DN without 

skip connections (cf. Sect 1) can be seen as a Markov chain: each layer corresponds to a 

random vector whose distribution will depend only on its direct predecessor. Using the so 

called information plane (cf. Schwartz-Ziv and Tishby, 2017, p. 5), the authors were then able 

to track the evolution of DNs with 1–7 hidden layers of decreasing size (2–12 nodes) towards 

the output. The information plane is defined by considering the distributions 𝑝(ℎ(𝑛)|𝑥) and 

𝑝(𝑦|ℎ(𝑛)) for hidden layer ℎ(𝑛) and using the mutual information 𝐼(ℎ(𝑛); 𝑥) and 𝐼(𝑦; ℎ(𝑛)) 

respectively as x and y coordinates of a Cartesian coordinate system. Here, 

   𝐼(𝑣; 𝑤) ≔ ∑ 𝑝(𝑣𝑖 , 𝑤𝑗)𝑙𝑜𝑔2𝑖,𝑗 (
𝑝(𝑣𝑖,𝑤𝑗)

𝑝(𝑣𝑖)𝑝(𝑤𝑗)
),                                                      (8) 

can be interpreted as the average number of bits of information v contains about w and vice 

versa. 

Now Schwartz-Ziv and Tishby (2017) performed a bunch of numerical experiments in which 

for configurations of 12 uniformly distributed points on a sphere a yes/no decision had to be 

made, yielding 212 = 4096 possible input configurations. To generate a joint distribution p (s, 

y), a logistic sigmoid, 

𝜎( 𝑓(𝑥) − 𝜃) = (1 +  𝑒𝑥𝑝[−𝛾(𝑓(𝑥) − 𝜃)])−1,                               (9) 

of some spherically symmetric function ƒ (x) of the pattern (uniquely indicating the pattern 

itself) was computed and interpreted as the probability 𝑝(𝑦 = 1|𝑥). This can be understood 

by realizing that 𝜎(𝑓(𝑥) − 𝜃) approaches the Heaviside distribution 𝛩(𝑓(𝑥) − 𝜃) for growing 
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𝛾,81 which corresponds to a deterministic yes/no decision in which 𝑓(𝑥) is compared to a 

criterion 𝜃(𝑓(𝑥) ≥ 𝜃 means yes, everything else no. The sigmoid hence created a probabilistic 

rule for a yes/no decision conditional on x, which would yield a joint distribution 𝑝(𝑥, 𝑦) =

𝑝(𝑦 = 1|𝑥)𝑝(𝑥), with 𝑝(𝑥) chosen uniform as indicated above. 𝜃 was chosen such that 𝑝(𝑦 =

1) = ∑ 𝑝𝑥 (𝑦 = 1|𝑥)𝑝(𝑥) ≈ 0.5 and 𝛾 large enough such that the mutual information 𝐼(𝑥; 𝑦) 

as approximately 0.99 bits (the decision close to deterministic). 

The network’s nodes executed an arctan activation function, which was binned into 30 equal 

intervals between −1 and 1. This binning was used to compute an approximation for the joint 

distributions 𝑝(ℎ(𝑛), 𝑥), from which all other quantities, in particular the information plane-

coordinates, could be calculated (cf. Schwartz-Ziv and Tishby, 2017, p. 8). This was repeated 

for 50 randomly chosen initializations of the network (weights and biases), as well as 

configurations s (ibid.). 

One of the central insights from these experiments was the existence of two distinct phases 

in stochastic gradient descent: 

In the first and shorter phase the layers increase the information on the labels (fitting), 

while in the second and much longer phase the layer reduce the information on the 

input (compression phase). Schwartz-Ziv and Tishby (2017, p. 3) 

This is to be understood in the sense that the layers first moved up along the 𝐼(𝑦; ℎ(𝑛))-axis, 

thereby increasing the amount of information each layer would provide for y, and then move 

to towards zero (towards the left) on the 𝐼(ℎ(𝑛); 𝑥)-axis, thereby reducing the information 

each layer contained about x. This may be seen exactly as a fit-then-optimize learning strategy: 

The networks first learned to achieve the goal (produce the desired y from given s) and then 

removes all the information about the input not required to achieve that goal with the same 

accuracy. 

Moreover, by minimizing the quantity 𝐼(ℎ(𝑛); 𝑥) − β𝐼(𝑦; ℎ(𝑛))-independently over all 

𝑝(𝑦𝑖 |ℎ𝑖
(𝑛)

), 𝑝(ℎ𝑖
(𝑛)

) and 𝑝(ℎ𝑖
(𝑛)

|𝑥𝑖), one finds a set of equations, parametrized by 𝛽, that 

                                                           
81 To understand this, consult the graphs of these functions and consider 𝛾 a measure for inverse width in the 
area where the curve has a steep (respectively: vertical) incline. 
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define a curve through the information plane on which ℎ(𝑛) may be said to be an efficient 

representation of x.82 Ultimately, the networks approximated points on that curve. 

A second result of the study, which could be explained with the help of the foregoing one (cf. 

Schwartz-Ziv and Tishby, 2017, p. 12), is that more layers will speed up the training phase. This 

may be understood on the basis of the optimization (removal of unnecessary detail) 

performed by the earlier layers, which provides already suitably compressed information to 

the later layers and makes their convergence to a desired result easier. 

This is an impressive insight into stochastic gradient descent in a specific feedforward network, 

but of course not a general result about all DL, let alone ML. However, mutual information is 

invariant under invertible transformations of the variables; so the general approach can be 

carried over to a whole range of DNs. Moreover, the task was repeated with non-symmetric 

distribution over the sphere, and no difference in the general results was found. This also 

suggests a carry-over to a range of similar classification tasks. Finally, this is just one exemplary 

study in a broader research field, as we have pointed out above. Other studies may shed light 

on other kinds of learning machines or provide complementary insights on stochastic gradient 

descent. 

Obviously, the procedures explored here are rather different from what is being done to 

overcome the complexity-induced opacity of involved CSs at ATLAS. This underscores our 

earlier claim that the opacity in question, and accordingly the information required for 

achieving transparency, is different in kind. However, on a high level of abstraction, quite 

similar reasons are relevant to the establishment of transparency: a learning algorithm is 

purposefully designed, implying already a fair deal of knowledge about its constitution. Testing 

corresponding DNs on a broad range of applications can then delimit the scope of the 

algorithm’s suitability and compensate for lacking a priori knowledge during the design stage. 

This will covey justification on the acceptance of a range of results, to the extent that the tasks 

resemble each other in relevant respects. Moreover, using methods like that of Schwartz-Ziv 

and Tishby (2017), one can obtain a fair deal of understanding of the process the machine 

                                                           
82 This is possible only if the output layer is not a deterministic function of the input layer. However, any 
deterministic function can be made stochastic by assuming that there is always some noise, and by 
correspondingly adding some minor stochastic error. This can be implemented exactly in terms of 
(probabilistically interpreted) sigmoid functions with their width representing the amount of noise (cf. Schwartz-
Ziv and Tishby, 2017, p. 6 and below). 
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undergoes during the training stage. All in all, this may compensate for a considerable amount 

of opacity induced by the machine’s relative autonomy. When all this is done correctly, the 

missing epistemically relevant information may become almost negligible here as well. But at 

present, XAI appears to be still pretty much in its infancy, and there is hence a de facto 

asymmetry to CSs at ATLAS. 

 

3.5 Model-opacity: What do we really learn? 

We have thus sketched an exemplary way in which the learning process of a machine may be 

rendered more transparent, and the opacity induced by the method may be overcome to a 

considerable degree. However, physicists such as Chang et al. (2018), from which we took the 

‘black box’-quote, are interested rather in the physical features on the basis of which a given 

DN learns to classify, not exactly in the way in which it does so. 

There are, in other words, two dimensions to the ‘black box’-ness of ML and DL methods, 

namely how the machine learns and what it learns. The approach by Schwartz-Ziv and Tishby 

(2017) discussed above targets only the first dimension. Chang et al. (2018), in contrast, tried 

to understand what physical features would yield the discriminating power for a DN. To that 

end, they used what they called a planing scheme, which essentially means removing 

information regarding certain variables in a data set and observing consecutive changes in the 

DN’s discrimination power. The ‘planing’ refers, more precisely, to the weighting of events by 

a quantity inversely proportional to the differential cross section d𝜎(𝑥𝑖)/d𝑚 |𝑚=𝑚𝑖
, or a 

relevant distribution more generally, where 𝑥𝑖  labels an input vector for event i, and mi means 

the value m takes on in that event. 

In practice, Chang et al. (2018) inverted histograms, meaning that events would be weighted 

by 1/(#counts in bin i) for bins of the histogram corresponding to variable m, making this 

histogram itself a uniform distribution. Performance drops were then measured in terms of a 

reduced AUC, for an extension of the SM in which a new (vector) boson Z’ was introduced that 

decays into an e+e− (i.e., electron-positron) pair and couples to SM particles. Two cases were 

considered: 𝑍′𝑉 where the couplings to right-handed83 and left-handed SM particles would be 

                                                           
83 Recall that the Dirac equation is solved by a spinor-field with four entries. For massless particles, the upper 
part then corresponds to negative eigenstates of a helicity operator (‘right handed ones’), meaning that their 
spin lies in the opposite direction as their momentum, whereas for the lower part the two are aligned (‘left 
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identical, and 𝑍′𝐿where the boson would couple exclusively to left-handed SM particles. Data 

in both cases were produced using a Monte Carlo simulation, with 106 proton-proton 

collisions. The relevant background comprised standard pair creation events 𝛾∗ → 𝑒+𝑒−, with 

𝛾∗ a(n off-shell) photon.84 The mass for both Z’s was assumed to be 𝑀𝑍′= 1 TeV and the 

characteristic expected lifetime such that the corresponding peak at 1 TeV in the mass 

distribution would have characteristic width Г𝑍′ = 10 GeV. The photon background, in 

contrast, would simply be decreasing. 

Two variables were then planed for in order to investigate performance drops: the 

reconstructed invariant mass m of the final-state products, as in the benchmark case discussed 

above, and the rapidity 𝑦 =
1

2
ln[(𝐸 +  𝑝𝑧)/(𝐸 −  𝑝𝑧)], or rather the difference ∆𝑦 ≡

|𝑦 (𝑒−)| − |𝑦(𝑒+)|, which provides information about the angular distribution and hence 

indirectly about the asymmetry between couplings to right and left-handed SM particles.  

Actually, in the case 𝑍′𝑉, only m was planed for, because of the (symmetric) way the example 

was set up. The AUC then approached 0.5 upon planing for m in this case, which means85 that 

“no noticeable discriminating power remains.” (Chang et al., 2018, p. 4) This was also 

compared to the performance of a linear network (no hidden layer), which would, as 

expected, perform significantly worse than the DN before planing when only fed with four-

momentum information, but almost as good when equipped with joint information on p and 

m.   

In the 𝑍′𝐿 case, on the other hand, some discriminating power was left in both networks when 

only m was planed (AUC>0.6) and a high correlation (0.90) could be established in the linear 

responses (before activation with a sigmoid function by the hidden units) with the variable 

∆𝑦. Planing for ∆𝑦 as well, the performance of both networks then approached 0.5 again. 

Bottom line: planing selectively for certain variables, one gets an indirect insight into the 

physical char- acteristics (angular anisotropy of the distribution, therefore unequal couplings 

                                                           
handed’ ones; e.g. Griffiths, 2008, pp. 338 ff., for an overview). The names are common for massive particles as 
well, although the identification with helicity eigenstates is not possible here. 
84 ‘Off shell’ is a term that refers to the shape of the (shell-like) boundary for the volumes in space-time diagrams 
within which the curves traced out by massive particles can lie. Being off this shell means that these particles 
defy the relativistic energy-momentum relation, which is possible only for ‘virtual’ particles, i.e., that (if anything) 
whichever is represented by the internal lines of Feynman-diagrams, which explicitly contrasts with the external 
lines that represent measurable particles. 
85 The AUC is standardly normalized to unity, so an area of 0.5 means that the best one can get is a joint 50% 
chance for correct positives and negatives. This in turn essentially says that the classifier is doing guess work 
instead of systematically classifying events. 
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to left- and right-handed particles; high information content in mass-distribution, therefore 

massive new particle) underlying the data. But the model was already known here, and the 

variables to be planed for were hence suggested on the basis of that model. So even if such a 

“procedure can be explored systematically”, i.e., by planing iteratively for all conceivable 

physically relevant variables, it is “most efficient in tandem with physics intuition.” (Chang et 

al., 2018, p. 5) 

We must stress, at this point, that one does not retrieve a model from the procedure, and a lot 

of variation in detail remains possible. Let us refer to this fact as model-opacity. It is the opacity 

of the underlying physics, which could be captured by a mathematical model and is 

responsible for the machine’s ability to discriminate, i.e., leads to the phenomena made 

accessible via the machine. It seems that there is no algorithm which leads us from the 

machine’s output to a concise understanding of the underlying physical mechanisms. So even 

a Laplacean demon might be lost, as, in contrast to the kinds of opacity discussed above, we 

seem to have come across a variant that is not algorithmically transparent. 

The problem set associated with this kind of opacity is acknowledged in the ML community 

typically under the header of ‘causality’: 

what makes one representation better than another? One answer[...] is that an ideal 

representation is one that disentangles the underlying causal factors of variation that 

generated the data, especially those factors that are relevant to our applications. 

(Goodfellow et al., 2016, p. 544) 

In fact, supervised learning and a distributed representation may be utilized exactly with the 

aim of providing the machine with a means for learning the relevant factors of variation (ibid., 

pp. 544–5). However, we indicated above that one should be cautious about the meaning of 

‘representation’ here. Consider, for instance, the following observation by van Fraassen (2008, 

p. 7, emph. added): “A representation is made with a purpose or goal in mind, governed by 

criteria of adequacy pertaining to that goal, which guide its means, medium, and selectivity.” 

Similarly Suárez (2003, p. 237; emph. added): “A [...] cannot stand in [in a representing relation 

to B] unless it is intended as a representation of B by some suitably competent and informed 

inquirer.” There is, in other words, a good case that representation requires intentionality, 

which in turn may require conscious content such as agreed-upon standards. In what sense, 

then, may a network be said to represent a given function, such as a likelihood ratio? We take 
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it that it can represent such a function to us, in the sense that it does everything that the 

likelihood ratio does: it spits out a number of ‘events’ in the right frequency relative to 

expected ‘background events’. 

Now given that a likelihood is of the form p(data|hypothesis), there is a problem associated 

with the nature of the input here. For when we train a network on the basis of Monte Carlo 

data, resulting from the implementation of some approximation to a physical model, we know 

exactly what the ‘hypothesis’ is on which we condition and which gives us the input to be 

classified: it is a part or consequence of the implemented model. When we let a well-trained 

network loose, in contrast, on a range of previously unexplored data (say in a new energy 

range achieved with some future collider) and it indicates the presence of a completely 

unexpected phenomenon to us, then the network really just represents some sort of 

distribution, not a well defined likelihood; or more colorfully: a likelihood conditioned on an 

unknown hypothesis. 

In sum, talk of representation is misleading here in two ways: (a) the network itself will not 

literally represent a given function, in the sense in which a conscious scientific agent would if 

she had a mathematical representation of it. And (b), even if we can track what the network 

does and thereby work out the function ‘represented’ by the network, this would not lead us 

to a representation of the underlying reality, i.e. a model from which the function derives. 

Now is model-opacity, as we have called it, fundamental or not? We cannot draw a final 

verdict on this issue, but we may speculate that it is. Above, we always linked the possibility 

to overcome the other kinds of opacity to their algorithmic transparency, for instance, when 

benchmarking is used to check whether the purposefully written algorithm performs as 

desired, or when information theoretic methods are being employed to track a network’s 

evolution. The apparent lack of algorithmic transparency in model-opacity, however, might 

leave even a Laplacean demon lost in as yet uncharted domains of data. What methods such 

as the planing performed by Chang et al. (2018) establish is to narrow the space of possible 

hypotheses down, at least within a conceptual scheme such as quantum field theory, or maybe 

present day particle physics more specifically. But that still leaves a lot of room, and it is 

unclear whether all possible hypotheses can be explored in a systematical – let alone 

algorithmic – fashion. Hence it is equally unclear whether “there are ways to circumvent any 

form of epistemic opacity”, as suggested by Durán (2018, p. 107, emph. added). 
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4 Discussion: A novel phenomenon on any level? 

Let us now consider whether any of the opacities discussed here is unique to CS or ML. For 

the complexity based one, it seems that the identification of social or technological aspects 

and their say in the opacity of complex code or its implementation renders this sort of opacity 

a common scientific phenomenon, not a particular feature of CSs: In any complex research 

task, one has to rely on the standards and expertise of others: specialists will perform and 

optimize pre-defined sub-tasks, such as calibration of equipment, and unless explicitly 

requested, one will not get insight into the execution of these tasks, regardless of an 

involvement of CSs . One usually also does not have deeper knowledge of the equipment one 

uses: 

Measurements performed by a producer can convey some amount of insight, but it also 

requires some effort to understand the details of a manufacturer’s specifications or even test 

their adequacy. 

At this point, we feel the need to emancipate ourselves from, and contrast our findings with 

those of, Kaminski and Schneider (this volume). Taking crash test simulations as an example, 

they claim that “opacity occurring here is not due to novelty of the subject or method”, but 

rather, that the following factors “agglomerate to epistemic opacity” (emph. added): 

1. the social and technical organization of CSs 

2. the mathematical background of relevant equations 

3. the applied discretization method 

4. the application of digital computers, and 

5. the quick shift from CSs as objects of research (as in validation and benchmarking) to 

being a ‘valid’ research tool. 

We will turn to the question of novelty below. For now, we’d like to point out, again, that we 

do not deny that the combination of these factors creates opacity. However, the above 

considerations on epistemic relevance, conscious modelling and implementation, as well as 

testing on several scales and in several complementary ways somewhat lessen the impact of 

1., 4., and 5. in HEP. Let us hence focus on 2. and 3. 
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The main reason for 2., in the case of crash test simulations, is the sensitivity of the ‘buckling’ 

of a (thin-wall) structure under a certain load to precise experimental conditions is very high: 

determining under what conditions the forces that represent a load put onto even a simple 

structure like a rectangular tube, modeled as a collection of two-dimensional sheets that can 

bend in three dimensions (so called ‘shell elements’), leads to a second order DEQ with 

sinusoidal solutions. However, the equation’s Eigenvalues, corresponding to specific periodic 

deformations of the tube under a certain load, are determined by the exact material 

properties and geometry. 

Now Kaminski and Schneider find that “This mathematical feature will produce a 

mathematical opacity when the equations are solved externally.” We take this to mean that, 

because of this high sensitivity to specific conditions, it becomes impossible to track how a 

specific deformation was reached when the equations are solved as part of a CS. 

Many exact proofs of complex mathematical theorems will, of course, be executed by 

extraordinary mathematicians, and proofs may sometimes remain intransparent, possibly 

even essentially, for other individuals in the scientific community. As Kripke (1972, p. 159; 

emph. added) famously put it: “one can learn a mathematical truth a posteriori by consulting 

a computing machine, or even by asking a mathematician.” 

A nice example is the so called Feynman-Dyson split (Kaiser, 2005, pp. 175 ff.): Feynman had 

introduced his famous diagrams in an intuitive, heuristic fashion, without providing any 

rigorous mathematical reasons for their functioning on the basis of quantum field theory. This 

defect was compensated by Freeman Dyson, but in private communications with his Friend 

Ted Welton, Feynman freely admits to have never thoroughly understood those proofs (cf. 

ibid., p. 178). 

This is well-acknowledged by Kaminski and Schneider, but they also point out that, for the 

relevant set of equations (and similar ones used in CSs more generally), “there are no experts 

who understand the dynamics of these systems of equations internally.” Further, depending 

on the edge sizes for the shell elements, i.e., the grain of discretization, the simple tube system 

shows major differences between steps from one eigenvalue to another, and also differences 

in steps between the stiffer, narrower side of the tube and the wider, more flexible one. 

Finally, if the load is incrementally increased above the stable buckling load by means of a 

Newton method, the system shows strongly non-linear behavior at some point. However, the 
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point at which this behavior occurs, as well as “the complete post buckling behavior”, are 

influenced by a parameter of the Newton method. Hence, Kaminski and Schneider conclude 

that “the technical opacities of the [discretization method] interfere with the mathematical 

opacity of the instable buckling problem.” 

This example – which, in our brief recap, even neglects the additional parameters introduced 

by the use of digital computers – is paradigmatic for a range of complex problems: An initially 

simple set of equations leads to rather unpredictable behavior, and this is in part conditioned 

on the method of discretization and purely computational factors. Even more so, complex 

mathematical problems will quite often also urge the move even to educated guesses: An 

example already mentioned in Sect. 2.1 is the transfer of factorization schemes for different 

contributions in proton/proton scattering that is only proven for a small range of scatterings 

(cf. also Boge and Zeitnitz, 2020, and references therein). 

However, addressing point 3. from above, we would like to question whether this really leads 

to a novel kind of mathematical opacity that “results from the structure of the systems of 

equations and their numerical-technical solution”, as claimed by Kaminski and Schneider. 

The crucial point is that we do not believe it is right to think of a CS as, strictly speaking, solving 

the original equations. It is clear that the original equations will be based on our best 

understanding of the system, and that they will in some sense serve as the basis for various 

subsequent modeling steps, including discretization methods. But thinking of a CS as literally 

solving these equations in an approximate fashion means siding with a particular view of CSs 

(Beisbart, 2012, 2018; Beisbart and Norton, 2012), according to which they can be viewed as 

arguments, i.e., as extracting the (approximate) consequences of a particular mathematical 

model. 

This view has origins in Humphreys’ (1990) seminal working definition, according to which “[a] 

computer simulation is any computer-implemented method for exploring the properties of 

mathematical models where analytic methods are unavailable.” However, Humphreys’ 

definition was criticized already by Hartmann (1996), who emphasizes the dynamical 

character of simulations, as well as the fact that CSs are often used even when mathematical 

solutions are available. 

An alternative view has been proposed by one of us (Boge 2019, 2020), which emphasizes the 

role of various mapping relations from some initial mathematical model to a specific 
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simulation target, as well as the experimental character of the use of CSs that is induced by 

role of the physical computer. 

This view, with its weak connection between the original mathematics and the explicit 

acknowledgement of proper experimental features in simulation, resonates better with views 

advocated by Winsberg (2010), who emphasizes that CSs have a ‘life of their own’; with those 

of Durán (2020), who urges that, for a proper understanding of how CSs can promote 

knowledge, it is necessary to take into account the complex internal and external relations of 

what he calls the ‘simulation model’; and with those of Hasse and Lenhard (2017), who 

underscore that free parameters, as typical of implemented simulation models, are not just 

boon but also bane of CSs, i.e., allow their flexible use for several contexts, when suitably 

calibrated to these contexts. 

That said, we should disentangle the opacity of CSs from mathematical opacity proper. CS 

have an opacity in their own right and reducing the opacity of some written code will not even 

necessarily address the opacity of mathematical equations that once served as its basis. For 

example, a perturbation series in quantum chromodynamics is currently not calculable to 

arbitrary order. So implementing a finite number of Monte Carlo steps that approximately 

sample the distribution given by the matrix element when calculated to some fixed order does 

not mean solving the equations that determine the probability for finding a certain final state 

from a quantum field theoretical matrix element. Whether the neglected higher order terms 

distort the picture severely remains, strictly speaking, unknown (though extremely 

implausible, due to asymptotic freedom), even if we understand perfectly well how the 

implemented algorithm works, is complied, and physically realized by the computer. 

In a way, then, we can turn the arguments by Kaminski and Schneider around: The opacity of 

the code used for simulation does interfere with the mathematical opacity of the original 

equations, but ‘destructively’, not ‘constructively’. By using computer code that is consciously 

written to preserve – a selected set of – physical intuitions contained in a certain mathematical 

model, one replaces the opacity of the mathematical equations (which, without a proper 

analytical or at least solvable-by-hand numerical solution, persists) by the opacity of a different 

(though connected) model. That latter opacity can be lifted in the indicated ways, i.e., by 

empirically testing whether the desired, and preservable, properties have been preserved 

through the various re-modeling steps involved in the numerical design and code-writing. In 
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particular, given that, in crash test simulations, one knows that the parameters of the mesh 

resolution ,of the Newton method, of time resolution, etc., have an impact on the results, it 

appears that one actually has insight into the code: One knows what parameters to pay 

attention to in order to obtain an empirically adequate model through (iterated) calibration 

and testing. Hence, one knows that these parameters influence the result, and to what extent 

they do influence them, or how they must be chosen so as to minimize the impact (as far as 

possible given economic constraints), becomes an empirical matter. 

In other words: divorcing implemented models from original mathematical equations and 

considering them a method in their own right (not per se a technique for solving equations), 

the fact that simulation studies can be done to investigate the impact of certain parameters 

should, in our view, serve as evidence for the (partial) transparency of these models, not their 

opacity. 

Hence, we stand by our claim that, against the background of conscious physics modeling and 

careful coding, several levels of testing that establish whether the code is apt for the intended 

purposes, do reduce the opacity of (HEP-)CSs. 

The same reasoning does not apply seamlessly to ML techniques: The results here are 

adaptations of a given machine to a given task, or, in unsupervised learning, to existing 

structures in the training data. However, the fact that one utilizes, in the quest for XAI, 

additional methods external to one’s understanding of the underlying algorithms can shed 

some light on connections to opacities that arise in technology-aided but ML-free research. 

Consider, for instance, efforts made for understanding learning machines to those of the 

ATLAS collaboration for understanding the composition of parts of their detector, e.g. the so 

called ‘insertible B-Layer’, “a new innermost pixel layer,[...] installed during the shutdown 

period in 2014” (ATLAS Collaboration, 2017, p. 1). The details of the corresponding study are 

not terribly important here; in short, data taken in 2015, after insertion, were compared to 

Monte Carlo simulations in order to reconstruct photon conversion and hadronic vertices in 

the insertible B-Layer, i.e. points of decay of hadrons and photons in virtue of their interaction 

with the material. Because photon conversion can be reconstructed quite exactly and 

hadronic decays can be resolved over small angles, these could jointly be utilized to obtain “a 

detailed radiography of the material, including minute components, e.g. the capacitors 

mounted on the surfaces of the pixel modules, allowing their location to be determined 
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precisely.” (ATLAS Collaboration, 2017, p. 7) This knowledge resulted “in a reduction in the 

uncertainties associated with the charged-particle reconstruction efficiency determined from 

simulation.” (ibid., p. 1) Hence, before this testing procedure, certain details about the exact 

material composition of the B-Layer were unknown. Since these are relevant for the process 

of reconstructing the tracks of charged particles, it was, in a sense, opaque up to that point to 

what extent the signals received from the B-layer were influenced and modified by material 

imperfections. There is, it seems, no principled difference to the impact of parameters on the 

outcomes of crash test simulations. 

The crucial point is this: while learning machines may be interesting objects of study 

themselves, in HEP they merely serve as a particular kind of instrument. Hence, just as an 

increased understanding of the insertible B-Layer of the ATLAS detector leads to an increased 

ability to estimate its use in reconstructing trajectories, will an increased understanding of the 

processes that lead from inputs to outputs in, say, a neural net increase high energy physicists’ 

ability to estimate its uncertainties, scope of applicability, robustness, or more generally 

speaking its suitability as a scientific instrument. Opacity induced by the method should, in 

other words, be seen as continuous with other technology-induced opacities in scientific 

research: while the details obviously differ, it is not a special feature of ML-based analyses 

that the precise functioning of one’s instruments will be opaque in many respects. 

What, finally, about model-opacity? Is it, at last, unique to ML? The sobering answer is that 

even model-opacity is, presumably, not.86 For compare the finding of a certain signature by 

some machine to the discovery of the Balmer series in atomic physics: Balmer (1885) 

discovered a certain pattern in spectral lines that he described systematically by a certain 

parametrization, but he did not provide any explanation of it. It was not until the advent of 

the early quantum theory that at least some sort of explanation became available (e.g. Mehra 

and Rechenberg, 2000, for the historical details), and that required the ingenuity of 

extraordinary physicists such as Niels Bohr, and later Heisenberg and Schrödinger, not merely 

their computational capacities. Who knows what mathematical and conceptual interventions 

future physics may urge of us, and whether the right kind of genius is on the horizon? 

                                                           
86 Note, however, that in the meantime, between the first write-up of this paper and its publication, one of us 
(FJB) has developed a more fine-grained view that may allow for a specialty in ML after all. See Boge (msa). 
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Thus, model-opacity is a fundamental problem of scientific inquiry that occurs in exploratory 

phases, usually when an accepted paradigm fails to provide appropriate guidance w.r.t. a 

significant range of newly discovered phenomena. Moreover, its presumed non-contingency 

is basically an invocation of the problem of unconceived alternatives: 

The unparalleled breadth, predictive power, precision or other substantive epistemic 

virtues of some present theories go no distance whatsoever toward showing that we 

have somehow acquired the ability to exhaust the space of scientifically serious 

alternatives: indeed, it is in part because these very theories, with the unique 

advantages over their predecessors they really do enjoy, were themselves previously 

part of the space of unconceived alternatives that we seem to have every reason to 

believe that serious, well-confirmed alternatives to our own theories remain presently 

unconceived.87 (Stanford, 2006, pp. 44–5) 

We acknowledge that this implies a partial shift in focus, as pointed out to us by Andreas 

Kaminski (priv. comm.). For Humphreys’ original account, while formulated w.r.t. a generic 

process, clearly concerns some scientific methodology, such as the process of running a CS 

(see also Kaminski and Schneider, this volume). 

We would like to emphasize, however, that model-opacity is induced, or included, in a special 

way in ML: Since the above case studies show that ML methods, or particularly DNNs, appear 

to exploit information implicit in the data (like the complex, higher-order physics variables), 

which is not necessarily available to the human researchers, they may allow the prediction of 

new phenomena while leaving any explanatory path to those predictions entirely in the dark 

(Boge, msa, for a far more detailed treatment). The point remains, however, that none of 

these opacities is entirely unique to CSs or ML: All modern research practices are opaque for 

contingent reasons such as complex mathematics, involved social structure, involved 

technology, and so forth. Model-opacity, on the other hand, is closely related to, if not an 

invocation of, the problem of unconceived alternatives, a long-standing problem in the 

                                                           
87 Indeed, Stanford (2006, p. 45) holds it “possible to imagine cognitive supercreatures who are adept at 
conceiving of all possible theoretical explanations for a given set of phenomena (or at least all those that they 
and/or their successors might regard as scientifically serious)[...].” This would render the problem of unconceived 
alternatives, as well as model-opacity, contingent. So long as we see no evidence of a systematic method such 
supercreatures could employ, it remains equally possible, however, that no such creatures could exist and model-
opacity is indeed fundamental. 
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philosophy of science—albeit tied here to the specifics of a certain predictive methodology 

(ML). 

 

5 Conclusions 

In this paper, we have shown that ML is associated with an opacity different in kind from that 

accompanying CSs, and we have coined them opacity induced by complexity (CSs) and opacity 

induced by the method (ML) respectively. We have then argued that both kinds are contingent 

on the epistemic conditions of cognitive agents, and that opacity induced by complexity can 

be overcome by suitable documentation and testing, as done by the ATLAS collaboration at 

CERN, and that opacity induced by the method may be overcome in a number of ways, e.g. by 

tracking the evolution of information in stochastic gradient descent. 

We have also distinguished these opacities from a fundamental one which would pertain to 

any agent, and suggested that ML (or DL more specifically) is accompanied by another sort of 

opacity that may be of this kind: model-opacity. This is so because methods such as data-

planing can only limit the range of suitable models within a certain theoretical paradigm, but 

will not positively suggest a given model. 

Finally, we have argued that none of the identified opacities are unique to CSs or ML methods: 

the sources of opacity present in the complexity-induced opacity of CSs all occur in a socially 

or technologically induced form also in non-CS aided science; and the method-induced opacity 

associated with ML is really a special kind of technology-induced opacity. Model-opacity, on 

the other hand, was identified as being basically an invocation of the problem of unconceived 

alternatives, and thus intimately connected with a long-standing epistemological problem in 

all of science. 

There is, however, a way in which the involvement of ML techniques renders the occurrence 

of model- opacity special after all. For unlike with human scientist, we cannot converse with 

a machine or ask for the physical intuitions that guided its discovery. If ML techniques continue 

on their successful path, this may change the face of science in such a way that discoveries 

become abundant but are not driven by theoretical results and hypothesis testing anymore. 

In this way, the scientific process itself may become more opaque in the future. 
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Abstract 

In 2017 AlphaZero, a neural network-based chess engine shook the chess world by 

convincingly beating Stockfish, the highest rated chess engine. In this paper, I describe the 

technical differences between the two chess engines and based on that discuss the impact of 

the modeling choices on the respective epistemic opacities. I argue that the success of 

AlphaZero’s approach with neural networks and reinforcement learning is counterbalanced 

by an increase in epistemic opacity of the resulting model.  

  

1 Introduction 

Games have always been a welcome area for AI developers to test and develop their newest 

techniques. Chess is the most famous game in this context and the one that has been studied 

the most by computer scientists. The fascination for a machine playing chess dates back to 

the late 18th century when a chess automaton was exhibited throughout Europe. Many of the 

great minds of early computer science such as Charles Babbage, Alan Turing and John von 

Neumann devised their own approaches towards a program that would be able to play chess. 

This culminated in the victory of IBM’s “Deep Blue” computer versus the (at the time) reigning 

world champion, Garry Kasparov, in 1997, which was a major event for the artificial 

intelligence community. It also started the domination of computer engines in the game of 

chess; which has today developed so far that a match between a computer and a human 

player would not be interesting anymore88 and all top players as well as many amateur players 

are relying very heavily on computers in their preparation and training (Chessentials 2019). 

Today’s chess engines are very sophisticated programs that include specifically designed 

search algorithms and evaluation functions, incorporate opening books and endgame 

databases. 

In 2017, 20 years after the success of Deep Blue, a new kind of chess engine has been 

introduced. AlphaZero is a chess engine based on a neural network created by British AI 

                                                           
88 Hikaru Nakamura, at the time rated the sixth best player in the world, played a match against a strong chess 
engine with getting additional material or moves in 2016. He drew three games and lost one (Chabris 2016).  
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company DeepMind. Its only inputs were the rules of chess and within a few hours of training 

via playing against itself it became the strongest chess engine in the world. In this paper, I 

describe this new approach towards chess engines, discuss its differences from other 

approaches and investigate the hypothesis that the success of this approach with neural 

networks and reinforcement learning is counterbalanced by an increase in epistemic opacity 

of the resulting model. An increase in epistemic opacity usually leads to a decrease in our 

ability to understand and control the resulting model as well as limit our options of learning 

from it.  

In the following sections, I first sketch the development of chess engines (Section 2), and then 

describe and compare AlphaZero and the strongest traditional chess engine (Section 3). In 

Section 4, I introduce the concept of epistemic opacity, compare the most advanced classical 

chess engine with AlphaZero with respect to their epistemic opacities, and discuss the 

different kinds of opacities that are involved and then conclude (Section 5). 

 

2 History of Chess Engines and AI  

In 1770, Wolfgang von Kempelen presented to the Habsburg Archduchess Maria Theresa 

what would be known as The Turk. It was a machine, which consisted of a wooden man sitting 

at a cabinet with a chessboard on top of it. The machine was able to move the chess pieces 

on the board seemingly autonomously. This in itself would not have been very impressive, if 

it were not for the fact that The Turk was a very good chess player defeating most of its 

challengers, including famous personalities of the time such as Napoleon Bonaparte, 

Benjamin Franklin and Charles Babbage. Theories about how the machine works developed 

quickly, sparked by the same disbelief that led the British author Philip Thicknesse to write: 

“That an automaton can be made to move the Chessmen properly, as a pugnacious player, in 

consequence of the preceding move of a stranger, who undertakes to play against it, is utterly 

impossible” (Thicknesse 1784). As it turned out, he was right for the time being since a small-

statured player hidden in the wooden cabinet operated The Turk. Even though the Turk was 

a hoax it played an important role since it fascinated people with the idea of an intelligent 

machine and raised questions about the possibilities of thinking machines which are still 

relevant today (Morton 2015, Standage 2003).  
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Thicknesses statement was proven wrong for the first time in in the 1950s. Already in the late 

1940s both Alan Turing and Claude Shannon (Shannon 1950) created algorithms that were 

able to play chess. Since no computers with the ability to compute the algorithm were 

available yet, Turing tried the program in 1951 by calculating everything manually. Also in 

1951 Dietrich Prinz, a colleague of Alan Turing, implemented a program which was able to 

solve mate-in-2 problems. Finally, in 1957 Alex Bernstein, an IBM engineer, implemented a 

program on a computer for the first time, which was able to play a game of chess (Chessentials 

2019). 

The first chess engines were not very strong and could be beaten easily by strong amateur 

players. During the next decades, the quality of the chess engines increased continuously due 

to developments both in hardware and software and this culminated in the most important 

event in computer chess history: the IBM computer Deep Blue beating the reigning world 

champion Garry Kasparov in 1997 in a match of six games. After having won matches against 

predecessors of the program, Kasparov lost this match 3.5-2.5. Once again, the human-vs-

machine setup in chess sparked fascination as well as fear of the developments of artificial 

intelligence. This time legitimately, as a machine had become strong enough to beat the 

arguably best chess player of all time (Krauthammer 1997). In the years after the Deep Blue 

match, a few more matches were played between world-class chess players and chess engines 

with mixed results, but these matches stopped after 2006, when Vladimir Kramnik, Kasparov’s 

successor as world champion, also lost a six game match. Chess engines now mainly play 

against each other in Chess Computer Championships. The winner of many of the most recent 

Computer Chess Tournaments and one of the highest rated Chess Engines is an open-source 

program called Stockfish. The general programming approach of Stockfish is similar to the one 

of Deep Blue, using “sophisticated search techniques, domain-specific adaptations, and 

handcrafted evaluation functions that have been refined by human experts over several 

decades” (Silver et al. 2018). 

In 2017, the AI company DeepMind presented a new kind of chess engine: AlphaZero. Its 

approach is radically different from the former chess engines; the only input given to 

AlphaZero were the rules of chess. Using reinforcement learning on a specifically tailored 

neural network, AlphaZero was then trained by playing against itself for nine hours. The 

resulting program played a match against Stockfish over 1000 games that it won convincingly 
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(winning 155 games and losing 6). The result in itself is already surprising. Even more 

surprising to the chess community was the style of the new engine, which is radically different 

from previous ones. AlphaZero appears to play in a risky attacking style but nearly never runs 

the risk of losing. Besides that, AlphaZero introduced a number of new motifs and strategies 

in all stages of the game, which have already been adopted by elite chess players. Therefore, 

there are more than enough reasons for chess players to delve into the depths of AlphaZero, 

analyse its games and try to understand the reasons for its success. For philosophers of 

science, this is an opportunity to gain a better understanding of the success of neural 

networks and machine learning techniques and to discuss the possible limits inherent to this 

method.  

 

3 Comparing AlphaZero and Stockfish – a new kind of chess engine 

In this section, I compare the techniques used for programming AlphaZero and Stockfish 

respectively and highlight relevant differences. This will lay the foundation to assess their 

respective epistemic opacities in the next section.  

Chess engines are generally based on two core components. They have a way to evaluate 

positions and they have a search algorithm that determines which moves are available and in 

which order they should be considered. For both of these components, Stockfish and 

AlphaZero use significantly different approaches.  

 

3.1 Stockfish 

Stockfish represents chess positions by using a vector that has chess-specific features as 

elements. These are handcrafted and include elements, which represent for example the 

pieces each player still has left, the safety of the kings or the pawn structure. The 

programmers chose those features in cooperation with strong chess players. Each of these 

features has been included because it has proven relevant in human experience of playing 

chess and successful in test runs with the engine. Each of these features has a specific weight 

assigned to it and the evaluation of the position results from a sum of all the features 

multiplied with their weights. This evaluation is then output in pawn-equivalents. +2.00 for 
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example means that the player with the white pieces has an advantage that is evaluated 

equivalently to having two extra pawns. (Silver et al. 2018) 

In order to figure out what the best move in a specific position is, Stockfish spans a tree of 

possible developments and evaluates the resulting positions using the evaluation function. 

This evaluation is only applied to “quiet” positions, i.e. positions without unresolved captures 

or checks. Therefore, once the desired depth of calculation is reached, there is a quiescence 

search89 implemented to resolve all possible tactical elements of the position before the 

evaluation function is applied to the resulting positions.  

Since the amount of positions that have to be evaluated grows roughly by factor 40 for each 

new level of depth, many heuristics and algorithmic strategies are necessary to cut 

unnecessary searches and evaluations. The main tool used for this by Stockfish is the alpha-

beta algorithm. It is a variant of the minimax algorithm that is common for the evaluation of 

all kinds of two player zero-sum games. Since it is assumed that both players will act optimally, 

one cannot simply use the highest value of all the evaluations as the result. Instead, one has 

to go through all the options to check which of the possible moves of one player leaves the 

worst options for the other player, since the other player will always choose the best of these 

options. The alpha-beta search is an optimization of this algorithm that allows eliminating the 

need to search through all of the different paths. Assume that we already have found a move 

that guarantees player 1 an equal position, i.e. there is no move from player 2 in response to 

this move, which leads to any advantage for player 2. From now on, when we consider 

alternative moves for player 1 and any of the evaluations show an advantage for player 2, we 

can skip the rest of the search for this particular move, since it is inferior to the move that we 

already found before. Clearly, this approach works best if we consider the best moves as early 

as possible. If we would consider the moves in ascending order of strength, we would have to 

go through all of the possible positions. If instead we always manage to consider the strongest 

move for each player first, the alpha-beta algorithm would enable us to reduce the nodes that 

have to be evaluated from x to something close to the square root of x. Therefore, move-

ordering is another very important part of the algorithm. Once the move list is generated, it 

                                                           
89 Quiescence searches are part of traditional chess engines for a long time already. The challenge for the 
programmer is to extend the search until a position is reached that is suitable to be evaluated by the evaluation 
function but use minimal resources to do that. For different techniques, see for example Beal 1990. 



Chapter 6: Chess, Artificial Intelligence, and Epistemic Opacity 

146 
 

gets ordered using a number of heuristics, most importantly trying the best move from the 

previous search first, if the search has been deepened. (Silver et al. 2018, Samuel 1959) 

Apart from these very sophisticated algorithms, Stockfish uses an opening book to choose 

moves in the first phase of the game as well an endgame tablebase that includes the best 

moves for all positions with six or less pieces left on the board.  

The above described techniques are used by most of today’s strong chess engines as well as 

by earlier versions such as Deep Blue.  

 

3.2 AlphaZero 

AlphaZero uses none of the techniques described above.  

At the core of AlphaZero is a deep neural network that has been trained via reinforcement 

learning90. There is no domain-specific knowledge or data used as input; the training phase 

has been done exclusively via self-play. The same approach has been used for the games of 

Shogi and Go successfully91.  

Chess moves are represented in a two-step process in AlphaZero. The first step is to pick up a 

piece, i.e. identifying the square from which a piece is moved. The second step is deciding 

which move this piece should make. The input into the neural network therefore contains the 

64 squares and all the move possibilities each piece would have on each of these squares. 

Each square is treated in the same way; this leads to the coding of many illegal moves in 

specific situations, which are then masked out by setting their probability to zero, reducing 

the move possibilities to those that are available according to the rules in the actual position. 

For each square, there are 56 possible queen moves (these moves also code rook, bishop, 

king and most pawn moves), one to seven squares in all eight directions in which the queen 

can move. Additionally there are 8 knight moves and 9 possibilities for pawns to promote in 

a piece different from a queen, either by moving to the last rank or by capturing a piece on 

the last rank in one of the two diagonal directions. This adds up to an input of 8x8x73 equalling 

                                                           
90 I cannot provide a description of reinforcement learning or machine learning in general in this paper. For a 
good introduction see: Goodfellow et al. 2016. 
91 In 2018 Leela Chess Zero, an open-source program with the same approach has been released. By now it has 
reached a level comparable to Stockfish. 
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4672 move possibilities in all positions. Additional inputs are needed to represent information 

about special rules: the castling rights, the number of repetitions of the present position and 

the move count without progress with respect to the 50 moves rule (Silver et al. 2018). 

The output of the neural network is a vector with two numbers for each move. The first one 

signifies the percentage of search time, which was attributed to this move and its 

consequences. The second one represents the estimated win probability that the neural 

network assigns to this move. This means that the neural network has the function of the 

evaluation function in a classical chess engine. It is trained to assign a probability to each of 

the possible moves, which represents the win probability when making this specific move. 

The metric of evaluation is one of the most obvious differences to classical chess engines. This 

evaluation via probabilities can be interpreted as integrating two aspects, which are not well-

represented in Stockfish’s evaluation function: The general complexity of the position and the 

potential risks that result from choosing a specific move. Essentially, this way of representing 

pays tribute to the fact that the computer cannot calculate all possibly relevant lines and the 

resulting uncertainty. This will be larger in complex positions with more moves, which cannot 

be ruled out quickly92.  

The training of the neural network has been done entirely by self-play over a timespan of nine 

hours. At the beginning of the training phase, all the parameters in the neural network were 

initialized with random values, leading to seemingly random moves by AlphaZero. Most of 

these games ended in draws because of the 50-move rule93, but some of them were decisive 

and based on these games, the parameters in the neural network were adjusted. Repeating 

this process for nine hours and 44 million games, the millions of parameters in the neural 

network were adjusted repeatedly. Via the tuning of these parameters, AlphaZero can 

represent patterns and strategies. After each decisive game, the parameters in the network 

                                                           
92 Two behaviours that can be observed in AlphaZero’s play can be directly related to this modelling choice. 1) 
In positions with a large advantage, AlphaZero might simplify the position even on the cost of some of the 
advantage. While Stockfish would always search for the option that promises the largest advantage, there is no 
incentive for AlphaZero to win quickly or to achieve unnecessarily large material advantages. This might 
sometimes lead to moves that seem counter-intuitive for humans such as unnecessary underpromotions. 2) In 
positions, which AlphaZero evaluates as negative, it might try to complicate the position, making moves that still 
have a higher degree of uncertainty instead of a well-analysed move, which is evaluated with a very low success 
probability (Sadler & Regan 2019).   
93 A game of chess ends in a drawn, if for 50 moves in a row, no pawn is moved and no piece is captured. 
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are updated to evaluate each of the positions of the game as better or worse depending on 

the outcome of the game (Sadler & Regan 2019). 

We can conclude that there are two major differences in the architectures of AlphaZero and 

Stockfish. The evaluation of positions is approached with different metrics. Stockfish 

evaluates positions in pawn equivalents; AlphaZero assigns win probabilities to positions. The 

most important difference lies in how the evaluations are reached. Stockfish uses handcrafted 

domain-specific knowledge in its evaluation function; AlphaZero reaches the evaluation of the 

position through its neural network, which has been trained by self-play and without the input 

of any domain-specific knowledge except for the rules of the game.  

 

4 Epistemic opacity 

“Whilst we cannot understand exactly how AlphaZero is thinking, we can explore the 

ways in which AlphaZero generates its innovative and active plans, and how it conducts 

its ferocious attacks through analysing its games.” (Sadler & Regan, p. 74) 

It is certainly not appropriate to associate the calculations that lead AlphaZero to make 

decision with thinking. If interpreted a bit more metaphorical, this quote gives a first answer 

to one of the main questions of this paper: What can we learn about how AlphaZero works 

and how is it different to what we can learn about Stockfish or similar other chess engines? 

Since AlphaZero managed to beat Stockfish, it would be very interesting and potentially 

beneficial for our understanding of the game of chess, to learn on what AlphaZero bases its 

decisions. It seems to be a reasonable assumption that it must have something encoded about 

the game of chess that goes beyond the handcrafted domain-specific features, which have 

been encoded in Stockfish.  

The thesis that I want to defend here is that the introduction of a deep neural network and 

machine learning led to a different kind of epistemic opacity in AlphaZero than the one in 

Stockfish. This new kind of epistemic opacity prevents us from confidently identifying on what 

AlphaZero bases its decisions. 
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4.1 Defining epistemic opacity 

At first, it seems counter-intuitive that either Stockfish or AlphaZero can be epistemically 

opaque in any way. Both are based on algorithms, which are determined processes. For each 

of the calculations that are done in any of the chess engines, it is always clearly defined which 

rule or calculation has to be applied next. In principle, all of these calculations could be done 

by pen and paper or printed out.   

Nevertheless, in the philosophical debate epistemic opacity is discussed very prominently. 

Especially in the context of software that is based on machine learning techniques as in the 

case of AlphaZero, their potential black box-nature is a widely discussed topic. The 

introduction of such methods into the scientific practice raises questions about the aims of 

science and necessity of explanations or understanding.  

Let us take the most commonly used definition of epistemic opacity by Paul Humphrey as a 

starting point to understand what is typically meant by epistemic opacity and why it is useful 

discussing it in the context of computer models and machine learning.  

“[A] process is epistemically opaque relative to a cognitive agent X at time t just in case 

X does not know at t all of the epistemically relevant elements of the process.  

A process is essentially epistemically opaque to X if and only if it is impossible, given 

the nature of X, for X to know all of the epistemically relevant elements of the process.” 

(Humphreys 2011, p 139) 

One of the potential sources of opacity is the sheer amount of calculations that are done by 

Stockfish or AlphaZero during a game of chess, which lead to the evaluations of positions and 

the decision for a specific move. Stockfish calculates up to 60 million positions per second, so 

it is quite clear that no human cognitive agent will ever go through all of the calculations that 

are made during one entire game for example. Even though AlphaZero calculates less 

positions per second (Silver et al. 2018), the amount of calculations still exceeds everything a 

human agent would be able to go through in a reasonable time. Regarding AlphaZero, one 

can additionally argue that the steps during the training phase are epistemically relevant 

elements of the process, since they determine the final values of the parameters in the neural 

network and thereby have a significant impact on the process. This adds a large number of 
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calculations to the epistemically relevant elements94. It is therefore clear that the basic kind 

of epistemic opacity that Humphreys defines in the first sentence of his definition is present 

in both Stockfish and AlphaZero. 

Are these opacities essential in the sense of Humphreys’ definition? To argue for this, one has 

to show that it would be impossible for the cognitive agent to go through all of these 

calculations because of their nature. Let us take a human as the cognitive agent X. He is limited 

through his life span and if we assume a discrete amount of time that is needed for each of 

the calculations, we can determine a maximum number of calculations that one human could 

possibly do and thereby determine a threshold for this opacity to become essential. This 

approach is however not very informative about the nature of the source of opacity. It seems 

somewhat arbitrary that there should be some number of calculations x, which are necessary 

for a process, for which the opacity is not essential; if at the same time, adding just one more 

calculation would make the opacity essential.  

As has been argued in Boge & Grünke (2020), there might be another useful differentiation 

between types of opacities, namely “contingent epistemic opacity” and “fundamental 

epistemic opacity”. Both epistemic opacity and essential epistemic opacity, as defined by 

Humphreys, are contingent on the nature of the cognitive agent. Fundamental epistemic 

opacity on the other hand refers to opacities which are grounded in the nature of the process 

rather than the nature of the agent: 

“[A process is fundamentally epistemically opaque, if] given any agent with any 

nature, at no time will the agent be able to obtain all relevant pieces of information 

about the process.” (Boge & Grünke 2020, p. 9) 

A thought experiment shows that the opacity, which is caused by the amount of calculations, 

is contingent. Consider the Laplacean demon, understood as an entity with unlimited 

cognitive resources, which would be able to perform as many calculations as necessary 

                                                           
94 There is a debate about what should count as epistemically relevant. Durán (2018) for example points to the 
fact that a limited amount of information about an algorithm might be enough for the justification of results. In 
this paper, I follow the more widespread approach to count all parts of the process as epistemically relevant to 
it. The reduction of epistemically relevant elements requires background information. There is not enough of it 
available yet in this case, therefore using the wide approach seems to be more appropriate.  
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without using up any time (de Laplace 1814). For it, the algorithmic transparency of the 

processes would be enough to render them epistemically transparent (Boge & Grünke 2020).  

With respect to this source of opacity, AlphaZero has introduced no different kind of opacity.  

 

4.2 Model-opacity as fundamental opacity 

The definition by Humphreys shapes the concept of epistemic opacity as something that is 

connected to processes. This makes it natural to look for sources of opacities, which may arise 

in the process of coming to the results via a string of calculations or the training phase of the 

neural network.  

Sadler & Regan (2019) focus on the question “how AlphaZero is thinking” (p. 74), but in order 

to learn the new things, which AlphaZero might have discovered about chess that make it 

more successful than traditional chess engines, we need to understand what AlphaZero is 

thinking (thinking must be understood metaphorically again, of course). All of AlphaZero’s 

decisions are based on the neural network that has been trained. By tuning the parameters 

of the neural network, AlphaZero represents features of the positions, similarly to the way 

features of positions are represented in the handcrafted evaluation function of Stockfish. In 

the case of AlphaZero however, it is not clear which features are actually represented in the 

neural network, since they are developed during the training phase and not preselected 

through the programming. It is possible that AlphaZero learns features, which have been 

chosen for Stockfish, such as safety of the king or pawn structure. It could also be the case 

that AlphaZero learns features, which are a lot more complex and far removed from the 

human way of describing concepts in chess. This uncertainty about what features are 

modelled in the neural network may constitute a different kind of opacity. It is not process-

based but rather concerns the connection between the neural network and the real-world 

phenomenon, so it seems useful to call it model-opacity95.  

                                                           
95 Model-opacity is discussed in Boge & Grünke (2020) for an example from high-energy physics. Sullivan (2019) 
uses the same term for the “complexity and black box nature of a model” (p.1). She introduces the term “link 
uncertainty” to describe the situation, that there is not enough empirical or scientific evidence to prove the 
connection between the model and a real-world phenomenon.  
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One natural approach of trying to overcome part of this opacity is a classical experimental 

one96. You come up with a hypothesis about the behaviour of the system and collect empirical 

evidence for or against it. The main source for empirical evidence in the case of AlphaZero are 

the games that have been published. Sadler & Regan (2019) analyse the games and try to 

identify features in AlphaZero’s play. They show examples of well-known strategies, which 

have been adopted by AlphaZero, as well as positions in which AlphaZero does not follow any 

of the classical plans developed by humans and programmed into Stockfish97. However, the 

complexity of chess makes it impossible to isolate any specific feature in almost all cases. Each 

position can be described by many different features and their interactions. At the same time, 

these features cannot be deduced directly from the rules of chess but are human descriptions 

of patterns that have been recognized. The number of ways to describe features of a chess 

position is infinite and many might be functionally nearly equivalent but differ in some very 

specific ways. Therefore, in addition to the problem that we cannot isolate specific features, 

it is impossible to be sure that we have conceived all of the potential hypothesises. Even 

unlimited resources would not solve this problem. There is no algorithm that could solve this 

problem and therefore there is no algorithmic transparency, which would render this opacity 

contingent. Model-opacity therefore seems to be fundamental (cf. Boge & Grünke 2020 for a 

similar case). 

 

4.3 Discussion of the opacities 

The contingent opacity caused by the amount of calculation steps is similar for both Stockfish 

and AlphaZero. Even though there are differences in the concrete amount of calculations and 

AlphaZero has the training phase of the neural network, which influences the results and does 

not have a complementary part in the Stockfish architecture, the nature of these opacities is 

the same. All of these calculations are clearly defined and determined processes that can be 

solved if enough resources are available.  

                                                           
96 Another approach is to find positions in which engines obviously misevaluate and try to derive information 
about the system from that (similar to adversarial networks in image classification). There are a number of 
constructions of positions with enormous material advantage for one player in which a human can quickly see 
that there is no way to achieve any progress but the computer nevertheless evaluates the position as very 
advantageous.  
97 The minority attack in the Carlsbad structure is used as a prominent example. 
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As described above, this is not the case for model-opacity. However, model-opacity does not 

exist for Stockfish. It does not exist because the modelling for Stockfish was intentional and 

goal-orientated. The modellers can be asked about the reasons and intentions for the 

implementation of specific features. This does not mean that Stockfish never makes moves 

which come unexpected to the modellers. No one who modelled parts of Stockfish has a 

complete comprehension of the interaction of all parts of the program and can calculate all 

the consequences of these interactions and therefore no one can make a confident 

prediction. Stockfish outperforms all human players in the game of chess after all. This is 

parallel to AlphaZero but can be explained with contingent opacity. What is possible when 

Stockfish makes an unexpected move is to analyse the reasons how the decision to make this 

specific move came about. By reviewing which evaluations led to the move and which 

features were evaluated in what way, a reconstruction of the decision process is possible. This 

is exactly what seems to have happened in the match between Deep Blue and Garry Kasparov. 

During the first game of the match, a bug in the code led to an unexpected move by Deep 

Blue. After the game, the programmers of Deep Blue could track down the reason why this 

move was chosen and fixed the bug (Anderson 2017). If this would happen with AlphaZero, 

the programmers would not know how to change the code of AlphaZero. There is no way to 

predict what the consequence of changing a single weight in the neural network would be for 

example. There is no way of confidently knowing about the way specific features are 

represented in AlphaZero’s neural network and consequently they cannot be manually 

altered with a specific goal in mind.  

This opacity of AlphaZero is of a different kind than the contingent ones and it does not only 

prevent humans from intentionally altering the program in an advantageous way but also 

prevents them from isolating and understanding the way in which AlphaZero represents 

chess, and which features of the game it chose in its neural network.    

 

5 Conclusion 

In this paper, I described the development of artificial intelligence in chess with its present-

day culmination: the introduction of the neural network-based AlphaZero in 2017. I 

highlighted its differences from Stockfish, one of the highest rated traditional chess engines. 
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The two most significant differences are the modelling process and the metric of evaluation, 

most notably the creation of the neural network of AlphaZero without any domain-specific 

knowledge about chess except for its rules. 

The different modelling processes lead to different epistemic opacities. Both Stockfish and 

AlphaZero are epistemically opaque in a contingent way due to the very large number of 

calculations necessary during the training phase of AlphaZero as well as during the play phase 

for both Stockfish and AlphaZero. AlphaZero additionally also has model-opacity, which 

seems to be a fundamental kind of opacity. This opacity originates from the method that is 

used for creating the neural network: machine learning or, more specifically, reinforcement 

learning. Contrary to the modelling process of Stockfish, the modelling is not done 

intentionally by a human programmer, but through reinforcement learning – a statistical 

approach. This seems to make it impossible to connect the “reasoning” of AlphaZero to 

human reasoning in chess.  

This fundamental opacity is not problematic in chess. Human chess players can still follow 

AlphaZero’s games, use it as an inspiration and develop ideas and concepts from it, which 

they can integrate in their own games. For applications in domains other than games 

however, it is potentially ethically very problematic if human agents base their decisions on 

the output of a neural network with fundamental opacity. 
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