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Preface 

The present monograph is an attempt to a better understanding of an inter
disciplinary question, namely the impact of foliation theory on the geometry and 
analysis on CR manifolds. To start with, any Levi-flat CR manifold M carries a 
complex foliation T (the Levi foliation) tangent to the null space of the Levi form 
of the manifold. At least in the real analytic case, if M is embedded then T extends 
to a holomorphic foliation of an open neighborhood of M (Rea's theorem, [203]). 
Complex foliations occur in a natural way on certain nondegenerate CR manifolds, 
as well. To give a simple example, R. Penrose's manifold P(To) (the boundary of the 
manifold P(T+) of all right-handed spinning photons, cf. [199]) is a nondegenerate 
CR manifold of hypersurface type foliated by C P ^ s and this situation generalizes 
to C. Le Brun's twistor CR manifolds (cf. [165]-[166]). As shown in [84], there 
are also natural CR analogues of complex Monge-Ampere foliations (in the sense 
of [30], for instance) occurring on strictly pseudoconvex CR manifolds. Each leaf 
of such a tangential Monge-Ampere foliation is a CR manifold and the inclusion 
in the ambient space is a pseudohermitian immersion. Finally, let us mention that 
each nondegenerate CR manifold carries a flow defined by its contact vector field. 
This is evidence enough to the interrelation between foliation theory and CR ge
ometry, and that an overall use of the former is liable to clear up certain questions 
in complex analysis. For instance, let Q C C n + 1 be a strictly pseudoconvex domain 
with real analytic boundary dfl. Let 0(0.) be the algebra of functions on Q which 
admit a holomorphic extension to some neighborhood of ft. Let M C dQ be a real 
analytic submanifold which is not C-tangent at any of its points. By a result of L. 
Boutet de Monvel and A. Iordan (cf. [56]) M is locally a maximum modulus set 
for 0(TL) (in the sense of T. Duchamp and E.L. Stout, [93]) if and only if C(X, Y) 
is real valued for any sections X, Y in L = T(M) D H(dQ). Here C is the Levi form 
of dfl and H(dCt) is its maximal complex distribution. If this is the case then L is 
completely integrable and gives rise to a C-tangent foliation T of M of codimension 
one and the paper [22] studies the interplay between the properties of T and the 
geometry of the second fundamental form of M in dft. M turns out to be a Levi 
flat contact CR submanifold of dQ and T is its Levi foliation. When M is minimal 
T is harmonic. 

Let us add that, besides from the very interest in interdisciplinary problems, 
in a series of papers (cf. [16], [19] and [21]) the first two authors developed an 
idea of E.M. Chirka, [67], regarding foliations with transverse CR structure (which 
contain the class of CR manifolds as the special case of transversally CR foliations 
by points) which led to Chapter 6 of this monograph. 

Sections 1.1 and 1.2 review the notions of foliation theory needed through the 
text. We only sketch the essentials, as many monographs on the subject have been 

vii 
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available for quite a few years (such as [179], or [243], which are the most frequently 
referred to). 

The next seven chapters form the main core of this book. The case of foliated 
CR manifolds is considered in Chapter 2. Sections 2.3 to 2.5 are imitative of P. Ton-
deur's exposition of the geometry of foliations on Riemannian manifolds, cf. [243], 
p. 47-73, and the similarity comes from the fact that in the nondegenerate case 
CR manifolds possess a canonical metric (the Webster metric) and connection (the 
Tanaka- Webster connection) of which the latter resembles the Chern connection in 
Hermitian geometry and the Levi-Civita connection in Riemannian geometry. 

Chapter 3 is dedicated to Levi foliations and their holomorphic extendibility. 
We give a proof of a beautiful result referred to as Rea's theorem. It is based on 
a theorem by F. Severi and G. Tomassini (cf. [219] and [242]) about holomor
phic extension of CR functions in the real analytic case. There are many other 
CR extension theorems available in today's mathematical literature (cf. [50] and 
references therein) yet it seems to the authors that Rea's is the only attempt (cf. 
[203]) to apply a CR extension result in order to get a holomorphic extension of a 
Levi (or semi-holomorphic) foliation. 

Related to Rea's theorem we present the solution (due to D.E. Barrett, [28]) 
to the problem of the existence of a pluriharmonic defining function for a Levi-flat 
real analytic hypersurface in a complex manifold. Next, we exhibit a characteriza
tion of Levi flatness of real analytic hypersurfaces in Cn in terms of holomorphic 
degeneracy, cf. Theorem 3.22 in Section 3.4 (due to N.K. Stanton, [227]). 

An active research field in complex analysis (in several complex variables) is 
that related to the problem of global regularity of the Neumann operators Nq, 
1 < q < n, and of the Bergman projections Pq, 0 < q < n, for a smoothly bounded 
pseudoconvex domain Q C Cn . Precisely, the question is whether Nq and Pq are 
continuous on the space WL q\(TL), s > 0, of all (0, g)-forms with coefficients in the 
Sobolev space WS(Q), s > 0 (cf. e.g. [48]). The state of the art is represented 
by Theorem 3.32 (due to H.R Boas and E.J. Straube, [49]) in Section 3.5 of this 
monograph. The estimates leading to the result in Theorem 3.32 were known (by a 
result of D. Catlin, [61]) at the points of finite type, yet required a new technique, 
based on the existence of complex vector fields commuting approximately with d 
(cf. Definition 3.33) on the set K C dQ of all boundary points of infinite type. 
Such vector fields were shown to exist when Q admits a plurisubharmonic defining 
function (cf. Definition 3.30), a fact which led to Theorem 3.31 (due again to 
H.P. Boas et al., [48]). When the set K of all infinite type points is contained 
in a real submanifold M C dVt of the boundary which is tangent (i.e. T(M) C 
Null^fl)) to the Levi null distribution (e.g. when K = K and the Levi form of dfl 
vanishes at each point of K) the beautiful (from a differential geometric viewpoint) 
finding by H.P. Boas et al., [49] (and further examined by E.J. Straube and M.K. 
Sucheston, [233]) is the existence of a de Rham cohomology class a(M) G HX(M, R) 
(the D'Angelo class, under the terminology adopted in this monograph) which is 
an obstruction to the existence of the special vector fields mentioned above (cf. 
Theorem 3.36). Section 3.5 concludes with a discussion of the D'Angelo class within 
foliation theory (i.e. the relationship among a(M) and the infinitesimal holonomy 
of the leaf M of the Levi foliation on K) and a few open problems. 
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Chapter 4 reports on the known results about the nonexistence of Levi flat CR 
submanifolds in a complex projective space, such as Y-T. Siu's result (cf. [221]-
[222]) with the lower differentiability requirements due to J. Cao and M-C. Shaw 
and L. Wang, [60] (cf. Theorem 4.1 in Section 4.1 of this book), the result of L. 
Ni and J. Wolfson, [188] (based on a Lefschetz type result for CR submanifolds of 
a Kahlerian manifold of positive holomorphic bisectional curvature, established by 
themselves, and the classical theorem of A. Haefiiger, [131], on the inexistence of 
real analytic codimension one foliations on compact simply connected manifolds), 
and the purely differential geometric approach of M. Djoric and M. Okumura, [81]. 

Chapter 5 is about foliations with tangential CR structure i.e. each of whose 
leaves is a CR manifold. We look at foliations by level hypersurfaces of the defining 
function of a strictly pseudoconvex domain in Cn such as occurring in CR. Graham 
and J.M. Lee's paper [124] (and studied by them in connection with the Dirichlet 
problem for certain degenerate Laplacians of which the prototype is the Bergman 
Laplacian on the unit ball in Cn) . We give a new axiomatic description of the 
canonical connection there (the Graham-Lee connection) and use it to look at the 
boundary values of a Yang-Mills field in a Hermitian holomorphic vector bundle 
7r : F —> f2 over a smoothly bounded strictly pseudoconvex domain D c C n (cf. 
[26]). Precisely we endow Vt with the Bergman metric and consider the Dirichlet 
problem for the Yang-Mills equations 

(0.1) 5DRD = 0 i n f i , D = D° on dto, 

where the boundary data D° is a C°° Hermitian connection in the Hermitian CR-
holomorphic vector bundle E — ir~1{d^t) —• dQ. It is then shown that the boundary 
values D° of a solution D to (0.1) must be a pseudo Yang-Mills field on dft (cf. our 
Theorem 5.22). Section 5.6 is based on our own work on tangential Monge-Ampere 
foliations (cf. [84] and fitting into the theory of pseudohermitian immersions, cf. 
also [89]). 

Chapters 6 to 8 are based on work on transversally CR foliations by the first 
two authors (cf. op. cit). Chapter 6 is devoted to the basics while Chapters 7 
and 8 present two main applications. The first regards the interrelation between G. 
Gigante and G. Tomassini's theory of CR Lie algebras (cf. [116]) and F. Fedida's 
(?-Lie foliations (cf. [103]) and includes a homotopy classification of transverse 
/-structures. The second is devoted to solving a transverse Beltrami equation, 
which is a foliated analogue of the Beltrami equation in the work of A. Koranyi and 
H.M. Reimann, [159]. The effect is producing foliated quasiconformal mappings 
(cf. E. Barletta, [16]). These results extend A. Koranyi and H.M. Reimann's 
considerations - originally holding only on strictly pseudoconvex CR manifolds - to 
certain degenerate CR manifolds where the degeneracy may be 'factored out' by 
an algebraic process leading to a strictly pseudoconvex transversally CR foliation. 
The authors hope that Section 6.4 may contribute to a better understanding of the 
features of degenerate CR manifolds. 

At least for compact Hausdorff foliations i.e. foliations with all leaves compact 
and the leaf space Hausdorff, the leaf space has (by a result of J. Girbau and M. 
Nicolau, [120], relying itself on a result by D.B.A. Epstein, [100]) a natural struc
ture of an orbifold (or V-manifold in the terminology of I. Satake, [213], to whom 
the notion is due). If this is the case a given transverse CR structure induces a CR 
structure (in the sense of Chapter 11) on the leaf space, the latter becoming a CR 
orbifold. Chapter 11 aims to a motivation of the need for a theory of CR orbifolds 
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and states some open problems. On the other hand, there is a growing theory of 
orbifolds, among whose contributors one finds W.L. Baily, [8]-[10], J.E. Borzellino, 
[51], J.E. Borzellino and B.G. Lorica, [53], J.E. Borzellino and S-H. Zhu, [52], 
J.E. Borzellino and V. Brunsden, [54], M. Carlotti, [62]-[63], J. Girbau and M. 
Nicolau, [120], T.D. Jeffres, [141], H. Kitahara, [154], L-K. Koh, [172], T. Shioya, 
[220], and I. Satake himself, [213]-[215], but to the knowledge of the authors no 
monograph is available on this subject except for a portion of [239], confined to 
the 3-dimensional case, and of J.E. Borzellino's Ph.D. thesis, [51]. There are many 
differences in style and notations between the above quoted papers and also some 
inadequacies (for instance [62] postulates the existence of the monomorphism n 
while that may be proved, cf. Section 9.3 of this monograph). We choose to expose 
carefully the basics of the theory of orbifolds in Chapter 9, following mainly the 
paper [120] and hoping to remedy to the mentioned inadequacies and hinting to 
a further development of differential geometry and analysis on CR orbifolds. End
ing these comments, we would like to mention the work by Y-J. Chiang, [67], on 
harmonic maps from a Riemannian orbifold to an ordinary Riemannian manifold 
(and showing that in the homotopy class of a map of a Riemannian orbifold into a 
Riemannian manifold of negative sectional curvature there is a harmonic represen
tative). Y-J. Chiang's result is generalized by the work of A. El Kacimi-Alaoui and 
E.G. Gomez's Theorem 6 in [148], p. 121, as W/SO(q) (where W is the base of the 
fibration giving rise to the basic foliation associated with the lifted foliation, cf. our 
section 1.2) is not an orbifold unless the action of SO(q) on W is locally free. This 
means that the open problem (of which only the local part is dealt with in Section 
11.5) regarding the existence of a parametrix for the Kohn-Rossi operator on a CR 
orbifold may find its proper and more general setting in a theory of transversally 
subelliptic operators eventually parallelling A. El Kacimi-Alaoui's work [145]. 

The authors are grateful to all scientists whose works have been used in this 
Monograph. Special thanks are due to Robert Wolak (Jagiellonian University, 
Krakow, Poland) for his kind advice on the contents of Chapters 1 and 9. E. 
Barletta and S. Dragomir were partially supported by INdAM (Italy) within the 
project Nonlinear subelliptic equations of variational origin in contact geometry and 
by MURST (Italy) within the project PRIN Riemannian metrics and Differentiable 
Manifolds. The final version of the manuscript was completed while S. Dragomir 
was a guest of the Department of Mathematics and Statistics of the University of 
Windsor (Ontario, Canada) and he wishes to expresses his gratitude for the excel
lent scientific atmosphere and working conditions there. K.L. Duggal is grateful 
to the Natural Sciences and Engineering Research Council (NSERC) of Canada 
for financial support. The authors are grateful to the anonymous referees whose 
constructive suggestions led to the improvement of this Monograph. 

Elisabetta Barletta 
Sorin Dragomir 

Krishan L. Duggal 



APPENDIX A 

Holomorphic bisectional curvature 

The scope of this appendix is to collect the known results on Kahler manifolds 
of nonnegative holomorphic bisectional curvature, cf. [122]. 

Let V be a Kahlerian manifold, of complex dimension v. Let J denote the 
complex structure on V. Let g be a Kahler metric on V and R the curvature tensor 
field of (V, J, g). A 2-plane at x G V is a 2-dimensional subspace a C TX(V). A 
2-plane a at x is J-invariant if Jx{o~) = CF and the set of all J-invariant 2-planes is 
the total space of a holomorphic bundle CPV~X —> G2{M) —> M (the Grassmann 
bundle). Given two J-invariant 2-planes a C TX(V) and a' C TX(V) the bisectional 
curvature H(a, CF') is defined by 

H(c?,a') = gx{Rx(Y,JxY)JxX , X) 

where X G CF and Y G CF' are unit tangent vectors. The definition of H(CF,CF') 
doesn't depend upon the choice of unit vectors in a and a'. Holomorphic bisectional 
curvature generalizes holomorphic sectional curvature (for H(a, a) is nothing but 
the holomorphic sectional curvature of a G G2(M), as introduced for instance in 
[155], Vol. II, p. 165) and for a complex space form Vu(c), i.e. a Kahlerian manifold 
endowed with a Kahler metric of constant holomorphic sectional curvature c, the 
holomorphic bisectional curvature isn't constant but rather H(a, a') lies between 
c/2 and c (the value c/2 is reached when a and a' are orthogonal while the value c is 
reached when a = CF'). A generalization of a result by T. Frankel, [110] (requiring 
positive holomorphic sectional curvature) may be stated as 

THEOREM A.l. (S.I. Goldberg & S. Kobayashi, [122]) 
Let V be a compact connected complex v-dimensional Kdhlerian manifold endowed 
with a Kdhler metric of positive holomorphic bisectional curvature and let M and 
N be two compact complex submanifolds of V. If d imcM + dimciV > v then 

Similarly, the proof of a result by A. Andreotti & T. Frankel (cf. Theorem 3 in 
[110]) may be easily adapted to show that any compact Kahler surface with positive 
holomorphic bisectional curvature is biholomorphic to CP2. It is also known that 

THEOREM A.2. (S.I. Goldberg & S. Kobayashi, [122]) 
i) A complex is-dimensional compact connected Kahler manifold with an Einstein 
metric of positive holomorphic bisectional curvature is globally isometric to CPU 

with the Fubini-Study metric. 
ii) A complex v-dimensional compact connected Kahler manifold of positive holo
morphic bisectional curvature and constant scalar curvature is holomorphically iso
metric to CPV. 

229 



230 A. HOLOMORPHIC BISECTIONAL CURVATURE 

Theorem A.2 extends previous results of M. Berger, [38], and R.L. Bishop & S.I. 
Goldberg, [42]. As well as in the case of a Kahler manifold of positive holomorphic 
sectional curvature (cf. [41]) 

THEOREM A.3. (S.I. Goldberg & S. Kobayashi, [122]) 
The second Betti number of a compact connected Kahler manifold V of positive 
holomorphic bisectional curvature is 62 (^) = 1. 

Let V be an irreducible1 compact complex z/-dimensional Kahlerian manifold 
of non-negative holomorphic bisectional curvature, that is H(a,o~') > 0. For any 
Z G T(V), Z ^ 0, we set 

HZ(X, Y) := g(R(Z, JZ)X, JY), X, Y G T(V). 
Then Hz is positive semi-definite. Let Nz be the corresponding null distribution 
i.e. 

Nz = {XeT{V):Hz(X,Y)=0, VYeT(V)}. 
Clearly Nz is J-invariant and (Nz)x is determined by Zx for any x £V. For each 
v e TX(V) \ {0} let us set cdimA/^ := v - dime (Nz)x where Z G T(V) is a vector 
field such that Zx = v. 

DEFINITION A.4. The complex positivity of V is defined by 
£(x) = infjcdimA/; : v G TX(F) \ {0}}. 

for any x G V. D 

By a result of N. Mok, [177], the complex positivity ^(x) doesn't depend on the 
point x. The complex positivity £ was computed by M. Kim & J. Wolfson, [153], 
for all compact Hermitian symmetric spaces. In particular 

V 

C P " 

Grp(CP+«) 

Gr2(IRP+2) 

£ | 

v 1 

P + 9 - 1 | 

p-1 | 

Sp(r)/U(r) 

SO(2r)/U(r) 

£6/(Spin(10) x T1) 

E 7 / ( £ 6 x T1) 

r | 

2 r - 3 | 

11 | 

17 | 
The recalled notions are needed in the discussion of the Lefschetz type results in 
Section 4.2 of this monograph. 

As a Riemannian manifold, cf. e.g. [155], Vol. I, p. 179. 



APPENDIX B 

Partition of unity on orbifolds 

Let (B, .4) be a G°° orbifold. 

DEFINITION B.l. A continuous map / : B —» N of B into an ordinary G°° 
manifold Â  is a G°° map if, for any l.u.s. {Q, G, ip} G *4, the map fa : f£ —> AT 
given by / Q = / o ip is G°° differentiable. D 

Let f : B —> N be a, G°° map. Then /^/ o A = /^ for any injection A of {fi, G, (£>} 
into {Q', G', <//} (as /Q/ O A = (/ o p') o A = / o p = fa). In particular, each fa is 
G-invariant. Here we adopted the following 

DEFINITION B.2. Given a l.u.s. {Q, G, p} G A, a map h : ft -* N is G-invariant 
if h o a = h for any cr G G. D 

With each map F : f2 —>• N one may associate the G-invariant map FG : fi, —> N 
given by 

where n(G) is the order of the group G. 

DEFINITION B.3. FG is called the G-average of F . • 

If F is G-invariant then FG = F . Any G-invariant G°° map F : Q ^ N defines a 
G°° map / : U —> A7" on the support C/ of {fi, G, </?}, where (7 is thought of as a G°° 
orbifold with the orbifold structure induced from B (set f(p) = F{x) for just any 
x G (p~1(p))- If F : Q —•> N is an arbitrary C°° map (not necessarily G-invariant) 
then the G-average of F does the same job (i.e. FG induces a G°° map f : U —> N 
as before). 

DEFINITION B.4. Let F : Q —> TV be a G-invariant map. Let {Q!,G',ipf} be 
another l.u.s. of B of support [/' C U. The restriction Ff of F to { f ^ G ' , ^ ' } is 
built as follows. Let A : {fi;, G', <//} —> {fi, G, v?} be an injection and set F ' = F o A. 
D 

The definition of F ' does not depend upon the choice of injection. Indeed, if 
jji is another injection of {Qf', G', <//} into {fi, G, cp} then there is a unique o\ G G 
such that /x = <7i o A and one has 

F o / i = F o ( a i o A ) = F o A 

by the G-invariance of F . The restriction of F to {$!', G', (/?'} is G'-invariant. Indeed 

F ' o <T' = (F o A) o a' = F o (//(a') O A) = F o A = Ff 

for any a' G G' (again by the G-invariance of F) where 77 : G' —* G is the group 
monomorphism corresponding to A. 
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THEOREM B.5. Let (B,A) be an orbifold and {tt,G, (p}, {ft',G',(p'} G A two 
l.u.s.'s of supports U C Uf. Let F : ft —> C be a G-invariant C°° function. As
sume F to have compact support K C ft. Let A be an injection of {ft, G, tp} into 
{ft' ,G' ,(p'} and n : G —± G' the corresponding group monomorphism. Consider 
ai>''' > ak ^ £*' such that o~[ = e' and 

G'MG) = {K], . . . ,K]} 
(andi^j=^ [a[] ± \a'3\). Let F' : Cl' ->• C be given by 

m n F>U>\ J0 ' x'?V(Q,n') 
(R1) F{X) = {F(X-H^')) *eoi(m) 
where 

v(ft,ft') = y <r'(\(n)). 
<J'EG' 

Then 
1) F' does not depend upon the choice of representatives G\ of the elements in 

G'KG). 
2) F' does not depend upon the choice of injection A. 
3) F' is C°° differentiate, Gf -invariant, and its support is contained in 

K> = | J a'(X(K)). 
cr'eG' 

Theorem B.5 allows us to formulate the following 

DEFINITION B.6. The function F' : ft -» N given by (B.l) is said to be the 
extension of F to {ft', G', (p'}. • 

To prove 1) of Theorem B.5 let r[ be another representative of \a'-\, i.e. r[ = 
o[ o rj(a) for some a G G. Then 

r/(A(0)) = a\ o r,(<r)(\(Q)) = <r>(ft) = <r<(\(n)). 

Moreover, if x' € r/(A(Q)) then 

nA-vrV))) = FCA-1^)-1^-1^')) = 
= F^WA)- 1^- 1^ ')) = ^(A*)- 1 ^" V ) ) = 

= F{a-'\-'a'-\x')) = FCA-Vr 1 ^ ' ) ) 
by the G-invariance of F. 

The proof of 2)-3) follows from (9.4) and is left as an exercise to the reader. 

THEOREM B.7. Let (B,A) be a G°° orbifold and 

{n,G,^}, {n',G',<p'}eA 
two l.u.s. 's of supports U C)Uf ^ 0. Assume that U\U' ^ 0 and U' \U ^ 0. Le£ 
F ' : O' ^ C 6e a G' -invariant C°° function of compact support. Then there is a 
unique G-invariant C°° function F : ft —> C such that 

1)F = 0 on(^-1(t/\f/ /)-
2) Given any {fti, Gi, tpi} € A of support Ui C U PiU' and any injection A of 

{fti,Gi,(fi} into {ft,G, <p} we have 
F'\ni=Fo\ 
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where F'\n is the restriction of F' to {^i,Gi,<^i}. 

Theorem B.7 allows us to adopt the following 

DEFINITION B.8. The function F : Q —• C (furnished by Theorem B.7) is the 
prolongation of F' : flf —• C to {fi, G, if}. • 

To prove Theorem 9.9 let {fii, Gi, <£i} G .4 be a l.u.s. of support C/i C U D U' 
and consider an injection A of {fii,Gi,</?i} into {fi.G, <£>}. Let 771 : G\ —• G be 
the group monomorphism corresponding to A. Let <TI,--- ,a^ G G represent the 
elements of G/TJI(GI) (such that i ^ j = > [cr*] ^ [tfj]). Let 

F ( Q l 5 Q ) : V(f t i , f i ) ->C 

be denned by 
F(01 ,Q)(x) = F1(A-1( (r-1(x))) 

for any x G 0"i(A(fii)). Here Fi = F'\n is the restriction of F' to {Oi, Gi, <f\} and 
fc 

y ( 0 1 , Q ) - U a i ( A ( 0 1 ) ) . 
i = l 

An argument similar to that in the proof of Theorem B.5 shows that F(f2i,f2) 
depends neither on the choice of representatives Gi nor on the choice of injection A. 

Let {^2,G2,^2} G *4 of support 172 C U\ C U D U'. Then we may consider 
the function F(£l2,fy ~^ C defined by analogy to .F(fii,fi) above. Note that 
V(ft2 ,0) Q V(Qi, Q). We shall need the following 

LEMMA B.9. F(fti,ft) = F(ft2,ft) onF(ft2 , f t ) . 

Proof. Let // be an injection of {02, G2, ̂ 2} into {fii, Gi, < î} and 772 : G2 —• Gi 
the corresponding group monomorphism. Let r i , • • • , rr G G± be representatives of 
the elements in Gi/rj2(G2). Then 

{(Ji o 771(7}) : l < i < A : , l < j < r } 

represent the elements of G/771772(62). As the definition of F(fl2,fi) does not 
depend upon the choice of injection (of {^2,62, ^2} into {fi, G, <£>}) we may use 
the injection A o \x. We have 

F(02 ,0)(rr) - F2((A o / i ) " 1 ^ o 171 fo))-1*) 

for any x G o ^ ^ r ^ A / i ^ ) . Here F2 = F'\n is the restriction of Ff to {(72, G2, if 2}-
Yet F2 and the restriction of F\ to {£22 > G2, ̂ 2} actually coincide i.e. F2 = Fi o /x. 
Hence 

F(fi2 ,fi)(s) = ^ ( M ' ^ ' V f a r V 1 * ) = 

for any x G airji(rj)XfjJ(Q2) Q 0*2(A/i(£22)). The definition of F(£2i,£2) does not 
depend upon the choice of injection (of {£2i, Gi, y>i} into {£2, G, y>}) hence we may 
use the injection A o TJ. We have 

F (n 1 , n ) (x ) = F 1 ( ( A o r i ) - V 1 W ) 
for any a; G ̂ (A(£2)). Then F(QU ft) = F(£22, fi) on 

^l(fj)A//(£22) Q <TiA/x(02) C CT;A(£2i) 
and Lemma B.9 is proved. 
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At this point we may build the function F : ft —> C aimed to in Theorem B.7. 
We define F to be zero on p"x{U \ U'). As to the set 'p~l(U D U') we define F as 
follows. Let x G ^ _ 1 ( ^ H ?7;) and set p = p(x). By the properties of H let Ui e H 
such tha t p € Ui C U DU' and consider a l.u.s. {fti, G i , <£i} £ -4 of support U\. 
Finally let us set 

F(x) = F(nuSl)(x). 

The definition of F(x) doesn't depend upon the choice of {f t i ,Gi ,<^i} as above. 
Indeed let U2 G H be another open set such tha t p E U2 ^ U H Uf and let 
{^2 ,62 , ^2} G *4 be a l.u.s. of support C/2. Then p G t / i D ^ hence there is 
Us G 7Y such tha t p G ^3 C U\ D C/2. Let {O3, G3, ^3} G .4 be a l.u.s. of support 
[73. Then 

F(f t 1 ? ft)(x) = F( f t 3 , ft)(s) = F( f t 2 , ft)(x) 

by Lemma B.9 (applied to the sets Us Q C/"i, respectively C/3 C Ui (rather than 
U2 Q Ui)). Next we show tha t F is G-invariant. Let a G G and x G ft. We 
distinguish two cases as I) x G ft \ v?_1(£/ n [/') or II) x G ^ _ 1 ( ^ n ^ ' ) - I n t n e 

first case a(x) G <p~1(U \ C/7) and F ( a ( x ) ) = 0 = F(x). If the second case occurs 
then we may consider {f t i ,Gi ,<^i} G *4 of support U\ with ip(x) G £/i. Let A be 
an injection of {fti, G i , (^1} into {ft, G, (/?}. As x G A(fti) we have a(x) G cr(A(fti)) 
hence F(a(x)) = Fi(A~ V _ 1 0 * 0 ) - Yet F ( x ) = F^a o A ) " 1 ^ ) ) as x G A(ft). 
Therefore Foa = F. To check tha t F G G°° it suffices to note tha t i) F is G°° on 
ip^iU fl [/') by construction, ii) K = ^(tp'^K')) C (/?_1({7 n [/') and K is closed 
in ft, where K' = supp(F ' ) C ft, hi) F = 0 o n f t \ K , and iv) {ft \ K, ^(UD U')} 
is an open cover of ft. The uniqueness of F : ft —» C (with the properties claimed 
in Theorem B.7) is plain. 

T H E O R E M B.10. Let{B,A) beaC°° orbifold and {Q,Q,GQ,IPQ} € A a fixedlu.s. 
of B. Let F : ft0 —> C be a G-invariant C°° function of compact support. Then there 
is a unique C°° function f : B —> C of compact support s u p p ( / ) C UQ = <^o(fto) 
such that f o ip0 = F . 

Proof Let {ft, G, ip} G A be an arbi trary l.u.s. of B, of support U. We shall 
define a function fa : ft —> C. To this end we distinguish four cases as I) £/ C C/o 
or II) U0 C [7 or III) [/ \ C/0 7̂  0 and C70 \ ^ ^ 0 and (7 n U0 ^ 0 or IV) U n (70 = 0. 
In case I, let fa be the restriction of F to {ft, G, (/?}. In case II, let / ^ be the 
extension of F to {ft, G, y?} (in the sense of Theorem B.5). In case III, let fa be 
the prolongation of F to {ft, G, (p} (in the sense of Theorem B.7). Finally, in case 
IV we set fa = 0. Let then / : B —> C be defined as follows. Let p G B. Let U eH 
so tha t p € U. Let then {ft, G, </?} G *4 of support U and x G ft so tha t (/?(x) = p. 
Then set / ( p ) = fa(x). The function / satisfies the required conditions. 

T H E O R E M B . l l . Let B be a C°° orbifold andp G B. For any open neighborhood 
U' of p there is a C°° map f : B —> R of compact support contained in U' such that 
0 < / < 1 and f = 1 on some compact neighborhood K of p. 

Proof. Let {fto, Go, po} be a l.u.s. of B of support UQ with p G U$. Let x G fto 
so tha t <£o(#) — P- The set {cr(x) : cr G Go} is finite. Let {#! , • • • , x r } be its 
elements, where x i = x (and r < n(G)). Let c^ G Go so tha t Xi = al(x),l < i < r. 
Let V^ be an open neighborhood of x in fto such tha t po(V^) C {/' and the sets 
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VXi ~ cFiiy^.) are mutually disjoint. Let us set 

vx= U <v*)-
*€(Go)x 

Let KQ be a compact neighborhood of x contained in Vx. Let F : f̂ o —• M be a C°° 
function with F(QQ) C [0,1] such that F = 1 on K0 and supp(F) C Vx. Consider 
fa0

 : ^o - • C given by 

n(x) ±^ 
where n(x) is the order of (Go)x. Clearly fa0 is a Go-invariant G°° function with 
/fio(^o) ^ [0,1]. Let us set 

*' = f| a(K0). 
<?e{G0)x 

Then i^ ; is a compact neighborhood of x. Also the restriction of fn0 to V'x has 
compact support and fn0 = 1 on Kf. Let us set K — LpQ{Kf). As <̂o is continuous 
and open K is a compact neighborhood of p. At this point one may apply Theorem 
B.10. The resulting function satisfies the requirements of Theorem B. l l . 

A standard argument based on Theorem B.l l leads to the following 

THEOREM B.12. Let B be a C°° orbifold and {Ua}aer a locally finite open cover 
of B. There exists a countable partition of unity {ipi}ien subordinate to {Ua}a^r 
and such that each ipi is a C°° function of compact support. 

Note that the same result is stated in [66] only for locally finite open covers 
{UOL}<X€T whose open sets are supports of locally uniformizing systems. Also the 
preparatory result in Theorem B.l l is taken there (cf. the proof of Proposition 1.2 
in [66], p. 319) for granted. 

COROLLARY B.13. Let K be a compact subset of a C°° orbifold B. Let U be 
an open subset of B such that K <Z U. Then there is a C°° function f : B —> M 
such that f = 1 on K and f = 0 on B\U. 

Proof Let p G B. If p G K let Up be an open neighborhood of p such that 
Up C.JJ. lip ^L K then let Up be an open neighborhood of p such that UPD K = 0. 
We produced an open cover {Up}peB of B. Let {Ua} be a locally finite open 
refinement of {Up}peB- By Theorem B.12, let {ipi}i^n be a C°° partition of unity 
subordinate to {Ua}. Let 

G = { i G N : s u p p ( ^ ) n K ^ 0 } . 

Then C is a finite set and / — Yli^c ^ ^s ̂ n e function aimed to in Corollary B.13. 

Let X be a Banach space. By replacing Rn by X in the definition of the notion 
of an orbifold one may define the notion of a Banach orbifold (modelled on X). 
Eventually, one may request that the injections A : Q' —> Qf be norm preserving. 
Partitions of unity on Banach manifolds (modelled on a Banach space satisfying 
an additional smoothness condition) have been obtained by J.N. Frampton, [109] 
(by firstly constructing partitions of unity on Lindelof spaces, cf. Theorem 1 in 
[109], p. 8). It is an open problem to construct partitions of unity on (infinitely 
dimensional) Banach orbifolds. 



APPENDIX C 

Pseudo-differential operators on Rn 

For the convenience of the reader we briefly review the main notions and results 
about pseudo-differential operators on Rn (as employed in Chapters 10 and 11). For 
any multi-index a = (ai , • • • , an) we set 

v ; dx^-.-dx^' 
DEFINITION C.l. The Schwartz class S is the set of all C°° complex valued 

functions / on Rn such that for all multi-indices a, /3 there is a constant Ca^ > 0 
such that 

\xaD?f\ < Cajl3. 
• 

We denote by dx the measure dx = (27r)~n/2dfj, where d\i is the Lebesque 
measure on Rn . As C£°(Rn) C S (and C£° (Rn) is dense in L2(Rn)) S is dense in 
L2(Rn). 

DEFINITION C.2. The convolution product of / , g G S is given by 

(/ * g)(x) = f(x~ y)g(y)dy-

a 
The convolution product is associative and commutative. However, only ap

proximate identities exist. Precisely, let f e S with J f(x)dx = 1 and set fu(x) — 
u~n f(x/u),u > 0. Then, for any g G 5 , / u * g converges uniformly to g as u —• 0. 

DEFINITION C.3. The Fourier transform of / G S is given by 

(Ff)(Z) = kt) = Je-ix'*f{*)dx 
for any £ G Rn . D 

A standard argument based on integration by parts and Lebesgue dominated 
convergence theorem shows that / G S hence the Fourier transform is a map S —> S. 
In fact this is also bijective and the Fourier inversion formula gives its inverse 
(expressing / in terms of / by f(x) = J elx'^f(^)d^). The Schwartz class S may be 
organized as a Frechet space with the topology defined by the family of seminorms 

PaAf)= SUP \xaDPf(x)\. 
xemn 

Then Co°(Rn) is dense in S with respect to this topology. Also the Fourier trans
form is a homeomorphism of topological vector spaces. Both convolution and point-
wise multiplication define ring structures on S and the Fourier transform inter
changes these ring structures i.e. T{f * g) = fg. Finally, the Fourier transform is 

237 
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an isometry with respect to the L2 inner product 

(/>£) = / f(x)g(x)dx 
JR™ 

and, as S is dense in L2(Rn), it extends to a unitary map L2(Rn) —> L2(Rn) such 
that (/ ,#) = (f,g) (the Plancherel theorem). 

Let 5 G R and / G 5 . Set 
1/2 

ll/l1 / (i + iei2)1/(0 
JR™ l 

<% 

DEFINITION C.4. The Sobolev space Hs(Rn) is the completion of S in the norm 
II • ii.. • 

Then H0(Rn) « L2(Rn) (an isomorphism) by Plancherel theorem. 
For any multi-index a, the operator Da extends to a continuous map 

D«:Hs(Rn)-+Hs_la](Rn). 

Intuitively, the number s counts the L2 derivatives. Then one may loosely say that 
when extending Da to Hs(Rn), \a\ derivatives are lost. 

Derivatives are also measured by means of the sup norm. Let k G Z, k > 0, 
and / G S. Let us set 

||/||oo,*= sup £ \Daf(x)\. 
* e R" H<fc 

The completion of S in the norm || • \\oo,k is contained in Ck(Rn). 
The norms || • ||s and || • H^^ are related as follows. Let k G Z, k > 0, and 

s> k + n/2. If / e Hs(Rn) then ' / is of class Ck and 

ll/Hoo, fc<C||/||s 

for some C > 0 (the Sobolev lemma). This turns out to be particularly useful in 
showing that weak solutions (one produces for certain PDEs) are actually smooth. 

Let s > t. Then the identity map S —> S extends to a norm nonincreasing 
injection Hs(M.n) —•> i^ (R n ) . This injection is compact if one restricts the supports 
involved. Precisely, let fm G S be a sequence of functions with supports in a fixed 
compact set K. Let s > t. If there is C > 0 such that | | /m | | s < C for all m > 1 
then there is a subsequence of {fm} which converges in i7 t(Rn) (the Rellich lemma). 
The assumption that supports are uniformly bounded may not be dropped. 

The space C£°(Rn) is dense in Hs(Rn) for any s G R. Each Hs(Rn) is a Hilbert 
space hence it is isomorphic to its dual. The following invariant characterization of 
the dual space Hs(Rn)* is also available: the L2 pairing 5 x 5 - ^ C extends to a 
map Hs(Rn) x H_s(Rn) -> C which identifies Hs(Rn)* with iJ_ s(R n) . 

DEFINITION C.5. A linear partial differential operator P of order m (m G Z, 
m > 0) is given by 

P = ]T aa(x)Da 

\a\<m 

where aa(x) are smooth. The symbol p(x, £) of P is given by 

|o;|<m 
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The leading symbol PL(%, £) of P is given by 

\ot\=m 

• 
The symbol p(x,£) is a polynomial in £ of degree m. The leading symbol 

PL(X,£) is a homogeneous polynomial of degree m in £. One of the most use
ful properties of the Fourier transform is that it interchanges differentiation and 
multiplication i.e. 

Daf(x) = J e " - « r / m , ef{0 = J e~ix<Daf(x)dx, 

for any / G S. Consequently given a linear partial differential operator P of symbol 
p(x,£) one may use the Fourier inversion formula to get 

(C.l) (Pf)(x) = J>^(*,£)/m = j J{x-yHpMttv)dydZ 
for any / G S. It is noteworthy that the second integral is not absolutely convergent, 
hence one may not change the order of integration. Operators acting as in (C.l), 
yet corresponding to a class of symbols p(x, £) wider than that of polynomials, are 
the pseudo-differential operators. Precisely we adopt the following 

DEFINITION C.6. A function p : Rn x Rn —> C is a symbol of order m e R if 
1) p(x,£) is C°° in (x,£) and has compact x-support (i.e. there is a compact set 
K C Rn such that p ( z , 0 = 0 for any (s,f) G (Rn - K) x Rn) , and 2) for any 
multi-indices a, /? there is a constant Ca?^ > 0 such that 

|z?sz?fP(x,o|<c'ai /3(i + i€ir- | /31. 
D 

Let 5 m denote the space of all symbols of order m. If ra' < m then 5 m C Sm. 

DEFINITION C.7. A symbol p(x,£) is infinitely smoothing if 

p e 5-°° = p| sm. 
mGR 

D 

DEFINITION C.8. TWO symbols a, 6 are equivalent (and one writes a ~ 6) if 
their difference a — b is infinitely smoothing. • 

DEFINITION C.9. Given a symbol p G S™ we define its associated pseudo-
differential operator P as the linear operator S —> <S given by 

(C.2) {Pf){x) = JeixMx,OKO^ 
for any / G <S. D 

Then 
| | P / | | , _ m < C | | / | | f l 

hence P extends to a continuous map Hs(M.n) —> iJ s _ m (R n ) for all s G R. There
fore, if p G S-°° then P : Hs(Rn) -> i^(R n ) for all s , t e R . Finally, by the Sobolev 
lemma P : iJ s(Rn) —> Co°(Rn) for all s (hence the term infinitely smoothing is ap
propriate) . 
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DEFINITION CIO. Let (rrij)j>i be a sequence of real numbers such that rrij —• 
oo as j —* oo, and pj G Smj, j > 1. Given an arbitrary symbol p one writes 

oo 

(C.3) P ~ $ > 

if for any ra G R there is k(m) G N such that 
k 

for any fc > fc(ra). • 

The series Y^T=iPj ls n ° t necessarily convergent and (C.3) means merely that 
the difference between p and the partial sums of the pj is as smoothing as one 
wishes. This is the sense in which one generalizes (from differential to pseudo-
differential operators) the formula expressing the symbol of a composition of two 
differential operators. Precisely, let P and Q be two pseudo-differential operators, 
of symbols p G 5 m and q G Sm , respectively. Then PQ is a pseudo-differential 
operator of symbol cr(PQ) G Srn+m satisfying 

a(PQ)~£S(I>«p)(IW 
a 

As long as one wishes to deal with operators on compact orbifolds one may restrict 
the domain and range of ones operators as follows. Let U C Rn be an open 
subset with compact closure. Let p G 5 m have x-support in U. We restrict the 
domain of the pseudo-differential operator P (associated to p) to CQ°(U) such that 
P : Cg°(U) - • Cg°(U). Let *m(C/) denote the space of all such operators. If 
m<m' then *m ( l7) C *m/(f7). Let us set 

*-«>(£/) = f| *m(tf). 
met 

Let K(x,y) be a C°° function on Rn x Rn with compact x-support in U. If / is a 
function with compact support in U one sets 

[P(K)f)(x)= f K(x,y)f(y)dy. 

Then P(K) G ^-^(U). The converse is also true. Precisely let P be a pseudo-
differential operator that comes from a symbol p(x, £) of order — oo. Let C C Rn be 
a compact subset. Then there is a C°° function K(x,y) on Rn x Rn, with compact 
support, such that Pf = P(K)f for any / G Co°(Rn) with support contained in 
C. 

DEFINITION C. l l . Let P, Q be two pseudo-differential operators. One says 
P, Q are equivalent (and one writes P ~ Q) if their symbols are equivalent. • 

DEFINITION C.12. Let P be a differential operator and Q a pseudo-differential 
operator. Let U C Rn an open subset with compact closure. We say that PQ ~ 
/ over CQ°(U) (respectively that QP ~ J o^er CQ°(U)) if there exist pseudo-
differential operators P',If such that P'Q ~ i7 and P ' Q / = PQf (respectively 
QP' ~ r and Q P ' / = Q P / ) and I' f = f for any / G C0°°(C/). Here / is the 
identity. • 
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DEFINITION C.13. A differential operator P is elliptic if its leading symbol PL 
satisfies PL(X, £) = 0 if and only if £ = 0. • 

We shall need the following theorem. Let P be an elliptic differential opera
tor and U C E n an open subset with compact closure. Then there is a pseudo-
differential operator Q such that PQ ~ / and QP ~ I over CQ°(U). 

Finally, we need to recall the invariance of pseudo-differential operators under 
coordinate transformations. Let V,V CM71 be two open sets and / : V —> V a C°° 
diffeomorphism. Let P be a pseudo-differential operator, acting on C°° functions 
u of support contained in a compact set K cV, given by (C.2), where p(x,£) has 
x-support contained in V. Let us set K = f~x(K). Given a C°° function ft on V 
of support contained in K, let us define xVL by setting (xil)(x) = (Pu)(x) where 
x = f(x) and u = Q o f~x. Then xVt is a pseudo-differential operator. 
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