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The Gram-Schmidt process
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Given a set of linear independent vectors 𝑥1, … , 𝑥𝑛, we want to compute a set of 
orthogonal vectors 𝑞1, … , 𝑞𝑛 such that 𝑠𝑝𝑎𝑛 𝑥1, … , 𝑥𝑛 = 𝑠𝑝𝑎𝑛{𝑞1, … , 𝑞𝑛}
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𝑘−1 𝑞𝑗,𝑥𝑘

𝑞𝑗
2 𝑞𝑗 , 𝑘 ≥ 2

To get orthonormal vectors, 𝑞𝑘 = 𝑞𝑘/‖𝑞𝑘‖, for all 𝑘

Each vector 𝑥𝑘 can be expressed as a linear combination of 𝑞1, … , 𝑞𝑘.

So with 𝑋 = 𝑥1⋯𝑥𝑛 , 𝑄 = [𝑞1⋯𝑞𝑛], this means we can write 

𝑋 = 𝑄𝑅,

where columns of 𝑅 give the coefficients of the aforementioned linear combinations, 
and thus 𝑅 is upper triangular.

Typically require that the diagonal entries of 𝑅 are positive; this gives a unique QR 
factorization. 
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Orthogonalization
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• Many applications

• Solving least squares problems min
𝑥

‖𝐴𝑥 − 𝑏‖2
2 → 𝑅𝑥 = 𝑄𝑇𝑏

• Used within Krylov subspace methods

• Etc.

• Our focus is on Gram-Schmidt algorithms, but there are many other options

• What happens in finite precision?

• On a real computer, every time we perform a floating point operation, we may 
incur a small roundoff error

• Over a whole computation, these tiny errors can accumulate or can be amplified!

• The result:

• ത𝑄 no longer has exactly orthonormal columns!

• ത𝑄 ത𝑅 is no longer exactly the same as 𝑋!

• This can affect applications downstream
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Measures of Error

Let ത𝑄 and ത𝑅 denote computed QR factors of a matrix 𝑋.

How far is ത𝑄 from having orthonormal columns?

“Loss of orthogonality”: ‖𝐼 − ത𝑄𝑇 ത𝑄‖

How close is ത𝑄 ത𝑅 to 𝑋?

Relative residual norm: 
𝑋− ത𝑄 ത𝑅

‖𝑋‖

How close is ത𝑅𝑇 ത𝑅 to 𝑋𝑇𝑋?

Relative Cholesky residual norm: 
𝑋𝑇𝑋− ത𝑅𝑇 ത𝑅

𝑋 2
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Gram-Schmidt algorithms

4

Classical Gram-Schmidt (CGS)

for 𝑘 = 1,… , 𝑛
𝑤𝑘 = 𝑥𝑘
for 𝑗 = 1,… , 𝑘 − 1

𝑤𝑘 = 𝑤𝑘 − (𝑞𝑗
𝑇𝑥𝑘)𝑞𝑗

𝑞𝑘 = 𝑤𝑘/‖𝑤𝑘‖

Modified Gram-Schmidt (MGS)

for 𝑘 = 1,… , 𝑛
𝑤𝑘 = 𝑥𝑘
for 𝑗 = 1,… , 𝑘 − 1

𝑤𝑘 = 𝑤𝑘 − (𝑞𝑗
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A bit of history…

• Method of orthogonalization popularized by a paper of Schmidt in 1907. The 
method here is what we know as “classical Gram-Schmidt”

• In a footnote, Schmidt credits an earlier paper by Gram, published in 1883, saying 
that this procedure is essentially equivalent. 

• The procedure in Gram’s paper is what we know as “modified Gram-Schmidt”

• The linkage of the names “Gram” and “Schmidt” came along in 1935 in a paper by 
Wong

5

[Leon, Bjӧrck, Gander, “Gram-Schmidt orthogonalization: 100 years and more”, 2007]
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[Leon, Bjӧrck, Gander, “Gram-Schmidt orthogonalization: 100 years and more”, 2007]

• It turns out a procedure equivalent to modified Gram-Schmidt appears even in much 
earlier work of Laplace in 1820 



Block Gram-Schmidt

• Sometimes we may want to use a block 
version of Gram-Schmidt

• Performance reasons (e.g., BLAS3)

• Block Krylov subspace methods

• Better convergence 

• Simultaneously solve multiple RHSes

• s-step Krylov subspace methods
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𝒳

𝑚

𝑠

𝑛 = 𝑠𝑝



Muscle and Skeleton analogy

• How do we define a block Gram-Schmidt algorithm?

• We need 2 parts:

• The “skeleton”: A block Gram-Schmidt algorithm 
for interblock orthogonalization

• The “muscle”: A non-block orthogonalization 
algorithm for intrablock orthogonalization (“local 
QR”, “panel factorization”)

• Need not be Gram-Schmidt-based

• We will refer to this routine as “IntraOrtho()”
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• For example: block MGS (BMGS) for orthogonalizing between blocks, 
Householder QR for orthogonalizing within blocks:

BMGS ∘ HouseQR(𝒳)

https://www.twinkl.com/illustration/contracted-
muscle-arm-bone-skeleton-movement-anatomy-bicep-
science-ks2

[Hoemmen, 2010]



Notation I

• Use our own naming system of algorithms

• Does suffix “2” mean reorthogonalized? BLAS-2 featuring? A second 
version of the algorithm?

• Suffixes:

• +: run twice 

• I+: inner reorthogonalization

• S+: selective reorthogonalization

8



Notation II

• Calligraphic letters for the whole block matrices (𝒳,𝒬,ℛ)
• Regular letters for the individual block quantities (𝑋, 𝑄, 𝑅)
• Bars denote computed (inexact) quantities

• 𝑚: number of rows in input matrix
• 𝑛: number of columns in input matrix (𝑛 = 𝑝𝑠)
• 𝑝: number of blocks
• 𝑠: number of columns per block

𝒳 = [𝑋1, 𝑋2, … , 𝑋𝑝],    𝒳 ∈ ℝ𝑚×𝑛, 𝑋𝑖 ∈ ℝ𝑚×𝑠

9

𝑚 ≥ 𝑛 > 𝑝 > 𝑠
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Economic QR factorization: 𝒳 = 𝒬ℛ, 𝒬 ∈ ℝ𝑚×𝑛, ℛ ∈ ℝ𝑛×𝑛

𝒬 = 𝑄1, 𝑄2, … , 𝑄𝑝 , ℛ =

𝑅1,1 𝑅1,2 ⋯ 𝑅1,𝑝
𝑅2,2 ⋯ 𝑅2,𝑝

⋱ ⋮
𝑅𝑝,𝑝

𝒬1:𝑗 = 𝑄1, … , 𝑄𝑗 , ℛ1:𝑗,𝑘 =

𝑅1,𝑘
⋮

𝑅𝑗,𝑘 9

𝑚 ≥ 𝑛 > 𝑝 > 𝑠



Block Gram-Schmidt methods in practice

A few examples:

• [Boley and Golub, 1984]: Block Arnoldi with BMGSI+ ∘ MGSI+

“However, since we obtain 𝑍𝑘, by using a [block] Gram-Schmidt 
orthogonalization of 𝑊𝑘, against 𝑄1, … , 𝑄𝑘 … there is little loss of stability 
by continuing to use Gram-Schmidt to orthogonalize 𝑍𝑘. This was what 
we actually observed in our numerical experiments.”
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A few examples:

• [Boley and Golub, 1984]: Block Arnoldi with BMGSI+ ∘ MGSI+

“However, since we obtain 𝑍𝑘, by using a [block] Gram-Schmidt 
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• Also used in [Vital, 1990]

• [Sadkane, 1993]: Block Arnoldi with BMGS ∘ “QR factorization”

• [Saad, 2003]: textbook provides block Arnoldi based on BCGS (Alg. 6.22) 
and BMGS (Alg. 6.23); IntraOrtho just specified as a “QR factorization”

• [Baker, Dennis, Jessup, 2006]: Block GMRES w/ BMGS ∘ “QR 
factorization”

• Does it matter what we use for “QR factorization” (the IntraOrtho) within a 
block Gram-Schmidt method?
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Does it matter?

• Recall: For MGS, 𝐼 − ത𝑄𝑇 ത𝑄 ≤ 𝑂 𝜀 𝜅(𝑋)

• What is the bound on loss of orthogonality for BMGS ∘ MGS? (guess!)
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Läuchli matrix

𝑚 = 1000, 𝑝 = 100,
𝑠 = 5

[Jalby and Philippe, 1991]: For BMGS ∘ MGS,   𝐼 − ത𝒬𝑇 ത𝒬 ≤ 𝑂 𝜀 𝜅2(𝒳)

LaeuchliBlockKappaPlot([1000 100 5],  logspace(-1, -16, 10), {'BMGS'}, {'MGS'})
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Läuchli matrix

𝑚 = 1000, 𝑝 = 100,
𝑠 = 5

[Jalby and Philippe, 1991]: For BMGS ∘ MGS,   𝐼 − ത𝒬𝑇 ത𝒬 ≤ 𝑂 𝜀 𝜅2(𝒳)
For BMGS ∘ MGS+, 𝐼 − ത𝒬𝑇 ത𝒬 ≤ 𝑂 𝜀 𝜅(𝒳)

LaeuchliBlockKappaPlot([1000 100 5],  logspace(-1, -16, 10), {'BMGS'}, {'MGS', ‘MGS_IRO'})



Two Questions

If we use an intrablock orthogonalization routine 
(muscle) with 𝑂(𝜀) loss of orthogonality and 𝑂(𝜀)
relative residual, what is the best a block Gram-
Schmidt orthogonalization routine (skeleton) can do?

For a given block Gram-Schmidt variant (skeleton), 
what are the minimum requirements on the intra-block 
orthogonalization routine (muscle) such that the loss of 
orthogonality is good enough?
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BlockStab MATLAB package

BlockStab (our code) has two simple drivers:

• BGS(XX, s, skel, musc, rpltol, verbose)

• IntraOrtho(X, musc, rpltol, verbose)

• Can also work directly with a skeleton or muscle, or implement your 
own

https://github.com/katlund/BlockStab

*For each plot, we list the function call needed to replicate the plot at the 
bottom of the slide
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https://github.com/katlund/BlockStab


Outline

1. Overview of muscles

2. BCGS skeletons

3. BMGS skeletons

4. Open questions

14



Overview of Muscles



CGS and CGS-P

15

• Pessimistic bound due to [Kiełbasiński, 1974]: If O 𝜀 𝜅 𝑋 < 1,

𝐼 − ത𝑄𝑇 ത𝑄 ≤ 𝑂 𝜀 𝜅𝑠−1(𝑋)

for 𝑋 ∈ ℝ𝑚×𝑠
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CGS:

𝑅𝑘+1,𝑘+1 = 𝑤 = 𝜙2 − 𝜓2

𝑅1:𝑘,𝑘+1 = 𝑄1:𝑘
𝑇 𝑥𝑘+1

𝑤 = 𝑥𝑘+1 − 𝑄1:𝑘𝑅1:𝑘,𝑘+1

Let 𝜙 = 𝑥𝑘+1 , 𝜓 = 𝑅1:𝑘,𝑘+1
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Reorthogonalization

• “Twice is enough”

[Parlett, 1987]; attributed to Kahan :

An iterative Gram-Schmidt process on 2 vectors with one step of  
reorthogonalization produces 2 vectors orthonormal up to machine 
precision if the matrix is not too ill-conditioned.
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Reorthogonalization

• “Twice is enough”

[Parlett, 1987]; attributed to Kahan :

An iterative Gram-Schmidt process on 2 vectors with one step of  
reorthogonalization produces 2 vectors orthonormal up to machine 
precision if the matrix is not too ill-conditioned.

• [Giraud, Langou, Rozložník, 2002], [Giraud, Langou, Rozložník, van den 
Eshof, 2005]: Twice is enough holds for 𝑘 > 2 vectors

• Previous work by [Abdelmalek, 1971] 

𝐼 − ത𝑄𝑇 ത𝑄 ≤ 𝑂(𝜀)

• Many variants: CGS+, CGSI+, CGSS+

16



Low-synchronization version

36

CGSI+LS [Świrydowicz, Langou, Ananthan, Yang, Thomas, 
2020]

• One synchronization per column (CGSI+ up to 4)



Low-synchronization version

CGSI+LS [Świrydowicz, Langou, Ananthan, Yang, Thomas, 
2020]

• One synchronization per column (CGSI+ up to 4)

Main ideas: 

Orthogonal projector: 𝐼 − 𝑄𝑇𝑄𝑇 , 𝑇 ≈ 𝑄𝑇𝑄 −1

𝑇 = 𝐼 − 𝐿 − 𝐿𝑇
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Low-synchronization version

CGSI+LS [Świrydowicz, Langou, Ananthan, Yang, Thomas, 
2020]

• One synchronization per column (CGSI+ up to 4)

Main ideas: 

Orthogonal projector: 𝐼 − 𝑄𝑇𝑄𝑇 , 𝑇 ≈ 𝑄𝑇𝑄 −1

𝑇 = 𝐼 − 𝐿 − 𝐿𝑇

1. Compute strictly lower triangular matrix 𝐿 one row (or 
block of rows) at a time in single reduction to compute 
all inner products needed for current iteration

𝐿𝑘−1,1:𝑘−2 = 𝑄1:𝑘−2
𝑇 𝑞𝑘−1

𝑇

2. “Lag” reorthogonalization and normalization and merge 
it with this single reduction 

• Idea of lag also used in [Hernández, Román, Tomás, 
2007]
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Low-synchronization version

CGSI+LS [Świrydowicz, Langou, Ananthan, Yang, Thomas, 
2020]

• One synchronization per column (CGSI+ up to 4)

Main ideas: 

Orthogonal projector: 𝐼 − 𝑄𝑇𝑄𝑇 , 𝑇 ≈ 𝑄𝑇𝑄 −1

𝑇 = 𝐼 − 𝐿 − 𝐿𝑇

1. Compute strictly lower triangular matrix 𝐿 one row (or 
block of rows) at a time in single reduction to compute 
all inner products needed for current iteration

𝐿𝑘−1,1:𝑘−2 = 𝑄1:𝑘−2
𝑇 𝑞𝑘−1

𝑇

2. “Lag” reorthogonalization and normalization and merge 
it with this single reduction 

• Idea of lag also used in [Hernández, Román, Tomás, 
2007]

⇒Reorthogonalization happens “on the fly” instead of 
requiring complete second pass

39



Summary: CGS Variants
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Algorithm ‖𝐼 − ത𝑄𝑇 ത𝑄‖ Assumption on 𝜅(𝑋) References

CGS 𝑂 𝜀 𝜅𝑛−1(𝑋) 𝑂 𝜀 𝜅 𝑋 < 1 [Kiełbasiński, 1974]

CGS-P 𝑂 𝜀 𝜅2(𝑋) 𝑂 𝜀 𝜅2 𝑋 < 1 [Smoktunowicz, Barlow, Langou, 
2006]

CGS+ 𝑂 𝜀 𝑂 𝜀 𝜅 𝑋 < 1 conjecture

CGSI+ 𝑂 𝜀 𝑂 𝜀 𝜅 𝑋 < 1 [Abdelmalek, 1971]
[Giraud, Langou, Rozložník, 2002]

[Giraud, Langou, Rozložník, van den 
Eshof, 2005]

[Barlow, Smoktunowicz, 2013] 

CGSS+ 𝑂 𝜀 𝑂 𝜀 𝜅 𝑋 < 1 [Daniel, Gragg, Kaufman, Stewart, 
1976]

[Hoffmann, 1989]

CGSI+LS 𝑂 𝜀 𝑂 𝜀 𝜅 𝑋 < 1 conjecture [Świrydowicz, Langou, 
Ananthan, Yang, Thomas, 2020]

CGSS+rpl 𝑂 𝜀 none conjecture [Stewart, 2008]



Low-sync MGS

• Original low-sync muscles developed independently by

[Barlow 2019] and [Świrydowicz et al., 2020]

• Perspectives:

• Merge inner products and norms by batching and lagging

• Cushion projectors with “error sponge” to achieve CGS-like 
communication with MGS-like stability

CGS: 𝐼 − 𝑄𝑘𝑄𝑘
𝑇 𝑥𝑘+1

MGS: 𝐼 − 𝑞𝑘𝑞𝑘
𝑇 ⋯ 𝐼 − 𝑞1𝑞1

𝑇 𝑥𝑘+1

Goal: 𝐼 − 𝑄𝑘𝐶𝑘𝑄𝑘
𝑇 𝑥𝑘+1
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Low-sync variants

Two synchronizations One synchronization

𝐼 − 𝑄𝑘𝑇𝑘
𝑇𝑄𝑘

𝑇 𝑥𝑘+1
(matrix-matrix 
multiplication)

MGS-SVL 
[Barlow, 2019] 
(called “MGS2”)

MGS-CWY
[Swirydowicz et al., 2020]

𝐼 − 𝑄𝑘𝑇𝑘
−𝑇𝑄𝑘

𝑇 𝑥𝑘+1
(triangular solve)

MGS-LTS
[Swirydowicz et al., 2020]

MGS-ICWY
[Swirydowicz et al., 2020]
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[Schreiber and Van Loan, 1989] + “Sheffield observation”
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[Puglisi, 1992]

[Schreiber and Van Loan, 1989]

[Bjӧrck, 1994]

+ “Sheffield observation”



Low-sync variants
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20

Note: For block variants, it will be a crucial point that these algorithms return 𝑇𝑘

[Puglisi, 1992]

[Schreiber and Van Loan, 1989]

[Bjӧrck, 1994]

+ “Sheffield observation”



MGS Variants
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Algorithm ‖𝐼 − ത𝑄𝑇 ത𝑄‖ Assumption on 𝜅(𝑋) References

MGS 𝑂 𝜀 𝜅(𝑋) 𝑂 𝜀 𝜅 𝑋 < 1 [Bjӧrck, 1967]

MGS-SVL 𝑂 𝜀 𝜅(𝑋) 𝑂 𝜀 𝜅 𝑋 < 1 [Barlow, 2019]

MGS-LTS 𝑂 𝜀 𝜅(𝑋) 𝑂 𝜀 𝜅 𝑋 < 1 conjecture [Świrydowicz, Langou, 
Ananthan, Yang, Thomas, 2020]

MGS-CWY 𝑂 𝜀 𝜅(𝑋) 𝑂 𝜀 𝜅 𝑋 < 1 conjecture [Świrydowicz, Langou, 
Ananthan, Yang, Thomas, 2020]

MGS-ICWY 𝑂 𝜀 𝜅(𝑋) 𝑂 𝜀 𝜅 𝑋 < 1 conjecture [Świrydowicz, Langou, 
Ananthan, Yang, Thomas, 2020]

MGS+ 𝑂 𝜀 𝑂 𝜀 𝜅 𝑋 < 1 [Jalby, Philippe, 1991]
[Giraud, Langou, 2002]

MGSI+ 𝑂 𝜀 𝑂 𝜀 𝜅 𝑋 < 1 [Hoffmann, 1989]
[Gander, 1980]

[Giraud, Langou, Rozložník, 2002]



Other Muscles
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Algorithm ‖𝐼 − ത𝑄𝑇 ത𝑄‖ Assumption on 𝜅(𝑋) References

CholQR 𝑂 𝜀 𝜅2(𝑋) 𝑂 𝜀 𝜅2 𝑋 < 1 [Yamamoto, Nakatsukasa, 
Yanagisawa, Fukaya, 2015]

CholQR+ 𝑂 𝜀 𝑂 𝜀 𝜅2 𝑋 < 1 [Yamamoto, Nakatsukasa, 
Yanagisawa, Fukaya, 2015]

ShCholQR++ 𝑂 𝜀 𝑂 𝜀 𝜅 𝑋 < 1 [Fukaya, Kannan, 
Nakatsukasa, Yamamoto, 

Yanagisawa, 2020]

HouseQR 𝑂 𝜀 none [Wilkinson, 1965]

GivensQR 𝑂 𝜀 none [Wilkinson, 1965]

TSQR 𝑂 𝜀 none [Mori, Yamamoto, Zhang, 
2012]

[Demmel, Grigori, Hoemmen, 
Langou, 2012]



Block Classical Gram-
Schmidt (BCGS)



Block CGS

No existing proof of the loss of orthogonality in BCGS!

Conjecture: Even if our IntraOrtho has 𝑂(𝜀) loss of orthogonality, BCGS is 
just as bad as CGS:

𝐼 − ത𝒬𝑇 ത𝒬 ≤ 𝑂 𝜀 𝜅𝑛−1(𝒳)

23



24GluedBlockKappaPlot([1000 50 4], 1:8, {'BCGS'}, {'HouseQR'})

“Glued” matrices from [Smoktunowicz, Barlow, Langou, 2006]

𝑚 = 1000, 𝑝 = 50, 𝑠 = 4
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BCGS loss of orthogonality is not 𝑂 𝜀 𝜅2(𝒳)!

GluedBlockKappaPlot([1000 50 4], 1:8, {'BCGS'}, {'HouseQR'})

“Glued” matrices from [Smoktunowicz, Barlow, Langou, 2006]

𝑚 = 1000, 𝑝 = 50, 𝑠 = 4



Block Pythagorean CGS

𝑊𝑘+1 = 𝑋𝑘+1 − 𝒬1:𝑘ℛ1:𝑘,𝑘+1

𝑄𝑘+1, 𝑅𝑘+1,𝑘+1 = IntraOrtho 𝑊𝑘+1

𝑋𝑘+1 = 𝒬1:𝑘ℛ1:𝑘,𝑘+1 +𝑊𝑘+1

Let ℛ1:𝑘,𝑘+1 = 𝑄ℛ𝑃𝑘+1 be the QR factorization of ℛ1:𝑘,𝑘+1

Let 𝑋𝑘+1 = 𝑄𝑋𝑇𝑘+1 be the QR factorization of 𝑋𝑘+1

𝑇𝑘+1
𝑇 𝑇𝑘+1 = 𝑋𝑘+1

𝑇 𝑋𝑘+1

= 𝑊𝑘+1
𝑇 𝑊𝑘+1 + ℛ1:𝑘,𝑘+1

𝑇 ℛ1:𝑘,𝑘+1

= 𝑅𝑘+1,𝑘+1
𝑇 𝑅𝑘+1,𝑘+1 + 𝑃𝑘+1

𝑇 𝑃𝑘+1

𝑅𝑘+1,𝑘+1 = chol 𝑋𝑘+1
𝑇 𝑋𝑘+1 − ℛ1:𝑘,𝑘+1

𝑇 ℛ1:𝑘,𝑘+1 = chol 𝑇𝑘+1
𝑇 𝑇𝑘+1 − 𝑃𝑘+1

𝑇 𝑃𝑘+1
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𝑇 𝑃𝑘+1
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Block Pythagorean CGS

𝑊𝑘+1 = 𝑋𝑘+1 − 𝒬1:𝑘ℛ1:𝑘,𝑘+1

𝑄𝑘+1, 𝑅𝑘+1,𝑘+1 = IntraOrtho 𝑊𝑘+1

𝑋𝑘+1 = 𝒬1:𝑘ℛ1:𝑘,𝑘+1 +𝑊𝑘+1

Let ℛ1:𝑘,𝑘+1 = 𝑄ℛ𝑃𝑘+1 be the QR factorization of ℛ1:𝑘,𝑘+1

Let 𝑋𝑘+1 = 𝑄𝑋𝑇𝑘+1 be the QR factorization of 𝑋𝑘+1

𝑇𝑘+1
𝑇 𝑇𝑘+1 = 𝑋𝑘+1

𝑇 𝑋𝑘+1

= 𝑊𝑘+1
𝑇 𝑊𝑘+1 + ℛ1:𝑘,𝑘+1

𝑇 ℛ1:𝑘,𝑘+1

= 𝑅𝑘+1,𝑘+1
𝑇 𝑅𝑘+1,𝑘+1 + 𝑃𝑘+1

𝑇 𝑃𝑘+1

𝑅𝑘+1,𝑘+1 = chol 𝑋𝑘+1
𝑇 𝑋𝑘+1 − ℛ1:𝑘,𝑘+1

𝑇 ℛ1:𝑘,𝑘+1 = chol 𝑇𝑘+1
𝑇 𝑇𝑘+1 − 𝑃𝑘+1

𝑇 𝑃𝑘+1

25
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BCGS-PIP and BCGS-PIO
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• See [C., Lund, Rozložník, Thomas, 2020] and [C., Lund, Rozložník, 2021]
• BCGS-PIP also developed independently by [Yamazaki, Thomas, Hoemmen, Boman, 

Świrydowicz, Elliott, 2020]; called “CGS+CholQR”



New Stability Results for BCGS-PIP/PIO

Let 𝒳 ∈ ℝ𝑚×𝑛 be a matrix whose columns are organized into 𝑝 blocks of size 𝑠, 
and assume that 

𝑂 𝜀 𝜅2 𝒳 < 1. 

Suppose we execute BCGS-PIP ∘ IntraOrtho 𝒳 or BCGS-PIO ∘ IntraOrtho 𝒳
on a machine with unit roundoff 𝜀. 

If for all 𝑋, IntraOrtho(𝑋) computes factors ത𝑄 and ത𝑅 that satisfy 

ത𝑅𝑇 ത𝑅 = 𝑋𝑇𝑋 + Δ𝐸, Δ𝐸 ≤ 𝑂(𝜀)‖𝑋‖2, and 

ത𝑄 ത𝑅 = 𝑋 + Δ𝐷, Δ𝐷 ≤ 𝑂 𝜀 𝑋 + ത𝑄 ത𝑅 ,

then the factors ത𝒬 and തℛ satisfy

𝐼 − ത𝒬𝑇 ത𝒬 ≤ 𝑂 𝜀 𝜅2 𝒳 ,     and 

ത𝒬 തℛ = 𝒳 + Δ𝒟, Δ𝒟 ≤ 𝑂 𝜀 𝒳 .

27[C., Lund, Rozložník, 2021]
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“Glued” matrices from [Smoktunowicz, Barlow, Langou, 2006]

𝑚 = 1000, 𝑝 = 50, 𝑠 = 4

GluedBlockKappaPlot([1000 50 4], 1:8, {'BCGS', 'BCGS_PIP_FREE', 'BCGS_PIO_FREE'}, {'CGS','HouseQR'})



Reorthogonalized Block 
Gram-Schmidt Variants



BCGSI+

[Barlow and Smoktunowicz, 2013]: If we have 
an IntraOrtho with 𝐼 − ത𝑄𝑇 ത𝑄 ≤ 𝑂(𝜀) and if 
𝑂 𝜀 𝜅 𝒳 < 1, then for BCGSI+,

𝐼 − ത𝒬𝑇 ത𝒬 ≤ 𝑂(𝜀).

Key approach: Obtain bounds for the 
subproblem in every step of BCGSI+:

Given a near left-orthogonal matrix 𝒰 ∈ ℝ𝑚×𝑡

and a matrix 𝐵 ∈ ℝ𝑚×𝑠, find 𝑆 ∈ ℝ𝑡×𝑠, upper 
triangular 𝑅𝐵 ∈ ℝ𝑠×𝑠, and left-orthogonal 𝑄
such that 

𝐵 = 𝒰𝑆 + 𝑄𝑅𝐵 and   𝒰𝑇𝑄 ≈ 0.

29

*Requires the a priori assumption that 𝑂 𝜀 𝐵 ത𝑅𝐵
−1 < 1

*The requirement that IntraOrtho has 𝐼 − ത𝑄𝑇 ത𝑄 ≤ 𝑂(𝜀) is needed to guarantee that 𝑄1
is near left-orthogonal; proof proceeds via induction.
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BCGSI+

[Barlow and Smoktunowicz, 2013]: If we have 
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such that 
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29
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Läuchli matrix
𝑚 = 1000, 𝑝 = 100, 𝑠 = 5

LaeuchliBlockKappaPlot([1000 100 5],  logspace(-1, -16, 10), {'BCGS_IRO'}, {'HouseQR', 'MGS', 'CGS'})
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Läuchli matrix
𝑚 = 1000, 𝑝 = 100, 𝑠 = 5

LaeuchliBlockKappaPlot([1000 100 5],  logspace(-1, -16, 10), {'BCGS_IRO'}, {'HouseQR', 'MGS', 'CGS'})

Recall: need 𝐼 − ത𝑄1
𝑇 ത𝑄1 ≤ 𝑂(𝜀) to satisfy base case

⇒ Idea: What if we use a less stable IntraOrtho and just reorthogonalize the first block 𝑄1?
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Läuchli matrix
𝑚 = 1000, 𝑝 = 100, 𝑠 = 5

BCGSI+1 [C., Lund, Rozložník, Thomas]: 

Reorthogonalization on the first block to ensure 𝐼 − ത𝑄1
𝑇 ത𝑄1 ≤ 𝑂(𝜀)

LaeuchliBlockKappaPlot([1000 100 5],  logspace(-1, -16, 10), {'BCGS_IRO','BCGS_IRO_1'}, {'HouseQR','MGS', 'CGS'})



BCGSI+LS

• Block generalization of 
CGSI+LS 

• Equivalent algorithm given in 
[Yamazaki, Thomas, 
Hoemmen, Boman, 
Świrydowicz, Elliott, 2020] 
(see Figure 3)

• Notice: no IntraOrtho

• Conjectured that CGSI+LS 
has 𝑂(𝜀) loss of orthogonality
• What about BCGSI+LS?

71
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“Monomial” matrices: Each block 𝑋𝑘 = [𝑣𝑘, 𝐴𝑣𝑘, … , 𝐴𝑠−1𝑣𝑘], where 𝐴 is a diagonal 𝑚 ×𝑚 matrix 
with uniformly distributed eigenvalues in (.1,10) and 𝑣𝑘 random

MonomialBlockKappaPlot([1000 120 2], 2:2:12, {'BCGS', 'BCGS_PIP','BCGS_IRO', 'BCGS_IRO_1','BCGS_IRO_LS'}, 
{'CGS', 'HouseQR'})



Summary: BCGS Variants
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Algorithm ‖𝐼 − ത𝒬𝑇 ത𝒬‖ Assumption on 𝜅(𝒳) References

BCGS 𝑂 𝜀 𝜅𝑛−1(𝒳) 𝑂 𝜀 𝜅(𝒳) < 1 conjecture

BCGS-P 𝑂 𝜀 𝜅2(𝒳) 𝑂 𝜀 𝜅2 𝒳 < 1 [C., Lund, Rozložník, 2021]

BCGSI+ 𝑂 𝜀 𝑂 𝜀 𝜅 𝒳 < 1 [Barlow and Smoktunowicz, 2013]

BCGSI+1 𝑂 𝜀 𝑂 𝜀 𝜅 𝒳 < 1 conjecture

BCGSS+rpl 𝑂 𝜀 none conjecture, [Stewart, 2008]

BCGSI+LS 𝑂 𝜀 𝜅2(𝒳) ? conjecture



Block Modified Gram-
Schmidt (BMGS)



Results of Jalby and Philippe (1991)

Intuition: From lines 4-8:

𝑊 = 𝐼 − 𝑄𝑘𝑄𝑘
𝑇 ⋯ 𝐼 − 𝑄1𝑄1

𝑇 𝑋𝑘+1

Each projector 𝐼 − 𝑄𝑗𝑄𝑗
𝑇 is equivalent to a 

step of CGS

• ⇒ Underlying “CGS-like” nature of 
BMGS

[Jalby and Philippe, 1991]:

• BMGS∘MGS behaves “like CGS” 

• BMGS∘MGS+ is as stable as MGS
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• ⇒ Underlying “CGS-like” nature of 
BMGS

[Jalby and Philippe, 1991]:

• BMGS∘MGS behaves “like CGS” 

• BMGS∘MGS+ is as stable as MGS

35

• Can manipulate proof of Theorem 4.1 from Jalby and Philippe’s work to show 
that BMGS ∘ (any IntraOrtho with 𝐼 − ത𝑄𝑇 ത𝑄 ≤ 𝑂(𝜀)) is as stable as MGS



Block Low-Sync Variants

Block generalizations:

• BMGS-SVL∘MGS-SVL [Barlow, 2019] (called “MGS3”)

• BMGS-SVL∘HouseQR [Barlow, 2019] (called “BMGS_H”)

• BMGS-LTS: [C. Lund, Rozložník, Thomas, 2020]

• BMGS-CWY, BMGS-ICWY ([C. Lund, Rozložník, Thomas, 2020] and  
[Yamazaki et al., 2020])

36

Two synchronizations One synchronization

𝐼 − 𝑄𝑘𝑇𝑘
𝑇𝑄𝑘

𝑇 𝑥𝑘+1
(matrix-matrix 
multiplication)

MGS-SVL 
[Barlow, 2019] 
(called “MGS2”)

MGS-CWY
[Świrydowicz et al., 2020]

𝐼 − 𝑄𝑘𝑇𝑘
−𝑇𝑄𝑘

𝑇 𝑥𝑘+1
(triangular solve)

MGS-LTS
[Świrydowicz et al., 2020]

MGS-ICWY
[Świrydowicz et al., 2020]



Barlow’s Analysis [2019]

Key quantities:
Δ𝒯𝒮 = ത𝒯𝒮 − 𝐼
Δ ത𝒬 തℛ = ത𝒬 തℛ −𝒳
Γ𝒯ℛ = 𝐼 − ത𝒯 തℛ

𝒮 = triu( ത𝒬𝑇 ത𝒬), and in exact arithmetic, 𝒮 = 𝒯−1.

[Barlow, 2019]: If ത𝑄, ത𝑅, ത𝑇 = IntraOrtho(𝑋) satisfies 

Δ𝑇𝑆 = ത𝑇𝑆 − 𝐼𝑠, Δ𝑇𝑆 𝐹 ≤ 𝑂(𝜀)

Δ ത𝑄 ത𝑅 = ത𝑄 ത𝑅 − 𝑋 , Δ ത𝑄 ത𝑅 𝐹
≤ 𝑂 𝜀 𝑋 𝐹

Γ𝑇𝑅 = 𝐼 − ത𝑇 ത𝑅, Γ𝑇𝑅 𝐹 ≤ 𝑂 𝜀 𝑋 𝐹

Then BMGS-SVL ∘ IntraOrtho(𝒳) satisfies 

‖Δ𝒯𝒮‖𝐹 ≤ 𝑂(𝜀)

‖Δ ത𝒬 തℛ‖𝐹 ≤ 𝑂(𝜀) 𝒳 𝐹

‖Γ𝒯ℛ‖𝐹 ≤ 𝑂(𝜀) 𝒳 𝐹

Barlow proves directly that MGS-SVL satisfies the IntraOrtho constraints
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𝐼 − ത𝒬𝑇 ത𝒬 𝐹 ≤ 𝑂(𝜀)𝜅(𝒳)
if  𝑂 𝜀 𝜅 𝒳 < 1



Barlow’s Analysis [2019]

• What about BMGS-SVL with IntraOrthos that don’t produce 𝑇’s?

• Implicitly, they produce ത𝑇 = 𝐼

• In this case, 

Δ𝑇𝑆 𝐹 = ത𝑇𝑆 − 𝐼 𝐹 = I − triu ത𝑄𝑇 ത𝑄 𝐹 ≤ 𝐼 − ത𝑄𝑇 ത𝑄 𝐹

Δ ത𝑄 ത𝑅 𝐹
= ‖ ത𝑄 ത𝑅 − 𝑋‖𝐹

‖Γ𝑇𝑅‖𝐹 = ‖ ‖𝐼 − ത𝑇 ത𝑅 𝐹 = 0
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Barlow’s Analysis [2019]

• What about BMGS-SVL with IntraOrthos that don’t produce 𝑇’s?

• Implicitly, they produce ത𝑇 = 𝐼

• In this case, 

Δ𝑇𝑆 𝐹 = ത𝑇𝑆 − 𝐼 𝐹 = I − triu ത𝑄𝑇 ത𝑄 𝐹 ≤ 𝐼 − ത𝑄𝑇 ത𝑄 𝐹
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= ‖ ത𝑄 ത𝑅 − 𝑋‖𝐹

‖Γ𝑇𝑅‖𝐹 = ‖ ‖𝐼 − ത𝑇 ത𝑅 𝐹 = 0

For “non-T-based” IntraOrthos, must have 𝐼 − ത𝑄𝑇 ത𝑄 𝐹 ≤ 𝑂 𝜀

• HouseQR, CGSI+, TSQR, …
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Barlow’s Analysis [2019]

• What about BMGS-SVL with IntraOrthos that don’t produce 𝑇’s?

• Implicitly, they produce ത𝑇 = 𝐼

• In this case, 

Δ𝑇𝑆 𝐹 = ത𝑇𝑆 − 𝐼 𝐹 = I − triu ത𝑄𝑇 ത𝑄 𝐹 ≤ 𝐼 − ത𝑄𝑇 ത𝑄 𝐹

Δ ത𝑄 ത𝑅 𝐹
= ‖ ത𝑄 ത𝑅 − 𝑋‖𝐹

‖Γ𝑇𝑅‖𝐹 = ‖ ‖𝐼 − ത𝑇 ത𝑅 𝐹 = 0

For “non-T-based” IntraOrthos, must have 𝐼 − ത𝑄𝑇 ത𝑄 𝐹 ≤ 𝑂 𝜀

• HouseQR, CGSI+, TSQR, …

• What about BMGS with another T-variant IntraOrtho?

38
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LaeuchliBlockKappaPlot([1000 100 5],  logspace(-1, -16, 10), {'BMGS_SVL'}, {'MGS_SVL','MGS_LTS','MGS_CWY','MGS_ICWY'})

Läuchli matrix
𝑚 = 1000, 𝑝 = 100, 𝑠 = 5
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Läuchli matrix
𝑚 = 1000, 𝑝 = 100, 𝑠 = 5

LaeuchliBlockKappaPlot([1000 100 5],  logspace(-1, -16, 10), {'BMGS','BMGS_SVL','BMGS_CWY'}, {'MGS','HouseQR'})



BMGS Variants
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Algorithm IntraOrtho
reqs.

‖𝐼 − ത𝒬𝑇 ത𝒬‖ Assumption on 𝜅(𝒳) References

BMGS
𝑂 𝜀 𝑂 𝜀 𝜅(𝒳) 𝑂 𝜀 𝜅 𝒳 < 1 [Jalby and Philippe, 1991]

𝑂 𝜀 𝜅(𝑋) 𝑂 𝜀 𝜅2(𝒳) 𝑂 𝜀 𝜅 𝒳 < 1 [Jalby and Philippe, 1991]

BMGS-SVL
𝑂 𝜀 or 

MGS-SVL
𝑂 𝜀 𝜅(𝒳) 𝑂 𝜀 𝜅 𝒳 < 1 [Barlow, 2019]

BMGS-LTS
𝑂 𝜀 or 

MGS-LTS
𝑂 𝜀 𝜅(𝒳) 𝑂 𝜀 𝜅 𝒳 < 1 conjecture

BMGS-CWY any 𝑂 𝜀 𝜅2(𝒳) 𝑂 𝜀 𝜅2 𝒳 < 1 conjecture

BMGS-ICWY any 𝑂 𝜀 𝜅2(𝒳) 𝑂 𝜀 𝜅2 𝒳 < 1 conjecture



Open Questions



Looking forward…

• Much work to do in proving stability, in particular for low-sync variants

• What is the effect of normalization lag?

• What skeletons work with what muscles?

• Randomized Gram-Schmidt variants [Balabanov, Grigori, 2020]

• Opportunities for mixed precision?

• [Yamazaki, Tomov, Kurzak, Dongarra, Barlow, 2015]: mixed precision 
CholQR within BMGS and BCGS

• [Yang, Fox, Sanders, 2019]: mixed precision HouseQR

• What are the necessary and sufficient conditions on degree of orthogonality 
in order to have backward stable block GMRES? Communication-avoiding 
GMRES? 
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carson@karlin.mff.cuni.cz

www.karlin.mff.cuni.cz/~carson/

Thank You!

Survey paper: https://arxiv.org/pdf/2010.12058.pdf
BCGS-P variants: http://www.math.cas.cz/fichier/preprints/IM_20210124200723_43.pdf
BlockStab MATLAB package: https://github.com/katlund/BlockStab

https://arxiv.org/pdf/2010.12058.pdf
http://www.math.cas.cz/fichier/preprints/IM_20210124200723_43.pdf
https://github.com/katlund/BlockStab

