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1
General Introduction

E -learning has shifted the traditional learning paradigms in higher education, offering
more flexible, ubiquitous, and personalized learning experiences. The previous years’

COVID-19 pandemic required a re-calibration of education to accommodate virtual learning
environments from the traditional classroom-based education [1]. Widespread learning
platforms and digital devices have accelerated the adoption of e-learning [2], and now, it
plays a central role in formal and informal education.

E-reading, a term used in this dissertation to describe digital reading on computers, has
its unique position in higher education because extensive self-directed reading [3], infor-
mation processing [4], knowledge comprehension [5], critical thinking [6], and knowledge
reproduction and application [7] through reading, are required as a part of regular studies.
Thus, it directly affects learners’ self-efficacy [8, 9], learning effectiveness [1], and success
[10]. However, despite its significance in daily higher education, e-reading support has yet
to be implemented in previous studies, which is the focus of this dissertation.

Learning supports for e-learning have emerged as the focus of educational researchers
and practitioners in the last decade, considering its specific environmental contexts. Unlike
traditional on-site education, students can only interact with the interfaces without the
physical presence of instructors and peers [11]. In this context, Self-Regulated Learning
(SRL), which refers to learners’ voluntary efforts to understand and control their education
based on proactive goal setting, self-monitoring, self-instruction, and self-reinforcements,
has been emphasized, which can further be benefited via implementing additional learning
supports.

On the other hand, there are emerging opportunities in intervening e-learning, thanks
to the prolifications of various sensor-based technologies and computers as co-existing
ecosystems in e-learning. Though educators bring invaluable expertise, empathy, and
contextual understanding to the educational experience, [12, 13], they are constrained by
their capacity to interpret and respond to the myriad learner needs in real-time and at scale.
However, insights regarding learning and learners can be captured through multiple data
streams, processed based on multimodal reasoning, and turned into insightful feedback,
leveraged by deep neural networks, complementing the existing limitations of human
educators.
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This work adopts a holistic approach, intertwining learning analytics and feedback
provision as an iterative loop, utilizing machine learning as a means of multimodal rea-
soning and feedback via the computer and peripheral interfaces, such as Graphical User
Interface (GUI) and speech-based Robot interface. The focus of this dissertation is two-fold:
1) successfully capturing learners’ distractions in e-reading using multimodal indicators of
human attention and machine learning technologies, and 2) assisting learners’ behavioral,
cognitive, and affective states based on the alignment of feedback interfaces, contents,
traits, and timing. The feedback aims at learners’ fewer distractions, and longer attention
spans in e-reading as intervention objectives, exploring the possibility of interactive AI for
e-reading.

1.1 Challenges of capturing learners’ real-time attention and distrac-
tions in e-reading and approaches adopted in this dissertation

The main challenge in capturing learners’ attention in e-reading has been creating and
using systems that gather various types of data and develop machine learning models
effectively and efficiently. Thus, this dissertation focuses on 1) defining learners’ attention
and finding indicators critical for data reasoning and 2) training the models for accurately
capturing learners’ attention and deploying them in parallel with the feedback for attentive
e-reading.

The first challenge of designing indicators for multimodal reasoning comes from the
fact that learners’ attention has been understood based on various frameworks with varied
definitions. At the intersection of cognitive science, education, and affective computing,
multiple frameworks have strived to interpret learners’ attention as mind-wandering [14],
switches of inner thoughts [15], working memory [16], level of interest [17], and goal-
directed thoughts [18]. Such segmental frameworks suggest varied definitions, concept
coverage, and attention measures. This thesis defines learners’ attention as consciousness
toward an ongoing task without attention redirection and strives to find measures that
could apply non-intrusively in e-reading.

As a means to effectively capture learners’ internal states (e.g., cognitive and affective
status), various observable indicators [19, 20], such as engagement [21, 22], affects [23, 24],
and emotion [25], have been studied. Multimodal indicators, such as diverse parameters
from eyes (e.g., pupil diameter, blinks, and saccades [14]), facial expression (e.g., valence
and arousal [25]), and pose and gestures [21, 23, 24] have been commonly used as measures.
Those data streams with the pre-implemented sensor arrays derived from its physical
architecture were commonly combined with analytical methods and machine learning to
predict learners’ states and used to find critical components for attentive e-reading.

Therefore, this dissertation specifically focused on webcam-based computer vision
methods based on learners’ behavioral cues during e-reading to design the non-intrusive
measure applicable to real-life e-reading scenarios. Other layers of behavior-based log data
have been examined through case studies to find the best-performing model for predicting
learners’ attention, assisted through behavioral, cognitive, and affective supports in e-
reading.

To address the practical deployment of the model for real-time interventions, vari-
ous models based on image, video, and skeleton-based methods were experimented with
through various case studies. The strengths and weaknesses of each method were com-
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pared in perspectives of computational requirements, model performances, and real-time
applicability in line with feedback. At the same time, the hybrid approach based on model
fusion in practice has endeavored to perform attention recognition accurately in e-reading.

1.2 Challenges of designing and implementing real-time feedback
for e-reading intervention and considerations in this dissertation

Real-time feedback design and implementation require considerations of various feedback
components, such as feedback modality, interface, content, traits, and timing [26]. The
first challenge of real-time feedback design and implementation for e-reading intervention
comes from 1) evaluation of such feedback components is often context-specific, which
means that one type of feedback works nicely in one scenario, while the same type of
feedback does not add value to another scenario. However, feedback implementation for
e-reading intervention has yet to be conducted, which this dissertation aimed at with case
studies with empirical implementations and shared datasets as outputs.

Specifically, this dissertation strived to understand how feedback design can affect
learning outcomes, experience, and perceptions based on various measures, such as pre-
post knowledge test, AttrakDiff measure, and social presence measure. First, the effects of
various interface types have been compared by implementing the GUI-based interface and
speech-based robot interface with their meta-cognitive and empathic prompts. Also, the
effect of the explainability of the feedback has been studied to understand the feedback
component that affects the learning process and outcomes.

Another challenge focused on in this dissertation has been 2) the same feedback does
not work for everyone, and learners have different learning needs and styles. In this
regard, balancing generalization and personalization has often been an essential challenge
in designing and implementing feedback. This dissertation strived for adaptive feedback
design strategies to accommodate general feedback needs while adapting for specific
learning needs to address the given challenge.

Based on seven works derived from three case studies, in line with multimodal data
input stream, learning analytics, and machine learning, this work aimed to lay a founda-
tional architecture for understanding how the AI-based interface can assist the e-reading
experience of learners and lead them to better attention management.

1.3 Research questions
The general research questions for this dissertation have been drawn as follows:

• Main research question: How can amultimodal feedback loop, informed by automatic
attention recognition, enhance e-reading experiences for higher education learners?

Sub-research questions have been articulated as below:

• RQ1. What are the state-of-the-art advancements and challenges in multimodal data
aggregation, feedback design, and implementations in the context of Technology-
Enhanced Learning (TEL)?

• RQ2. What theoretical and technical approaches can be taken to recognize learners’
attention regulation in e-reading for higher education?
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• RQ3. How can AI-based real-time feedback in e-reading assist attention management
for higher education learners and further affect their learning outcomes, perceptions,
and interactions?

In tackling RQ1 through Part I, a scoping review has been conducted to study mul-
timodal feedback loops in Technology-Enhanced Learning (TEL) scenarios designed for
various users. Based on the research, this work tried to align the multimodal data aggrega-
tion and feedback design applied across multiple learning domains.

Part I.

Chapter 2: Unveiling the Multimodal Feedback Loops: A Comprehensive Literature
Review in Technology Enhanced Learning (TEL)

In tackling RQ2 through Part II, three studies have been conducted to design the
indicators effectively to predict learners’ distractions. Various behavior-based machine
learning approaches were investigated, comparing the strengths and weaknesses of image,
video, and skeleton-based recognition model developments, fusions, and deployments.
Additionally, through an explainable AI approach, the work endeavored to find critical
behavioral characteristics that contribute to recognizing learners’ distractions and the
usage of lower-order and higher-order thinking skills in the learning process.

Part II.

Chapter 3. Designing Indicators and Predicting Learners’ Self-regulation Based on
Behaviors: A Video-based Deep Learning Approach

Chapter 4. Investigating Behavioral Indicators for Predicting Learners’ Higher and
Lower-Level Thinking Skills: An Explainable AI Approach

Chapter 5. Data-Driven Persona Development and Automatic Recognition for Real-Time
Applications: An Unsupervised Machine Learning Approach

Three studies have been conducted to tackle the RQ3 through Part III. They are mainly
concerned with feedback strategies, considering the conversational agent as a feedback
interface, and finding ways to implement feedback in an adaptive manner, considering the
generalization and personalization aspects of feedback provision. Through the last paper,
this dissertation designed and implemented the real-time feedback loop with the hybrid
model and adaptive feedback. This work evaluated the system from the perspective of
learners’ behavioral, cognitive, and perceptive changes by adopting AI-based feedback in
e-reading.
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Part III.

Chapter 6. Feedback Design Strategies: The Impact of Conversational Agents and
Empathetic & Metacognitive Feedback

Chapter 7. Designing Feedback Timing: Deep Learning-Based Attention Regulation
Recognition and Real-Time Feedback Loop

Chapter 8. Real-time AI-based Feedback Loop Implementation and Its Impacts on
Learners’ Attention Span, Learning Outcomes, and Perceived Learning Experiences

The thesis concludes with a general discussion summarising the findings of all studies
introduced in this dissertation with insights and design recommendations for the real-time
feedback loop for e-reading. This work reflects on implications for practice and outlines
directions for future research.
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2
Unveiling the Multimodal Feedback
Loops: A Comprehensive Literature

Review in Technology Enhanced
Learning (TEL)

Technology-enhanced learning systems, specifically multimodal learning technologies, use
sensors to collect data from multiple modalities to provide personalized learning support
beyond traditional learning settings. However, many studies surrounding such multimodal
learning systems mostly focus on technical aspects concerning data collection and exploitation
and therefore overlook theoretical and instructional design aspects such as feedback design in
multimodal settings. This paper explores multimodal learning systems as a critical part of
technology-enhanced learning used for capturing and analyzing the learning process to exploit
the collected multimodal data to generate feedback in multimodal settings. By investigating
various studies, we aim to reveal the roles of multimodality in technology-enhanced learning
across various learning domains. Our scoping review outlines the conceptual landscape of
multimodal learning systems, identifies potential gaps, and provides new perspectives on
adaptive multimodal system design: intertwining learning data for meaningful insights into
learning, designing effective feedback, and implementing them in diverse learning domains.

This chapter is partly based on � Y. Lee., B. Limbu., Z. Rusak., M. Specht. Role of Multimodal Learning Systems in
Technology-Enhanced Learning (TEL): A Scoping Review, European Conference on Technology Enhanced Learning
(ECTEL)’23 [27].



10 2 Unveiling the Multimodal Feedback Loops: A Comprehensive Literature Review in Technology Enhanced Learning (TEL)

W ith the increasing application of Technology-Enhanced Learning (TEL), the educa-
tional roles of teachers and students are constantly changing [28]. The seismic shift

was observed during the pandemic in the last few years, which forced the educational
focus from traditional classroom learning to online and hybrid environments [28]. Owing
to the proliferation of digital platforms and devices designed for educational purposes
[29], TEL technologies have resulted in the availability of copious amounts of data on both
the learner and their learning process. As a direct consequence, TEL technologies are
being further enhanced with sophisticated Artificial Intelligence (AI), particularly Machine
Learning (ML) techniques and Learning Analytics (LA).

Such technological advancements have reinforced the role of TEL, not only as a LA
tool but also as a form of feedback agent in learning. For instance, the advent of ChatGPT1

appears to bring transformative development in the field, as it has the potential to change
the foundations of learning and education [30]. Although such interactions are currently
limited only to text modality, information acquisition will become even more accessible via
multiple sensory modalities, with the convergence of diverse speech-based conversational
agents [31] and sensor technologies, in the form of multimodal interactions (e.g., Generative
AI combined with VR agents) [30]. In this context, the importance of multimodality is not
only confined to TEL as data input from the digital world [32], but also as outputs in both
the physical and the virtual world, which can trigger cognitive, behavioral, and emotional
changes in learners.

Multimodal learning systems, a subgroup of TEL, frequently employ multiple sensors
and AI techniques to gather contextual learning data from diverse modalities to provide a
comprehensive understanding of learning processes. This understanding can assist us, as
practitioners and researchers, to reflect on the efficacy of the design of multimodal learning
systems: how to digitize learning and learner information as data [29], how to process and
intertwine multimodal data to best contextualize learning [29, 33, 34], and how to design
and implement feedback and LA, also called multimodal learning analytics (MMLA) in
learning systems to address students necessities [29, 35].

The field of MMLA combines different types of data from multiple modalities and
sources to gain contextual insights into the learning process. Di Mitri et al. [32], in
their conceptual framework called “Multimodal Learning Analytics Model (MLeAM)”,
portrayed multimodality in learning systems as a series of steps involving sensor capturing,
annotation, predictions, and feedback implementation, in a loop. Although their conceptual
framework has precisely aligned the multimodal data stream in input space, the framework
has yet to be extended to the dimensions of feedback design and its implications for
learning domains. In order to get insights into the design of feedback and MMLA, a
critical component of TEL, we examine through a review how previous studies utilize
multimodality in their learning systems from data collection to feedback implementation,
which has yet to be collectively understood in previous research. Therefore, we investigate
multimodal learning systems in three primary stages: 1) data collection and integration,
2) design decisions for the design of multimodal feedback, and 3) implications for system
implementation in diverse learning domains. The following three research questions will
be tackled by reviewing and analyzing studies in the field.

1https://openai.com/

https://openai.com/
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• RQ1. How is multimodal data collected and processed to get insights about learning
in MMLA?

• RQ2. How is learner feedback designed in the context of multimodal learning
systems?

• RQ3. What are the considerations for implementing multimodal learning systems in
various learning domains?

2.1 Methodology
The literature search was conducted with the PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses) approach. The review itself was later adapted
to a scoping review due to the erratic landscape of the multimodal learning systems we
observed based on our preliminary searches, as our focus was on investigating the emerging
topic, multimodality, as a critical component of TEL. Therefore, we adopted the five-stage
approach of a scoping review of Arksey and O’Malley [36]: 1) identifying the research
questions, 2) identifying relevant literature based on inclusion and exclusion criteria, 3)
selecting studies, 4) analyzing and synthesizing the data, 5) and summarizing and reporting
the results.

Through various search engines, such as Scopus and Web of Science, 1,794 search
results were found based on keyword search (i.e. (multimodal OR multisensory) AND
feedback AND (learning OR education)). Only results that included a description of learning
systems designed for human users were selected, resulting in 274 papers. The results
included papers from various subject areas, such as computer science, engineering, social
sciences, psychology, and art and humanities. Six researchers further coded and filtered
the remaining 274 papers in the eligibility check process with inclusion and exclusion
criteria, such as having multimodal components as both the input and output of the system
implementation. Using Cohen’s Kappa coefficient by comparing observed and random
probabilities, the inter-rater reliability among six coders’ scores has been evaluated (Cohen’s
Kappa: good, 0.9 > 0.81 ≥ 0.8). The primary author solely proceeded with the rest of the
overall review, and 27 papers were chosen for the final review. To compensate limitation
of the PRISMA methodology caused by its strict application of inclusion and exclusion
criteria, we applied the snowball method to extend the discussion with other relevant
research in the field for a further scoping review, which resulted in 30 papers ranging from
2010 to 2023.

2.2 Results
The search conductedwith themethodology described above resulted in 30 papers published
between 2010 and 2023. Most of the systems in the resulting studies were based on a sensor-
based approach and built for on-site learning than online learning. Similarly, they were
often geared towards individual learning scenarios instead of collaborative learning. The
majority of the selected studies’ primary intervention was in the form of real-time feedback
rather than post-hoc feedback, and most targeted learners more than teachers. A significant
proportion of studies were conducted in K-12 education and higher education. Table 2.1
provides an overview of all the selected studies and their learning domains, data inputs,
and feedback modalities.
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2.3 Discussion
2.3.1 RQ1. How is multimodal data collected and processed to get

insights about learning in MMLA?
Multimodal data collection in MMLA is performed using a host of sensors that corre-
spond to the five primary modalities used by humans (i.e., visual, auditory, tactile, taste,
and smell [37]), with various information layers, such as data types, frequencies, and
resolutions. Our literature search yielded no studies that addressed the modalities of taste
and smell, indicating a dearth of technology capable of capturing them. Of the 30 papers,
six studies (20.0%) collected visual and auditory data, two studies (6.7%) collected visual
and tactile data, two studies (6.7%) collected auditory and tactile data, and two studies
(6.7%) collected all three of them. Tactile data has been most frequently used as the major
data stream in eleven studies (36.7%), while visual and auditory data have been used in five
(16.7%) and two studies (6.7%), respectively.

Sensor-based data collection
Visual and auditory sensors are frequently used to collect audio and video data. Visual
data is collected using different types of cameras (e.g., webcam [38], infrared camera [31],
motion capture camera [39]), which consist of various information layers such as RGB
[22], shapes, sizes, and textures. Visual data is further processed, often with AI and ML
techniques, for various purposes such as image recognition [40], facial expression analysis
[41], gaze and posture analysis [42, 43], and trajectory tracking of the body [44, 45] and
objects.

Auditory data is captured through the microphone, having volume and frequency as
essential features. The human voice is commonly captured as an auditory modality that
is used for corpus analysis [46], speech analysis, voice trait analysis [42, 47], and musical
trait analysis [39, 48].

Tactile sensors, such as Inertial Motion Units (IMUs), are used to capture learners’
physical movement and orientation detection [47, 49] while force trajectory is tracked
via force sensors [44]. Additionally, environmental sensors collect information about the
physical learning environments, such as temperature, humidity, noise level, and air quality
[50]. More sophisticated physiological sensors technologies (e.g., eye tracker [31, 51],
electroencephalogram (EEG)) are also applied for more accurate and deeper insights into
the physiological state of the learner. Such sensors collect physiological information such
as heart rate and skin conductance, which are further interpreted as clues of learners’
stress levels, arousal, and emotional states [52]. For example, one dominant tendency
in MMLA is the inclusion of physiological sensors to evaluate learners’ affective states
(e.g., cognitive load from pupil dilation and blinks based on eye tracking data [38, 51]).
However, such applications are often criticized for their obstructiveness. To compensate
for such limitations, remote detection technologies that are developed and implemented
in affective computing can be utilized: assessing learners’ bio-data based on vision-based
detection (e.g., heart rate [53]) and behavior recognition algorithms [38], without having to
have intrusive biosensors implemented, which allows more stealth monitoring of learner
activities.
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With the current advancement of deep learning technologies, a subset of ML, and increased
computational capabilities, high-resolution sensor data, with an unstructured data form, has
become the resource of deep neural network developments. Deep neural networks can be
used to make a sophisticated prediction about the learners’ performance in LA, such as their
attention prediction during e-reading [38], and provide personalized support. Before the
emergence of deep learning technologies, only structured data with statistical explainability,
such as log data from learning management systems, had been the target resources of
traditional ML and LA [71]. However, dynamic data with uninterpretable patterns, such as
image, video, sound, and text [72], are nowwidely used for the various model developments
for the classification, prediction, and detection tasks [31]. It is expected that such emerging
models developed based on unstructured or semi-structured information with non-numeric
organizations, such as data from eye trackers and EEG data, will expand the horizons of
MMLA.

Log-based data collection
Log data, collected through learners’ interaction with learning management systems via
mouse clicks, keyboard inputs, and touch, in quantified forms (e.g., number, frequency)
[73], have been the traditional sources of data in LA. Such data collection is mainly done in
online platforms, such as MOOCs [74], with bigger sample scales and broader demographics
than the sensor-based data collection. Although the collection of log data is often more
accessible due to the absence of complex hardware infrastructure and sensors and can be
interpreted with relative ease [71], the insights from log data have been subject to criticism
for its superficial interpretations [75]. Also, its smaller computation requirements make it
suitable for extensive data collection at larger scales. With the emergence of generative AI,
the log data, such as the discourse between learners and the system, will become much
more valuable due to its potential for personalized chat-based learning assistants, which
will become more common with current advancements in Transformer-based Natural
Language Processing (NLP) models (e.g., GPT-4) [30].

Questionnaire data collection
The questionnaire is one traditional data collection method for learning analytics:
evaluating learning on objective (e.g., knowledge gain) and subjective levels (e.g., learning
experience). One common approach has been a pre-post questionnaire to measure the
objective learning outcomes (e.g., knowledge gain) through task performances. With
increasing emphasis on the User Experience (UX) in computer-assisted systems, more
measures are developed and implemented for gauging the UX of the system (e.g., System
Usability Scale (SUS) [76], Attrakdiff questionnaire [77]). Most existing measures have
been developed especially for Human-Computer Interaction (HCI), which focus primarily
on computer-based artifacts [78]. However, with the expansion of the physical and virtual
ecosystems of TEL, there are emerging necessities for more standardized measures for
evaluating the UX of various peripheral devices (e.g., AR/VR, conversational agents) and
agents (e.g., virtual robots) [11]. Deciding the timing of questionnaire-based data collection
(e.g., real-time, post-hoc) is one challenge, where researchers should balance the timely
aspect and obstructiveness of the data collection.
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Observation-based data collection
Observation-based data collection is typical where the targeted learners are not fully
capable of expressing their own perspectives (e.g., children with intellectual disability) or
experts’ opinion takes an essential role in evaluation (e.g., evaluating collaborative learning
[22]). In such cases, observers’ evaluation of observable indicators becomes the means
of gauging learners’ learning progress and performances [29]. The evaluation objectives
are often learners’ internal states, such as affects, attention, and perceived experiences
[24, 31, 38], that influence learning experiences and potential learning outcomes. Since the
evaluation is dependent on third-person observation, having clear annotation standards and
frameworks is essential for the validity of the data. However, in some cases, practitioners
often design and execute the measures themselves without having solid standards or
frameworks [78]. Another challenge comes from individual differences: behaviors occur
differently due to cultural backgrounds and individual differences [24], such as behavioral or
emotional expressiveness. Alternativemethods of combining human annotationswith other
layers of ground truths are suggested to compensate for such limitations: implementation
of biosensor data (e.g., eye tracker [31] electroencephalography (EEG) [24]) and collecting
self-reported ground truths [38] from learners.

2.3.2 RQ2. How is learner feedback designed in the context of multi-
modal learning systems?

AuditoryVisual Tactile

Real-time

Temporal TemporalFeedback Characteristics

Feedback Modality

Feedback Timing Post-hoc / Real-time

Multimodal Feedback

Spacial / Temporal

Feedback Functions Semantic / Intuitive Intuitive

Feedback Types
-Sound Effects

-Music
-Voice

-Graphics
-Dashboards

-Text

-Physical Movements
-Vibrations

Figure 2.1: Multimodal feedback involves decision-making regarding the feedback modalities, characteristics,
timing, functions, and specific types of feedback.

Multimodal learning feedback in the form of in situ real-time feedback has often been
provided via physical components, such as touch-based devices, wearables, haptic devices,
physical prototypes, and speakers. In our literature search, in situ real-time feedback was
more predominant than post-hoc feedback, while some took the hybrid approach. Such
feedback often employed intuitive pictograms, color-coding, sound effects, vibration, and
force feedback to provide immediate responses as learning interventions. In the meantime,
post-hoc feedback has often been provided as dashboards, narrative text, and personalized
voice feedback. Learner dashboards continue to be a prominent tool for supporting self-
regulated learning in LA and MMLA. Dashboards in LA provide an easy-to-understand
visual representation of complex learning data in real-time, which allows educators and
students to make informed decisions. Generally, the feedback design in MMLA includes
the following design elements: feedback modalities, characteristics, timing, types, and
functions (see Figure 2.1). In the following sections, we investigate the feedback elements
found in the previous studies concerning their modalities.
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Visual
Graphics are the primary visual element with intuitive delivery. The realistic graphical
features have often been combined with engaging virtual environments [57, 64], gamifi-
cation elements [22, 54, 57] for specific learning objectives and contexts with enhanced
immersion [70]. The symbolic features of the graphic have been used to communicate
complex constructs. Symbolic pictograms, icons, and emojis are used [42, 65] to help
reinforce or correct learners’ behaviors. Visual effects, such as 2D/3D effects and color
coding [42, 44, 45, 58, 66], are used for highlighting specific information in the visual
message delivery. Additionally, motion graphics/animations are used to convey dynamic
information, such as a reference for the model trajectory and movements [45, 64].

Dashboards commonly use post-hoc visual language with extensive and collective
information. For example, statistical analysis of learning progress and performances has
been shown through data visualization via graphs [46, 47, 55], tables [46, 55], and gauge
bars [61]. Multimodal learning systems track more sophisticated data from sensors capable
of monitoring latent constructs in learners. Video [41, 51] and audio recordings [39] are
used as feedback for summative evaluation via dashboards so learners can reflect on their
learning.

Text is used for its descriptive nature, capable of delivering narratives and details. It
is a distinctive feature compared to other visual languages since the text relies on its
semantic nature and the meaning layer, while visual languages mainly depend on intuitive
understanding. Thanks to its clarity in message delivery, text feedback has often been used
in dashboards for written descriptions [42, 65] and message alerts [44]. To differentiate
the information hierarchy, some visual traits, such as font size [58], highlighting [66], and
colors [42, 66], have partially been applied to texts.

Auditory
Sound effects refer to types of auditory stimuli that are artificially made. Sound effects
are used for positive feedback in dashboards for showing approval and rewards (e.g., bell
chime [60]), while alerting sound effects are used for intuitively signaling learners for
behavior corrections (e.g., dog barks [60]). Sound effects are also used for in situ real-time
feedback [51] in multimodal learning systems for better immersion in certain educational
scenarios (e.g., golf putting sound with different pitches [45]).

Voice feedback has been commonly implemented for its semantic and phonetic features.
Since lexical meaning can be delivered through voice messages, vocal instructions are
given for the concept delivery [56], guidance [43], and dialogue simulations [46]. The
acoustic features have been mainly emphasized for assisting pronunciations of second
language learners and young learners [46]. Various tonal differences were applied to the
vocal feedback to highlight specific information or certain sound units.

Music has been implemented for musical education [39, 48] and context-giving for the
immersions. Musical traits of learners’ instrumental play, such as tempo, pitch, and timbre,
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have been corrected by providing specific parts of the musical recording as guidance. Music
can also create a certain ambiance with immersive visual aids.

Tactile
Physical movements have often been used for providing feedback on the psychomotor
aspects of complex skill learning. For instance, model movements have been demonstrated
for sports training (e.g., rowing [61, 64]) and delivering abstract concepts [40, 56, 57,
70]. Fine motor movements were given for handwriting education with the trajectory
(e.g., handwriting [44, 51, 63]). The syringe prototype provided the force feedback [60],
intertwining with physical probes for more effective veterinary training. Movement
feedback has often been helpful for learners with visual impairments for compensating
their limitations in visual knowledge acquisition [56].

Vibrations constitute the majority of tactile feedback found in literature, often referred
to as vibrotactile feedback, in the form of small vibrations and frictions. Vibrations are
simplistic and are not able to encode complex information. Vibrations have been imple-
mented for concept delivery (e.g., texture rendering [59]), guidance (e.g., haptic trajectory
[44]), and as corrective feedback (e.g., vibration buzzers [57, 65]). All vibration feedback,
and other tactile feedback, have mostly been adopted as real-time feedback due to their
temporal context-specific nature and, therefore, not used in the dashboards.

2.3.3 RQ3. What are the considerations for implementing multi-
modal learning systems in various learning domains?

To answer RQ3, we analyzed the multimodal learning systems found in our literature
according to the three learning domains from revised Bloom’s taxonomy [79]: cognitive,
psychomotor, and affective domains. The cognitive domain involves the development of
our mental skills and acquiring knowledge. The Psychomotor domain relates to discreet
physical functions, reflex actions, and interpretive movements of the human body, while
the affective domain involves our feelings, emotions, and attitudes. Furthermore, we also
cluster the learning systems according to their specific application domain and learning
goals and present some of the largest clusters. It should be noted that it is not our intention
to present learning systems as exclusive to one domain, and we only seek to categorize the
learning systems according to their primary learning objective.

Cognitive domain
Conceptual Learning: Multimodal feedback loops for conceptual learning primarily
focus on facilitating knowledge delivery and comprehension. Providing haptic feedback, in
addition to visual-oriented course content, to demonstrate various physical phenomena has
shown an enhanced understanding of the phenomena in learners [57, 59]. The inclusion of
additional modalities in instructions of conceptual learning can assist learners with visual
impairments (e.g., haptic feedback from a stylus on Phantom Omni2 [56]).

Language Learning: Multimodality is also beneficial in various aspects of language
learning, which has traditionally been considered a predominately cognitive domain. Im-
2http://www.immersion.fr/

http://www.immersion.fr/
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proving pronunciation and intonation in learning a foreign language has been a commonly
targeted learning objective through various methods, such as visual aids with ideal mouth
movements [66] and audio feedback with standard pronunciation [46]. Children and learn-
ers with disabilities have been the main end user of learning systems for first-language
learning. For children, teaching how to read [58], write with characters [44], and improve
handwriting skills [44] has been the main focus. For writing tasks, force feedback has
been commonly given through stylus [63, 69, 70] and colored trajectory feedback [44] to
indicate learners’ errors intuitively.

Medical Education: Multimodal learning systems for medical education have been
implemented to compensate for textbook-oriented education, aiming at more practice-
based learning. Yeom et al. [69] suggested a 3D visual and tactile education system offering
vivid visuals and tactile structures of human organs for gross anatomy class. Similarly,
Palpation education tools [54], ultrasonography simulator [67], injection simulators for
human patients [62], and animals [60] have been designed to promote authentic real-life
practices of such complex skills with mock-ups. Those mock-ups have embedded collective
sensors and software for learning analytics and feedback so that learners can receive real-
time feedback during their learning practices [54, 60]. Medical education systems also tend
to involve physical props, mainly for tactile data collection and embedded performance
assessment algorithms to provide real-time instructions and feedback.

Affective domain
Clear Communication Skills: Systems have been developed to improve clear commu-
nication skills during learners’ presentations. With real-time evaluation, learners were
asked to reflect on their performances and improve their skills over practice [42, 43, 65, 68].
Combining visual and auditory data collected from a webcam, microphone, and Kinect
[42, 65, 68], learners’ posture, gaze, facial expression, and voice traits for clear communi-
cation have been evaluated. Systems gave the correction in real-time, by short written
descriptions [42, 65], real-time posture analysis [65, 68], and performance analysis on the
dashboards as post-hoc feedback [42, 43, 65].

Psychomotor domain
Sports Education: In sports education or training, learning goals are predominantly
psychomotor. As such, during sporting activities, real-time physical features have been
evaluated: posture and strike patterns [45] for the golf swing, body orientation and posture
[61] for rowing, and bodymovement [49] for dancing. These learning systems aim to correct
learner errors in real time and offer actionable plans to improve learners’ motor skills. As
motor-skills development demands conscious repetitive practices [80] where learners rely
on apprenticeship-based education, systems can computationally model experts or mentors
[51] and use ML to provide real-time feedback.

Musical Education: Systems in musical education were implemented to support human-
machine ensemble [48] and violin play [39]. Based on visual and auditory indicators
collected from a camera and a microphone, the phasing of violin play was analyzed on
the dashboard [39]. To support the human-machine play [48], the shadow visual of the
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pianist and pre-recorded music piece has been played along with the learner’s play during
repetitive practices. Through visual aid, learners were taught to understand the current
issues, correct errors, and internalize better techniques in an analytic and reflective manner.

2.3.4 Challenges and Opportunities
Generalization vs. Personalization of multimodal learning systems. While most
systems aim at the best generalizability in the application, more and more learning systems
target feedback provisions with personalization since one system should be general enough
to cover targeted user groups while it should effectively reflect individuals’ critical learning
necessities. In this regard, future studies for refining the generalizability and personalization
of critical learning necessities, timing, frequencies, and effects in multimodal learning
systems design would greatly benefit the community.

Overarching MMLA frameworks for higher-level learning objectives. Multimodal
learning systems are often modeled as domain-specific and context-based since most sys-
tems aim to improve concrete learning activities with clear system goals. However, in many
cases, such goals are set based on fragmentary frameworks, lacking overarching models
for higher-level learning objectives that can be universally applied to general domains or
even domain-specific instructional design. Having such an overarching framework could
work as a common ground where practitioners and researchers can exchange and share
their knowledge and grow as a community while defining learning features is often the
biggest challenge in MMLA with advancements in a data-driven approach.

Closing the feedback loop in MMLA. Our findings suggest that despite the advances
in AI and ML algorithms, multimodal learning systems often fail to close the feedback loop.
Though the systems we examined in our study included feedback in the system loop, most
MMLA systems in the field need to take the current analytics into the context of the next
round of feedback provision. In this sense, closing the feedback loop based on various
modalities and evaluating the effect of the feedback loop for further optimization seems to
be an essential challenge in the field.

2.4 Conclusion
In this scoping review, we investigated multimodal learning systems, an integral extension
of modern TEL systems. We investigate systems in three stages as an extension to the
MLeAM framework: 1) multimodal data collection and processing, 2) multimodal feedback
design decisions, and 3) multimodal system implementation for various learning domains.
The result indicates the necessity of a more holistic understanding of the whole process in
order to design effective systems and multimodal instruction patterns. We also identified
critical challenges in multimodal learning systems, such as defining learning indicators,
balancing the generalization and personalization of analytics and interventions, and closing
the feedback loop in multimodal learning systems. Our paper provides an overview of
the role multimodality plays in defining the potential of the next generations of TELs and
outlines important considerations for data collection, feedback design, and MMLA design
for adaptive TEL system implementations.
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Withmore evidence-based, data-driven approaches taken in LA, the quality of data is getting
increasingly important, especially in the context of MMLA. Although data is becoming
more accessible through sensors on commercialized devices (e.g., laptops, webcam [38])
and increasing public datasets, engineering competencies are becoming more critical in
MMLA [34] as how data is collected and processed impacts the quality of data and therefore,
the predictions it makes. Based on our analysis of RQ1, MMLA builds upon, rather than
replacing, traditional LA but using data from multiple modalities. By doing so, MMLA is
able to make more robust predictions about learners’ performance across multiple domains,
as evidenced by RQ3, and can also provide more personalized feedback. However, even
with the increased roles of data engineering and advancements in AI, researchers’ insights,
experiences, and domain knowledge are still critical [34]. For example, the black-box nature
of ML models makes decisions and predictions in MMLA often not explainable and requires
human interpretations. Explainable AI (e.g., tree-based models) [72] can supplement the
current MMLA in partially addressing this issue by providing better interpretability of
such analysis. This also holds true for the LA dashboards, as evidenced by RQ2, with the
majority of multimodal learning systems still relying on the affordances of traditional LA
dashboards, which support necessities for the stronger MMLA and feedback design based
on multimodalities.
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3
Designing Indicators and Predicting
Learners’ Self-regulation Based on

Behaviors: A Video-based Deep
Learning Approach

Human attention is a critical yet challenging cognitive process to measure due to its diverse
definitions and non-standardized evaluation. In this work, we focus on the attention self-
regulation of learners, which commonly occurs as an effort to regain focus, contrary to attention
loss. We focus on easy-to-observe behavioral signs in the real-world setting to grasp learners’
attention in e-reading. We collected a novel dataset of 30 learners, which provides clues of
learners’ attentional states through various metrics, such as learner behaviors, distraction
self-reports, and questionnaires for knowledge gain. To achieve automatic attention regulator
behavior recognition, we annotated 931,440 frames into six behavior categories every second
in the short clip form, using attention self-regulation from the literature study as our labels.
The preliminary Pearson correlation coefficient analysis indicates certain correlations between
distraction self-reports and unimodal attention regulator behaviors. Baseline model training
has been conducted to recognize the attention regulator behaviors by implementing classical
neural networks to our WEDAR dataset, with the highest prediction result of 75.18% and 68.15%
in subject-dependent and subject-independent settings, respectively. Furthermore, we present
the baseline of using attention regulator behaviors to recognize the attentional states, showing
a promising performance of 89.41% (leave-five-subject-out). Our work inspires the detection
& feedback loop design for attentive e-reading, connecting multimodal interaction, learning
analytics, and affective computing.

This chapter is partly based on � Y. Lee., H. Chen., G. Zhao., M. Specht. WEDAR: Webcam-based Attention Analysis
via Attention Regulator Behavior Recognition with a Novel E-reading Dataset, 24th ACM International Conference on
Multimodal Interaction (ICMI)’22 [38].
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K eeping a high level of attention is considered a prerequisite for successful learning,
being associated with more effective (e.g., comprehension), efficient (e.g., efforts put

per time), and appealing (e.g., duration of engagement) learning experiences and outcomes
[81–83]. In this regard, in the fields of learning sciences, multimodal interaction, and
affective computing, there have been attempts to measure learners’ real-time attention
with mind-wandering [14], switches of inner thoughts [15], working memory [16], level
of interest [17], and goal-directed thoughts [18]. In this work, we define attention as
consciousness towards an ongoing task without an attention redirection. With various
sensors and model implementations, attention management through real-time feedback
loop design has been endeavored [11, 84]. Significantly, the current transition to hybrid and
online learning environments during the pandemic has accelerated the need for attention
detection and management in diverse e-learning scenarios.
In e-learning, learners’ attention management is different from what they have had in
the traditional classroom [85], with limited human educators’ involvement and the lack
of timely intervention accordingly [86]. Therefore, attention management in e-learning
has been highly dependent on learners’ self-regulation compared to on-site learning [85].
During e-learning practices, learners experience several iterations of attention fluctuations
[87, 88]. In the process, learners recognize their own distractions and try to re-engage
in their tasks [89] as a voluntary attentional control [90]. In this work, our focus is on
finding learners’ self-regulatory behaviors based on learners’ own awareness, which leads
to self-regulatory efforts to sustain a good level of attention. We define such behaviors
as “attention regulator behaviors”: Learners’ earliest self-awareness of attention loss
and following observable behavioral changes as self-regulation. We find those moments
important since those are the moments that learners are willing to and are still able to
re-engage in their learning tasks.
In previous studies, diversemultimodal cues have been investigated as observable predictors
of subjects’ diverse internal states (e.g., cognitive and affective status), such as attention
[19, 20], engagement [21, 22], affects [23, 24], and emotion [25]. However, they were
often criticized for being difficult to measure or interpret. Iris extension, gaze direction,
the position of hands and legs, the style of sitting, walking, standing or lying, body
posture, and movement are known to be relevant behaviors for a person’s internal states
[25, 91, 92]. Diverse parameters of eyes, such as pupil diameter, blinks, and saccades [14],
have often been directly used to assess learners’ attentional states with dedicated eye
trackers. Learners’ valence and arousal were often understood primarily through facial
expressions [25], with expansion with sensors, such as a photoplethysmograph (PPG),
Galvanic Skin Response (GSR), Electroencephalography (EEG), and Electrocardiography
(ECG) [93]. Poses and gestures have been interpreted as means to assess engagement [21],
affective and cognitive states [23, 24].
However, the current framework has shown that the interpretation of internal states
should be understood within the context [94] on macro (e.g., cultural) and micro levels
(e.g., situational, personal features) [95]. It indicates that specific cues can be significant
indicators of attention in one learning activity, while the same cue does not necessarily
represent the same in the other type of learning activity. In this sense, we choose to collect a
novel dataset in an e-reading scenario with cognitive and behavioral parameters, which we
hypothesize interlinking with attentional changes in e-reading. We chose e-reading since
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it is the most common and fundamental form of e-learning practice in higher education,
which can support other learning activities. This work focuses on which attention regulator
behaviors occur following the perceived distraction via the statistical analysis and model
implementation. We hope this interdisciplinary study can nurture an understanding of
attentive e-reading. Our contributions to the field are listed below.

• To our best knowledge, it is the first attempt to introduce attention regulator behav-
iors in e-learning for attention analysis and prediction. Compared to conventional
subjective measurements of attention, such as self-report, the attention regulator
behaviors are easier and intuitive to capture and more objective to evaluate.

• We collected a novel dataset, WEDAR, from 30 subjects with various metrics, includ-
ing learner status, affects, behaviors, and learning outcomes. Self-report of distraction
is also provided as ground truths to verify the effectiveness of the attention regulator
behaviors as a predictor.

• Diverse machine learning models are implemented as a baseline to recognize learners’
attention regulator behaviors and attentional states. Those baselines can further be
applied to diverse e-reading system designs.

• The framework provides a webcam-based attention analysis. It does not require
dedicated hardware implementation for obtaining the attention recognition features
and can thus be applied to diverse real-world settings.

3.1 Related work
3.1.1 Attention “regulator” behaviors
Diverse learning theories have been constructed to understand learners’ internal states
through various tangible predictors. Our work is based on the framework of [96], which
focuses on how diverse stimuli (e.g., external condition, verbal representation, awareness,
intentionality, external feedback, delivered information) can be interpreted (e.g., arbitrary,
iconic, intrinsic) and connected to functional nonverbal behaviors (e.g., emblems, illustra-
tors, regulators, affect displays, adaptors).
According to the behavior categorization of [96], “regulator” behaviors occur as a self-
regulatory action with the purpose of successful task performance (e.g., head nods, eye
contact, slightly forwarded body, small postural shifts, and eyebrow raises in human-to-
human interaction). Those are subconscious and habitual actions triggered by behavior
agents’ “awareness” of their internal and external states (e.g., attention loss). We hypothe-
size that such self-regulatory behaviors (i.e., attention regulator behaviors) also occur in
e-reading. In this work, we try to define the types and frequencies of attention regulator
behaviors in e-reading. The framework of [96] also indicates the expandability of their
categorical framework, which supports our attempt.

3.1.2 Multimodal attention recognition in real-world e-reading set-
tings

Previous research has highlighted the importance of contextual interpretation ofmultimodal
indicators [95]. Instead of finding global features for attention in diverse learning scenarios,
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we explicitly investigate theoretical and empirical behavioral cues of attention regulation
in e-reading. We investigate a data collection method that is non-intrusive and closer
to real-world settings, which allows a more widespread application of our framework
in diverse e-reading scenarios. In the following, we introduce previous research aimed
explicitly at real-world implementation based on webcam and mouse-click.
[19] aimed for the subject-independent model development in e-reading based on eyebrow,
lip, head movements, and mouse orientation. Specific behaviors (e.g., leaning forward) have
been combined and labeled as more generic categories (e.g., body) to avoid overlapping
features in different classes. [20] focused on head orientation, eyelid and mouth height,
gaze direction, and emotion (i.e., confusion and happiness) during e-reading. Six hand-
labeled attention levels (i,e., sleepiness, drowsiness, fatigue, distraction, attention shift,
concentration) has been used as ground truths. However, we assume that each attention
class is not exclusive enough to the other, so there is a high chance that the machine
can not classify different attention levels with higher performance. According to our
best knowledge, very little empirical work has been done for attentive e-reading, which
premises real-world settings.

3.1.3 Multimodal attention regulator behaviors
This section explicitly explores multimodal learning behaviors that function as attention
regulators in e-reading. Instead of investigating features that can be found with dedicated
sensors and devices, we focus on features recognizable to observers.
Eyebrow. The movements of eyebrow has been associated with the activation of cognition
[23, 97], arousal [98] and emotions [97, 98], having most of the framework applied to
social communication with rare empirical studies [99]. Though eyebrow movement is often
observed in e-reading, only several empirical works indicated that eyebrow movements
correlate to attentional changes [19]. As far as we know, theoretical behavior frameworks
dedicated to e-reading have not been established yet. [100] understood eyebrowmovements
as ritualized behavior of attention signals, while [97, 98] interpreted it as sign of “wanting
to know more”, which is connected to the cognitive arousal. The framework of [97] defined
eyebrow movements as a representation of surprise, question, and fear. In this work, we
focus on the arousal function of eyebrow movements that are shown with combinations of
inner and upper brow raise and lowering movements [98]. With a few solid evidence, we
hypothesize eyebrow movements as voluntary self-regulatory behavior to re-engage in the
task, aiming at a better attention level.
Blink. Correlations between various eye movements and cognitive actions have been
revealed in diverse task performance scenarios, such as reading, scene perception, and
visual search [101]. Based on the environmental task demands, humans are known to
adapt their blink patterns spontaneously, voluntarily, and reflexively [102]. In e-reading, a
reduced blinking rate by 4% has been observed with higher perceived fatigue, compared
to paper-based reading, having dry eyes and eye discomfort as major causes [103]. As a
result of fatigue, changes in blink patterns in frequency and duration are observed [104].
Blink flurries, which are defined as three or more blinks within a 3-second window, occur
[103] and are interpreted as a spontaneous effort to sustain the attention and increase
wakefulness [105]. Voluntary prolonged blinks are observed as a behavior to reduce the
fatigue levels in eyes [106], showing different ranges in interblink interval variability,
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degree of completeness, duration of the closure, and the force involved, compared to
spontaneous blinking [107].
Mumble. Verbalization during reading is one learning strategy known to help readers’
cognitive processing, reading development, and comprehension [108]. Verbalization is also
known as read out loud, oral reading, and mumble reading, allowing readers to focus and
monitor their real-time comprehension, as opposed to silent reading [109]. We use the
term “mumble reading” in this work since our target behavior does not indicate active
usage of the verbalization technique. However, it is more inclined to semi-spontaneous
mumble behavior as a self-regulatory action to achieve better attention. Mumble reading is
more commonly applied to teach young learners. However, it is also known to assist adult
learners with decoding difficult passages. By mumbling the text, learners internalize the
meaning and information of the sentence as coherent sets [109] with auditory stimulation.
Diverse eye movement patterns are known to be correlated with mumble reading behavior
[110]: Mumble also works as a stimulus to blink [103], showing internal consistency as an
attention regulator behavior.
Hand. Self-touch is known to be an action that re-engages people’s attention by sooth-
ing themselves during stressful moments, causing self-enjoyment [111]. Aside from the
stress-release effect, self-touch during the task performance is known to bring better self-
regulation, too [111]. Inhibiting effect from such tactile stimulation helps learners ignore
distractions and refocus on the task [112]. Especially when working on a task that demands
working memory with the presence of distractors, more spontaneous self-touches on the
face tend to appear with the increasing necessity of refocusing [113]. Self-touch should also
be interpreted within the context since certain self-touching behaviors lead to relaxation,
while others work as arousal (e.g., self-squeezing, rubbing, scratching, stroking) [111].
Therefore, we define calming self-touching behaviors on the body and face as one category
of attention regulator behaviors.
Body. While the face delivers more information about types of emotions, the body is known
to convey affects and intensity [96] of emotions via diverse amplitude, speed, and fluidity
of movements [114]. In previous studies, body postures have shown a direct correlation
with attentive [115] and affective states [24]. The direction of the body is known to imply
the affective states, such as boredom, confusion, delight, flow, and frustration [24] while
the leaning forward pose works as a sign of active cognitive state [23]. Head direction
indicates the subject of attention [116]. [117] understood postural shift as an action to
move on to the next phase during the task performances.
Distraction self-reports. Distraction self-reports are commonly used as the ground
truth to reflect people’s internal states [118]. The model of [88] introduce two types of
distraction: 1) Task-related distraction and 2) task-unrelated distraction. [88] explains that
task-related thoughts are correlated with the objective performances, while task-unrelated
mind wandering functions as an impairment to the ongoing task performances. In this
regard, we collect two types of distraction self-reports in e-reading.
Based on the execution, distraction reports are two types. The first method is to collect
distraction reports real-time at the choice of participants during the task performance,
putting more importance of more timely aspect of distraction reports. The second method
uses a specific time or event to trigger the question regarding the current distraction levels
[118]. The first method is criticized as participants might not be aware of their attention
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loss or forget about reporting. The second method is faulted for bothering the primary task
performance.
We implemented the firstmethod since our objective of the distraction self-reports collection
is to find behaviors at the moment of learners’ perceived distraction, which is used as the
ground truth of the model training in our work. To minimize the possible intrusiveness in
the self-report process, we carefully designed a simple and intuitive self-report interface,
introduced in the following “Distraction self-reports” section. In this way, we obtained the
ground truth of the attention levels of every subject through their frame-level distraction
self-reports.

3.2 WEDAR-dataset
3.2.1 Participants
30 learners (gender: 15 males, 15 females; age: M=27.89, SD=3.39) in higher education, who
use the English language for their daily education, have been invited for an e-reading task.
Participants voluntarily joined the experiment via an advertisement on campus.

3.2.2 Materials
The text “how to make the most of your day at Disneyland Resort Paris” has been im-
plemented on a screen-based e-reader, which we developed in a pdf-reader format. An
informative but entertaining text was adopted to capture learners’ attentional shifts during
knowledge acquisition. The text has 2685 words, distributed over ten pages, with one
subtopic on each page (e.g., how to book tickets online the same day). The e-reader has
been implemented on a 13-inch laptop monitor with resolutions of 960×720, having the
text with 11 pt. A built-in webcam on Mac Pro and a mouse have been used for the data
collection, aiming for real-world implementation only with essential computational devices.
A height-adjustable laptop stand has been used to compensate for participants’ different
eye levels.

3.2.3 Measurements
We collected various cues that reflect learners’ moment-to-moment and page-to-page
cognitive states to understand the learners’ attention in e-reading. Fig 3.1 shows an
overview of measurements used in the WEDAR dataset collection.
Distraction self-reports. Learners were asked to report their distractions on two levels
during the reading: 1) In-text distraction (e.g., still reading the text with low attentiveness)
or 2) out-of-text distraction (e.g., thinking of something else while not reading the text
anymore). We implemented two noticeably-designed buttons (33×22) on the right-hand
side of the screen interface to minimize the possible distraction coming from the reporting
task.
Blur stimuli. We implemented blur stimuli on the text in the random range of 20 seconds
after the trigger of a new page. It ensures that the blur stimuli occur at least once on each
page. This is based on the finding that average learners read 230-250 words per minute
[119]. Participants were asked to click the de-blur button on the text area of the screen to
proceed with the reading. The button has been implemented to the whole text area, with
400×480 resolutions, so participants can minimize the effort to find and click the button.
Reaction time for de-blur has been measured, too, to grasp the arousal of learners during
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Figure 3.1: The experiment settings show an overview of our WEDAR dataset collection.

the reading.
Pre-test and post-test. We asked participants to answer pre-test and post-test question-
naires related to the reading material. Participants were given ten multiple-choice questions
before the session, while the same set of questions was given after the reading session
(i.e., formative questions) with added subtopic summarization questions (i.e., summative
questions). It can provide insights into the quantitative and qualitative knowledge gained
through the session and different learning outcomes based on individual differences.

3.2.4 Procedure
30 learners in higher education have been invited for a screen-based e-reading task (M=16.2,
SD=5.2 minutes). A pre-test questionnaire with ten multiple-choice questions was given
before the reading to check their prior knowledge level about the topic. There was no
specific time limit to finish the questionnaire. Afterward, instructions on secondary tasks
were given: 1) Deactivating the blur stimuli on the screen by clicking the text area and 2)
reporting distractions (i.e., in-text distraction, out-of-text distraction). Learners were left
alone in a room to perform a screen-based reading task. Once participants finished the
reading, they were given a post-test questionnaire with the same question set as the pre-test.
However, in the post-test questionnaire, there were added questions for summarizing ten
subtopics by filling in the sentences starting with “ How to…”.

3.2.5 Dataset: WEDAR
Thefinal outcome of theWEDAR dataset is presented in Table 3.1, including the objectives of
data collection, modalities, features, evaluation, and interpretation. In this work, indicators
in bold are used for the attention regulator recognition and attention prediction. Note
that the WEDAR is built not only for attention regulator behavior recognition but, more
importantly, for exploring the learners’ attentional states during the e-reading events. Thus,
we collected various metrics as cues of the learners’ attentional states, such as reactions to
stimuli, distraction self-reports, and knowledge gain. All those metrics were obtained by
learners’ self-reports. The annotation is frame-level (one value for one reading case) for the
metrics of reactions to stimuli and distraction self-reports. The annotation is instance-level
for the metric of knowledge gain, which has been measured before and after the reading.
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Table 3.1: Our WEDAR dataset contains diverse dimensions of attention: Objectives, modalities, features,
evaluation, and interpretation of attention indicators.

Objectives Modalities Features Evaluation Interpretation

Learner behaviors Video (avi.) -Affective states of learners
-Behavioral states of learners

Objective/
Subjective

Short-term
attention

Reactions to stimuli Timestamp (txt.)
-Blur triggered
-Blur deactivated
-Reaction time

Objective Short-term
attention

Formative &
summative
assessment

Text (txt.)
-Pre-test (multiple-choice)
-Post-test (multiple-choice, summarization)
-Knowledge gain

Objective Long-term/holistic
attention

Distraction self-reports Timestamp (txt.) -Distraction in the context of reading
-Distraction outside the context of reading Subjective Short-term

attention

3.3 Data analysis and results
This section presents preliminary experimental results conducted on the WEDAR dataset.
We first report a relevant statistical analysis of the WEDAR dataset using Pearson’s correla-
tion coefficient. Several classical models are implemented as the benchmark for recognizing
different attention regulator behaviors. Lastly, high-level attention analysis is conducted
using the attention regulator behaviors and attention span.

3.3.1 Annotation and baseline analysis
Annotation of attention regulator behaviors. The video dataset of 931,440 frames
has been annotated with the attention regulator behaviors using an annotation tool that
plays the long sequence clip by clip, which contained 30 frames. Two annotators (doctoral
students) have done two stages of labeling. In the first stage, the annotators were trained
on the labeling criteria and annotated the attention regulator behaviors separately based
on their judgments. In the second round, the labels were summarized and cross-checked
to address the inconsistent cases. We used six categories that we found to be relevant
to attention regulation based on the literature study: Behaviors shown from eyebrow
(26,535 frames), blink (17,761 frames), mumble (22,214 frames), hand (101,700 frames), and
body (155,880 frames), contrary to the neutral (607,350 frames) state (Figure 3.2). Since
the importance of our work is not merely on the recognition of behaviors itself but on
connection with hidden behavioral functions (e.g., attention regulator) [91], we combined
multiple specific behaviors (e.g., squint) into a general category (e.g., eyebrow). It also
helps avoid redundancy among features [19] which could negatively affect the model’s
performance. The labeled data has been used as two input formats: images segmented by
each frame and videos segmented every second (30 frames).

3.3.2 Preliminary analysis: Pearson’s correlation
We conducted a preliminary second-to-second analysis using Pearson’s correlation among
the overall, in-text, out-of-text self-reported distractions and attention regulator behaviors.
We aimed at comprehensive insights into how each behavior category can be correlated to
perceived distractions. As can be seen from Table 3.2, the total number of self-reported
distractions and in-text distractions showed a significant correlation with eyebrow and
body behavior categories. Out-of-text distraction has correlated with the most behavior
categories: Eyebrow, blink, hand, and body. Though mumbling did not directly correlate
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Eyebrow Blink Mumble Hand Body Neutral

 -Eyebrow raise 
 -Eyebrow bring  
  together

 -Blink flurry 
 -Voluntary prolonged  
  blink

 -Mumble reading  -Touch body 
 -Touch face

 -Adjust torso 
 -Adjust arm 
 -Adjust head 
 -Lean forward

 -Without attention  
 redirection behaviors

26,535 frames 17,761 frames 22,214 frames 101,700 frames   155,880 frames 607,350 frames

30 video samples

Annotation with 
six attention regulator behaviors

Figure 3.2: Annotation of attention regulator behaviors: Eyebrow, blink, mumble, hand, body, and neutral.1
1 Images were blurred for identity protection purposes. All images were consented to be used for

publication.

with any types of distractions, it has been correlated with other behavior categories, such
as eyebrow, hand, and body. Various behavior categories have shown correlations among
each other. The unimodal correlation analysis based on Pearson’s correlation coefficient
has presented: 1) The internal consistency among the attention regulator behaviors and
2) the potential of attention prediction model training based on multimodal behavioral
cues related to attention self-regulation. Note that Pearson’s correlation coefficient is a
preliminary examination that only shows the linear correlation of two variables, revealing
their potential association in the temporal domain. However, when it comes to attention
regulator behavior-based distraction recognition, the performance might vary greatly
because the relationship between attention regulator behaviors and distraction level is
complex and non-linear, which cannot simply be described by Pearson’s factor.

3.3.3 Low-level attention regulator behavior recognition
We propose the benchmark of classical models with two types of frameworks (i.e., frame-
level and video-level recognition) on the WEDAR dataset to first recognize attention
regulator behaviors.
Here, we followed the classical 70%-30% protocol from other large-scale action/activity
datasets, such as ActivityNet [120] and Kinetics-400 [121]. Given 30 video samples with
frame-level annotations (931,340 frames), we aimed to recognize the six attention regulator
behavior categories accurately. Besides, we conducted an evaluation with both subject-
dependent and subject-independent protocols. In subject-dependent protocol, we randomly
shuffled all the samples and split the training and testing set with a ratio of 70% and 30%.
In subject-independent protocol, we split the subjects with a ratio of 70% and 30%. Thus,
all the samples from 21 subjects were used for training, and samples from the remaining
nine subjects were used for testing. Note that we used the same protocol and evaluation
settings for all the evaluation methods to make a fair comparison. Table 3.3 shows the
overall accuracy of the testing set.
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Table 3.2: Preliminary Pearson’s correlation2 analysis between distraction self-reports and attention regulator
behaviors.

2Note. * p < .05, ** p < .01, *** p < .001, 3Total distraction=In-text distraction+Out-of-text distraction
Total

distraction3
In-text

distraction
Out-of-text
distraction Eyebrow Blink Mumble Hand Body

Total distraction Pearson’s r
(p-value) -

In-text distraction Pearson’s r
(p-value)

0.938 ***
(<.001) -

Out-of-text distraction Pearson’s r
(p-value)

0.342***
(<.001)

-0.004
(0.469) -

Eyebrow Pearson’s r
(p-value)

0.030***
(<.001)

0.021***
(<.001)

0.028***
(<.001) -

Blink Pearson’s r
(p-value)

0.019
(0.001)

0.011
(0.055)

0.025***
(<.001)

0.025***
(<.001) -

Mumble Pearson’s r
(p-value)

0.004
(0.518)

0.006
(0.274)

-0.006
(0.270)

0.041***
(<.001)

-0.005
(0.440) -

Hand Pearson’s r
(p-value)

0.006
(0.325)

0.002
(0.783)

0.012*
(0.036)

0.053***
(<.001)

0.028***
(<.001)

0.045***
(<.001) -

Body Pearson’s r
(p-value)

0.045***
(<.001)

0.035***
(<.001)

0.035***
(<.001)

0.095***
(<.001)

0.044***
(<.001)

0.037***
(<.001)

0.375***
(<.001) -

Table 3.3: Attention regulator behavior recognition performance on the test set of the WEDAR.

Method Framework Accuracy (%)

Subject-dependent Subject-independent

ResNet-18 + fine-tuning

Frame-level

39.76 25.90
ResNet-50 + fine-tuning 30.92 23.84
ResNet-101 + fine-tuning 31.26 16.39
ResNet-18 + kNN 69.98 18.43
ResNet-50 + kNN 69.95 18.23
ResNet-101 + kNN 69.73 15.76

CNN-RNN-imbalanced Video-level 75.18 68.15
CNN-RNN-balanced 75.70 68.43

Frame-level attention regulator behavior recognition. In this section, we conduct
the attention regulator behaviors recognition using frame-by-frame image inputs. We
implemented ResNet architecture as the backbone with its three variants (ResNet-18,
ResNet-50, ResNet-101) [122], which are pre-trained on ImageNet [123], and fine-tuningd by
fixing the layers 1000d f c and above. ResNet architecture became one of the most popular
architectures in various computer vision tasks. Its shortcut connections architecture
yields compelling results. First, each frame has been converted to 224×224 grid RGBs as
image inputs. The higher-level features have been extracted with the layer going deeper,
combining primitive features from images on earlier layers. To avoid the imbalanced data
issue brought by a large number of neutral behaviors, we evenly sampled each category
based on the class with the minimum category number (17,761). The number of training
features from ResNet-18, ResNet-50, and ResNet-101 were 1000×74778, and testing features
were 1000×31788, respectively. All the models have been trained with 32 batch sizes. In the
process, fast Stochastic Gradient Descent (SGD) [124] with standard momentum parameters
were applied.
Furthermore, we implemented a simple multiclass kNN (k-Nearest Neighbour) classifier
stacked to the output features from the layers 1000d f c of ResNet-18, ResNet-50, and
ResNet-101 to achieve the attention regulator behavior recognition. Our rationale lies in
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the observation that the target dataset (WEDAR) is relatively small and different from the
source dataset (ImageNet). The images in the WEDAR are also with high homogeneity.
Thus, the fine-tuning of the WEDAR dataset will highly likely make it overfit. Therefore,
we implemented the multiclass kNN classifier to verify it. Various k variables have been
applied to ResNets for the comparative performance analysis.
Video-level attention regulator behavior recognition. Since attention regulator be-
haviors are the aggregation of instant actions over the temporal domain, frame-level
recognition tends to lose rich, dynamic information. In that sense, we adopted a video-level
framework compatible with the video inputs, having a “temporal” feature in its learning
process. Comparative analyses have been conducted between frame-based and video-based
models to achieve a better recognition result of attention regulator behaviors. Specifically,
we implemented a hybrid architecture that consists of convolutions (for spatial information)
and recurrent layers (for temporal information). We used a Convolutional Neural Network
(CNN) and a Recurrent Neural Network (RNN) consisting of GRU layers [125], popularly
known as a CNN-RNN [126, 127]. We chose the InceptionV3 architecture [128] as the CNN
backbone, which has been pre-trained on ImageNet [123], benefiting from its lightweight
structure, which is suitable for the temporal modeling. The output features of each frame
have been fed into GRU with three layers (with GRU units as 16) and stacked by a fully
connected layer as output. Besides, we noticed that imbalanced-data issues brought by a
large number of neutral behaviors might affect the model’s performance. Thus, we present
two types of data sampling strategies: 1) Evenly sampling each category based on the
class with the minimal number (balanced) and 2) using all the samples from each category
(imbalanced).
Experimental results of the attention regulator behavior recognition. A comparative
performance analysis has been conducted among models aimed at recognizing attention
regulator behaviors (Table 3.3). Note that all models followed the same evaluation protocol
mentioned above for fair comparisons. 1) Video-level models (CNN-RNN) have shown
better performances than frame-level models (75.70% vs. 69.73% in subject-dependent
settings and 68.43% vs. 25.90% in subject-independent settings) by large margins, with the
more temporal information involved. It means capturing temporal dynamics (temporal
reasoning) is important for behavior recognition. 2) The performances of the models vary
significantly based on the evaluating protocol. ResNet-kNN architecture performed better
than ResNet-finetuning architecture on the subject-dependent protocol. ResNet-kNN (-
18, -50, -101) has achieved 69.98%, 69.95%, and 69.73% accuracy, respectively. However,
when it comes to subject-independent protocol, ResNet-kNN models have a significant
performance drop of more than 50% accuracy, while the performances of Resnet-finetuning
models are relatively steady. This result indicates that the high performance of the ResNet-
kNN model is benefited from the subject-dependent setting via overfitting to our WEDAR
dataset. 3) The comparison between different ResNet variants has shown the best result
in ResNet-18 with slight performance differences compared to other models with higher
learnable parameters. Because WEDAR is a relatively small dataset, learning could have
been converged early with smaller learnable layers. Our result emphasizes the importance
of the compatibility of the sizes of the model and datasets [129, 130].
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Table 3.4: Attention regulator behavior-based attention recognition results from various classifiers. The attention
span is the instance duration before and after the distraction self-reports. We show the average and standard
deviations over six leave-five-subject-out runs.

Methods Attentional state recognition (%)
Attention span (2s) Attention span (4s) Attention span (8s) Attention span (16s)

Random guess 0.50 0.50 0.50 0.50
kNN [131] 51.69 ± 5.62 61.86 ± 11.10 88.91 ± 7.98 80.02 ± 15.67
SVM [132] 58.09 ± 4.95 68.83 ± 7.67 89.31 ± 6.92 86.98 ± 7.43
AdaBoost [133] 57.84 ± 5.48 69.14 ± 7.51 88.12 ± 6.92 85.642 ± 6.83
MLP [134] 57.84 ± 5.48 69.55 ± 7.83 89.41 ± 6.91 87.57 ± 7.46

3.3.4 High-level attention analysis with attention regulator behav-
iors

This section introduces our attention analysis based on attention regulator behaviors. The
task is recognizing the attentional states (i.e., attention or distraction) based on the attention
regulator behaviors within a given small video instance.
Evaluation protocols. For the attentional state recognition, as the task is highly subject-
dependent, we chose to use a leave-subjects-out protocol to verify the generalizability of
the method. We obtained the ground truths of attention and distraction instances from
participants’ distraction self-reports. We took 8-second duration as an average attention
span of human beings based on a literature study [135, 136]. Therefore, we set the last 8
seconds to the moment of distraction self-report as “distraction” while following 8 seconds
from the moment of distraction self-report as “attention” state. We also took 16-second,
4-second duration and 2-second duration as comparisons. 383 distraction self-reports have
been observed in the dataset, resulting in two sets of 383 × instances of “attention” and
“distraction” states. We split the 30 subjects into six folds; each fold contains five subjects.
To conduct the leave-subjects-out evaluation, we used all the attention instances from 25
subjects for the training and all the instances from the remaining five subjects for testing
at each fold evaluation. Each instance belonged to a specific state (attention or distraction).
We reported the average and standard deviations of the recognition accuracy in percentage.
Note that we only focused on the recognition task of “recalled” and “reported” distractions.
Thus, although “false-negative” errors of the self-reports (e.g., participants forgot to or
ignored reporting the distraction) exist, they will not be included in this analysis.
Attentional state recognition. We provide six machine learning-based methods for
attentional state recognition, using attention regulator behaviors as cues. We first encoded
the distribution of attention regulator behaviors that happened within a given attention
span as feature vectors with dimensions of 1×N . N is the number of attention regulator
behaviors, as six in practice. Since we used 30 fps for the annotation, which is redundant to
count the attention regulator behaviors, we downsample the frame rate from 30 to 8. The
resulting feature vectors were fed into the classifiers to predict the final binary attentional
states (i.e., attention or distraction). We experimented with different classical machine
learning classifiers combined with feature embedding: Bayesian network [92], Multi-layer
Perceptron with Relu non-linearity (MLP) [134], k-nearest neighbors (kNN) [131], and
Adaptive Boosting (AdaBoost) [133]. As can be seen from Table 3.4, the MLP classifier has
achieved the best performance (69.55%, 89.41%, and 87.57%) in the attention span settings of
4s, 8s, and 16s while the SVM classifier has shown the best performance over the attention
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Attention instanceDistraction instance

Attention span (2s)

Attention span (8s)

Attention span (4s)

Attention span (16s)

Figure 3.3: The t-SNE visualization of the features for attentional states. The feature embeddings are obtained
based on the attention regulator behaviors happened during the given attention span. Each dot stands for
attentional states.

span of 2s. We can also observe that a shorter attention span of an instance has brought
a significant performance drop (87.57% to 57.84% from 16s to 2s) in the recognition. We
assume it is because the shorter attention span implementation does not provide enough
information on the attention regulator behaviors to build up the probabilistic distribution
model for further inferences.
Visualization of the features for attentional state recognition. In this section, we
visualized the feature embeddings constructed from the attention regulator behaviors,
using the t-SNE technique [137]. As shown in Figure 3.3, features from a short attention
span are not discriminative enough, while features from a longer attention span show
much larger margins.

3.4 Discussion and limitations
3.4.1 Discussion
Distraction self-reports vs. attention regulator behaviors. Self-reported distractions
during the e-reading practices can be regarded as ground truths of attentional states of
participants to some extent, as they are the direct reflection of internal activities provided
by participants. However, there are three major limitations of the distraction self-reports.
1) Self-reports are based on a dual-task condition. The participants might be distracted
when keeping the reporting task in their minds, which could affect their attention level.
2) self-reported metrics are not always reliable as participants often forget to record their
distractions. Thus, false-negative errors are evident in some case, which could be a severe
issue when evaluating the performances of online detection algorithms. 3) Lastly, the
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self-report is subjective, making it difficult for machines to learn the patterns. In contrast,
attention regulators-based attentional state analysis has advantages as follows. 1) Those
patterns are concrete and rather easy to observe in the images so that machines can easily
learn. 2) Significant correlations found between distraction reports and attention regulator
behaviors indicate that observable attention regulator behaviors as a good predictor of
attention.
Further implementation in e-learning. Since our work aimed for a real-life application
based on a webcam, we believe that the work can be extended to other reading-based
e-learning scenarios with an investigation of attention regulator behaviors in the specific
learning activity. By combining various feedback types with diverse instructional designs,
platforms, and modalities from different feedback agents, more timely feedback provision
can be achieved for learners and instructors.
Defining attention span. We defined the attention span by taking the duration before
and after the distraction reports (e.g., 2s, 4s, 8s, and 16s). We found that the definition of the
attention span can affect the performance of attention recognition by a large amount, as a
longer period will contain more behavioral patterns for the recognition. Existing methods
[19–21] mainly worked short-term or even frame-level attention recognition, while our
findings can inspire the upcoming research to work on the direction of attention span by
showing potential for holistic attention recognition in instances with a longer attention
span.
Rich cues for attention analysis. In this work, we only presented some preliminary
baselines using attention regulator behaviors and self-reports as cues and ground truths.
However, rich cues provided in WEDAR, such as knowledge gains and reaction time, can
offer more opportunities for a more holistic and long-term attention analysis.

3.4.2 Limitations
Differentiating spontaneous behavior vs. voluntary behavior. In this work, we
focused on finding regulatory behavior that helps learners sustain their attention. We pri-
marily focused on voluntary or semi-voluntary behaviors from learners with consciousness.
However, it was often challenging to differentiate voluntary behaviors from spontaneous be-
haviors through human observation, which might have affected our labeling and prediction
results.
Lack of categorical frameworks for attention regulator behaviors in e-learning.
We strived to classify learner behaviors based on existing theoretical and empirical works.
Though our work is a categorical expansion of [96], we still miss the dedicated framework
that could be applied in the exploration of attention regulator behaviors in e-reading.

3.5 Conclusion and future work
In this work, we applied the categorical framework of [96] to an e-reading scenario and
identified attention regulator behaviors, which was the first attempt. We collected a novel
dataset from 30 higher education learners containing various cognitive, emotional, and
behavioral cues. We annotated 931,340 frames of video data second-to-second into six
categories. We used various classical models to recognize attention regulator behaviors as
a baseline with the highest accuracy of 75.70% (subject-dependent) and 68.43% (subject-
independent) with CNN-RNN. Attentional state recognition has been further conducted



3.5 Conclusion and future work

3

39

by leveraging the attention regulator behaviors with a promising performance of 89.41%
accuracy with a leave-five-subject-out protocol. Our webcam-based dataset and framework
for the attention analysis make it feasible to comply with primary computing devices
without sophisticated sensor implementation, allowing real-world implementation. We
hope our work contributes to the field by providing insights into attention regulator
behaviors in e-reading. The future research includes the system extension with the feedback
implementation, which will function as an interactive feedback loop for attentive e-reading.





4

41

4
Investigating Behavioral Indicators for

Predicting Learners’ Higher and
Lower-Level Thinking Skills: An

Explainable AI Approach

The use of machine learning technology in learning analytics is becoming increasingly preva-
lent. However, the black-box nature of machine learning models presents challenges in inter-
preting and explaining the model’s decision, which is critical for understanding the reasoning
behind the results. Low interpretability limits the next-round intervention based on the analy-
sis result, which is often a fundamental goal of learning analytics. In this study, we utilize the
WEDAR dataset, which contains second-to-second video annotation with learners’ behaviors
that are directly and indirectly related to learners’ self-reported distractions. The WEDAR has
various data layers related to learners’ attention, such as reaction time to the screen blur at
randomized timings and learners’ attention regulation behaviors during their studies. We
further extracted features from learner behaviors, such as the dominance and expressiveness
of attention regulation behaviors, quartiles of the reaction time, and reading speed, that we
hypothesized to have correlations with learners’ utilization of Higher-Order Thinking Skills
(HOTS) and Lower-Order Thinking Skills (LOTS) in their digital reading. By developing deci-
sion trees to predict learners’ cognitive processing and leveraging the feature importance of the
models, we identified core indicators for predicting learners’ HOTS and LOTS, supported by
machine reasoning. The result indicates that the dominance of attention regulation behaviors
is a reliable indicator of low use of LOTS, achieving 79.33% of prediction accuracy, while
reading speed is a valuable indicator for predicting the overall usage of HOTS and LOTS,
ranging from 60.66% to 78.66% accuracies. On the other hand, individual reaction time has
only helped predict the usage of HOTS. Our study demonstrates how various combinations of
behavior-based features can inform the development of explainable AI models for learners’
cognitive processes that are both accurate and interpretable, providing valuable insights for
education research and learning analytics. It supports future research for learners’ cognitive
processing in e-reading based on machine reasoning.
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D igital technologies have transformed how we engage with educational materials [29].
With the increasing use of digital texts in formal and informal education [138], assess-

ing and evaluating learners’ cognitive processings in e-reading has become more critical
[139]. It is a foundation for learning analytics and designing timely and effective interven-
tions for learners who engage in digital reading [20]. However, sensor-based laboratory
experiments often used in learning analytics challenge understanding learners’ natural
cognitive processing by changing the nature of real-life e-reading and the ecosystems
with intrusive sensor implementations [140] and experimental design. In this sense, our
work aims to understand learner behaviors in real life leveraged by AI technologies, with
a multimodal WEDAR dataset [141] that premises a real-life understanding of e-reading
with webcam-based data collection.
The existing approaches to e-reading assessment on cognitive dimension have predom-
inantly relied on eye trackers [14, 142]. It is because indicators, such as pupil dilation
[143], fixation, and saccades [144], work as objective and solid cues for understanding
learners’ cognitive states. At the same time, e-reading has a straightforward task with
regular eye movement patterns (e.g., character-level fixations [145], scanning and skimming
[146], Area of Interest (AOI) [147], number of blinks [148], re-reading [149]), making it a
solid indicator of evaluating the cognitive demands and processing in e-reading. Various
multimodal indicators, such as video data (e.g., valence, arousal [20]) and multiple layers of
log data (e.g., mouse dynamics [140]), have been combined for a more multi-dimensional
understanding of learner states and learning. However, feature-based analysis has suffered
from the limitation coming from lacking standards of defining ideal learner features, which
is often the case for e-reading analytics, too [20].
Based on multimodal learning analytics, learners’ cognitive states, such as mind-wandering
[14, 142], switches of internal thoughts [15], working memory [140], and affects (e.g.,
valence, arousal [20]) have been the target of the previous analysis. As a means to compen-
sate for traditional feature-based analysis, self-reported data showing learners’ subjective
perceptions about their learning and experts’ observations have been used as ground truths
for machine reasoning [150]. Also, different physiological patterns found from learners
with and without successful learning outcomes have been predicted using machine learning
[151]. Models aimed at critical features are automatically learned in the model training
processes in optimal ways. At the same time, human experts can consider the domain
knowledge in the first round feature selection and the model interpretation process while
still leveraging various AI technologies [152], which contribute to building a hybrid in-
telligence, bridging advantages of human and machine intelligence. However, due to the
non-explainable nature of black-box in AI [153], there is a growing need for eXplainable
AI (XAI) in education to understand the reasoning behind the model’s decision [154].
In this regard, our work aims to fill the gap by developing an XAI model for e-reading
assessment with behaviors, which identifies and analyzes the features to predict learners’
Higher-Order Thinking Skills (HOTS) and Lower-Order Thinking Skills (LOTS). As rep-
resented in revised Bloom’s Taxonomy from David R Krathwohl [79], HOTS and LOTS
are involved in learning as cognitive objectives. Learners utilize LOTS in remembering,

This chapter is partly based on � Y. Lee., G. Migut., M. Specht. Unveiling Learners’ Higher-Order and Lower-Order
Thinking Skills through Attention Regulation Behaviors in E-reading: An Explainable AI Approach, submitted to a
peer-reviewed journal.
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understanding, and analyzing knowledge, while HOT is used for more in-depth cognitive
processing in applying, evaluating, and creating knowledge [155]. As HOTS and LOTS
involve different cognitive processing, we hypothesized that such differences could be
captured through specific observable behavioral cues (i.e., attention regulation behaviors)
that are found to correlate with learners’ distractions and attention management [156].
By adopting an XAI approach with behavior-based prediction, we try to find critical be-
havioral learning features, such as dominance and expressiveness of attention regulation
behaviors, reaction time, and reading speed, that can potentially work as observable cues
for predicting HOTS and LOTS during e-reading.
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Figure 4.1: Our approach aimed at building a Hybrid Intelligence in e-reading by enhancing a behavior-based
framework with added human expertise through feature engineering, machine reasoning via an explainable AI
approach, and automatic cognitive processing prediction.

This work suggests a Hybrid Intelligence (HI) framework for human attention analysis
in e-reading (see Figure 4.1). As suggested as an important challenge for the future AI
application in education [157], we strived to balance the human insights from the experts
and understand critical components for machine reasoning via the explainable AI approach.
Such interpretability can greatly foster an integrated understanding of human attention,
leveraged by machine and human intelligence. Our framework is 1) based on the behavior-
based frameworks that are based on external states. 2) Using human insights, we select
behavioral features that we hypothesize are correlated with human attention and can be
used for machine reasoning. 3) We take the explainable AI approach that we can trace back
which behavioral features contribute to machine reasoning to predict learners’ cognitive
processing. 4) Using the model, we evaluate the internal states of learners via external
behavioral cues and make the prediction automatic at scale. All in all, our contributions
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are listed below.
1) Simple understanding of learners’ cognition through behavioral cues: Our study
represents the first attempt to apply XAI to understand learners’ cognitive processing in
e-reading. By using our behavior-based HOTS and LOTS predictions and finding critical
indicators in prediction, we can grasp complicated cognitive processing via interpretable
combinations of learner behaviors. Traditionally, the learning analytics on learners’ cog-
nition has been done via dedicated biosensors, such as an eye tracker [151], which have
challenged educational researchers with complicated hardware implementations and com-
binations of multimodal data streams with different granularity and thus not intuitively
comprehensible. Also, such sensor layers have been criticized for bringing intrusiveness
to the learning activity and hindering learning analytics in real-life e-reading. However,
our webcam-based behavior analysis with XAI reveals the relationship between semanti-
cally understandable behavioral cues and learners’ hidden cognitive processes in learning
without obstructiveness.
2) Machine’s behavior-based decision-making with interpretability and scalability:
Though Human educators have invaluable expertise with domain knowledge and the
ability to empathize with learners based on contextual understanding [158], the physical
environment of e-learning brings constraints to them. E-reading environments allow
learners and educators to communicate only through the interface, limiting common
situational awareness of the educational context. Also, human educators have limitations
in that they can only recognize a problem at a time with somewhat arbitrary criteria [152],
which challenges the subsequent feedback with consistency. Also, different experiences
and perceptions of human educators may lead to inconsistent feedback provisions. In this
regard, our machine-based decision-making shows more straightforward reasoning based
on behaviors that can also be semantically understandable to humans but with scalability.
3) Future extension of the framework to various e-learning scenarios and feedback
agents: In this work, using the XAI approach, we strived for a semantic understanding of
the influential features based on machine reasoning. Understanding prediction mechanisms
related to different levels of HOTS and LOTS of specific individuals provides valuable
insights to instructional designers for more concrete and adaptive intervention plans [159].
For instance, the framework can further be extended to various e-learning scenarios based
on digital reading. Attention regulation behaviors in a specific e-learning scenario can also
be expanded. Furthermore, our framework can connect with diverse instructional design
strategies and different interfaces (e.g., conversational agents), closing the feedback loop
with learning’s behavioral, cognitive, and affective enhancements.
Below, we articulated three research questions that we focused on in our study:

• RQ1. What are critical behavioral indicators for predicting learners’ HOTS and LOTS
in e-reading for machine reasoning?

• RQ2. How can learners be grouped based on their different usages of HOTS and
LOTS in e-reading?

• RQ3. How can an automatic evaluation of the learners’ HOTS and LOTS in e-reading
be achieved?
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4.1 Related work
This section explores various theoretical frameworks that construct our overall framework.
As illustrated in Figure 4.2, we utilize the framework of learners’ attention regulation
behaviors in e-reading [156]. In the process, various behavioral indicators known to be
directly and indirectly correlated to learners’ attention are used for the model training. We
leveraged the Explainable Artificial Intelligence (XAI) approach in our work to understand
learners’ utilization of the HOTS and LOTS in their learning on various levels.
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Figure 4.2: Our framework is based on the revised Bloom’s taxonomy [79], which has HOTS and LOTS as
components of learners’ cognitive processing. Using decision trees, we strived to predict learners’ HOTS and
LOTS based on attention regulation behaviors [156]. We tried to understand the reasoning behind the model’s
decision to find the critical behavioral components for predicting different levels and combinations of learners’
cognitive processing.

4.1.1 Current XAI approaches in education
XAI is an emerging topic with various applicability in areas where the reasoning behind
decision-making is especially critical (e.g., healthcare, law, autonomous driving [154]). In
education, Learning Analytics (LA) and Educational Data Mining (EDM) are two areas
where AI-driven approaches commonly take place for various stakeholders (e.g., teachers,
tutors, students, and managers [159]) throughout learning phases in collecting, processing,
exploiting, and reporting the learning data [154]. However, while machine learning models
can successfully perform tasks such as classification, regression, clustering, transferring,
and optimization, researchers often cannot elaborate the reasoning behind the models’
decisions due to the black-box nature of AI [160]. Therefore, understanding the specific
task in feature engineering and result interpretation from human experts has been consid-
ered critical [159]. However, the limited explainability of models still raises ethical and
trustworthiness issues for educational applications for lacking transparency, trust, and
fairness in decision-making [153]. Therefore, various XAI approaches have been taken
in educational research by revealing the feature dominance, correlation among features
used for the training, the reasoning behind predictions [153], and sources of noise in the
decision-making [159].
[159] has suggested a framework of XAI in Education (XAI-ED) that aligns the needs of
stakeholders, interfaces, and AI models. Various XAI approaches in education, such as
the Generalized Additive Model (GAM) with a linear relationship between independent
and dependent variables [161], the decision tree model with a hierarchical structure, a
rule-based model with conditional statements, the clustering method with specific data
patterns, and natural language processing with data cross-validations among learning data
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have been introduced. Through a survey, [153] introduced various XAI approaches and
made baseline comparisons of different state-of-the-art methods with multiple modalities
and features. XAI application has been divided into transparent methods (e.g., bayesian
model, decision trees, linear regression, fuzzy inference systems) and post-hoc methods
(e.g., LIME, perturbation, LRP, SHAP). While the former approaches are commonly used
when simple relationships among features take place, the latter methods were found to
be generally applied when high data complexity exists [153]. [154] has suggested the GUI
web-based ExpliClas service, which provides text descriptions and a dashboard with data
visualizations regarding the feature use and recommendations. [160] has implemented
a decision tree to find critical features among learners’ listening, watching, making, and
speaking behaviors for predicting collaborative problem-solving competencies.
All in all, the general focus has been finding XAI implementation opportunities in education
with model comparisons and platform suggestions. However, deep diving into features for
predicting learners’ cognitive processing has yet to be found. Especially according to our
best knowledge, XAI in the behavior analysis for understanding the cognitive processing of
learners nor XAI for digital reading applications has been attempted yet. It is essential for
the rapidly growing necessity of learning analytics and feedback loop design for real-life
digital reading, which we target to foster using hybrid human and machine intelligence.

4.1.2 Assessing learners’ HOTS and LOTS in e-reading
Understanding the way that learners utilize types of thinking skills in learning is essential
since the thinking skills affect the ability [162], speed, and effectiveness [163] of learning
[164]. This work uses revised Bloom’s taxonomy [79], which differentiated learners’ six
levels of thinking skills as remembering, understanding, applying, analyzing, evaluating,
and creating. This work uses LOTS (i.e., remembering, understanding, applying) and HOTS
(i.e., analyzing, evaluating, creating) for learning analytics and machine learning model
training.
LOTS facilitates lower-level cognitive processing, such as comprehension and information
recall. LOTS encompass fundamental cognitive abilities such as remembering, understand-
ing, and applying knowledge during learning. These skills are closely associated with
acquiring concepts, facts, and procedures [165]. Therefore, LOTS often utilize short-term
memory, which relies on temporary memory retention [166] and has often been evaluated
through multiple-choice, true or false [167], and fill-in-the-blank questions [168] for the
reading assessment.
Conversely, HOTS supports more complex cognitive processing, including analysis, evalu-
ation, and synthesis [169], which involves more proactive judgment and assessment from
learners. These skills include creative and critical thinking, analysis, and knowledge syn-
thesis [170]. Such cognitive processing enables learners to acquire and retain knowledge in
the long term [171]. Unlike LOTS, which relies on memorization and superficial judgments,
knowledge from HOTS is highly transferable to the new contexts [171] and involves inter-
connecting prior knowledge with further information and creating own judgments [155].
For evaluating HOTS for reading tasks, previous works utilized posthoc summarization
[170], and essay writing [172].
Understanding learners’ cognitive processing can be complicated since some learners may
excel in LOTS but struggle with HOTS, while others may demonstrate the opposite pattern
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[155, 167]. Recognizing the different usages of HOTS and LOTS can inform researchers and
instructional designers of different cognitive processing, learning needs, and subsequent
educational interventions, enabling personalized solutions for each group of learners. For
further details for assessing and segmenting learners based on HOTS and LOTS, please
refer to sections 4.2.2 and 4.2.2.

4.1.3 Behavior-based framework for evaluating learners’ HOTS and
LOTS in e-reading

In this work, we extract behavioral features from the WEDAR dataset that we hypothesized
to correlate with learners’ HOTS and LOTS, leveraged by human expertise. We mainly
focus on learners’ behaviors, such as 1) dominance and 2) expressiveness of attention
regulation behaviors, 3) reaction time to the secondary blur stimuli, and 4) reading speed.
Those indicators were hypothesized to, directly and indirectly, reflect learners’ affective
and cognitive states in e-reading practices. We use features in combinations to see the best
prediction results and analyze critical elements for the model’s decision. By doing so, we
attempt to understand the most influential behavioral features in machine reasoning for
predicting cognitive processing so our work can further assist the intervention design for
various learners with different cognitive processing patterns. Below, we articulate how our
behavioral indicators have been understood in previous research.

Attention regulation behaviors
In the previous work, several behavioral cues have been defined as attention regulation
behaviors that indicate learners’ own perceived attention loss during their e-reading [156].
In the framework, various movements in eyebrows (e.g., raising, bringing together), blinks
(e.g., blink flurries, voluntary prolonged blink), mumble (e.g., mumble reading), hand (e.g.,
touching body and or face), and body (e.g., adjusting position and or angle of torso, arm)
have been considered as voluntary and spontaneous actions learners engage in to regain
attention during e-reading. In the previous study, real-time attention regulation behaviors
were found to correlate with learners’ self-reported distractions, leading to the development
of a video-based distraction recognition based on the WEDAR dataset [156]. In this work,
post-hoc features from theWEDAR are processed to capture behaviors directly or indirectly
related to attention and further affect learners’ cognitive processing. We hypothesized that
such behaviors and the usage of HOTS and LOTS have a specific correlation that can also
work as a foundation for automatic recognition of cognitive processing.

Dominance and expressiveness of attention regulation behaviors
Contextual features [95] (e.g., individual and cultural factors) are known to highly influ-
ence human behaviors’ frequency and expressiveness [173]. Such individual differences
in behaviors often pose challenges for the generalized behavior-based learning analytics
[174]. In this study, we aimed to investigate the relationship between dominance and
expressiveness of attention regulation behaviors and learners’ cognitive processing, specif-
ically HOTS and LOTS. By exploring the role of dominance and expressiveness in learners’
cognitive processing, we can gain deeper insights into the role of attention regulation
behaviors in e-reading. The analysis can work as a foundation for personalized learning
and optimize instructional design strategies accordingly.
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Reaction time to the screen blur at randomized timing during e-reading
Reaction time has long been recognized as a reliable indicator of learners’ arousal and
attention during task performances [15]. Fast reaction time has commonly been associated
with efficient attentional control and vigilance [175], indicating the ability to maintain
focus and allocate cognitive resources effectively. Conversely, slow reaction time has
been suggested as disengagement from the task and challenges sustaining an optimal
attentional state amidst distractions [15]. The influence of affective states, including
arousal and engagement, is known to shape individuals’ reaction time [176], representing
its potential correlations to cognitive processing in learning. Given the suggested insights,
we hypothesized that reaction time to the screen blur could work as a feature that robustly
predicts the utilization of learners’ HOTS and LOTS during their e-reading.

Reading speed
Reading speed is known to provide valuable insights into learners’ cognitive load and
information processing capabilities [177]. Though faster reading does not guarantee
better learning, it is found to be associated with more rapid information gain and reduced
cognitive load compared to that from slower readers [178]. Moreover, fast readers on
screen-based reading are known to experience fewer distractions [179], which supports
our attempt to predict cognitive processes based on various reading behaviors, including
attention regulation behaviors. Regarding the reading speed, we hypothesized that higher
attention and faster reading speed would contribute to enhanced HOTS and LOTS.

4.2 Methods
In this chapter, we introduce how we preprocessed the multimodal WEDAR dataset and
trained them to predict the HOTS and LOTS.

4.2.1 Multimodal WEDAR dataset

Behavior LabelsDistraction ReportsKnowledge Gain

 -Second-to-second video-based human annotations
 -Six behavior labels

Multimodal WEDAR Dataset

Reaction Time

Neutral

 -Without attention
  regulator behaviors

Eyebrow

 -Eyebrow raise
 -Eyebrow bring
  together

Blink

 -Blink flurry
 -Voluntary
  prolonged blink

Mumble

 -Mumble reading

Hand

 -Touch body
 -Touch face

Body
 -Adjust torso
 -Adjust arm
 -Adjust head
 -Lean forward

 -Blur stimuli applied to the screen
  on randomized moments
 -To remove blur on the text and
  proceed, learners need to click the 
  button, indicated above
  -Reaction time is recorded for each
  blur/deblur event (second with two
  decimal places)

 -Real-time distraction self-reports
 -Moments of distraction is recorded
  (second)

 -Higher-level knowledge gain:
  Learners' summarizations on 10
  subtopics, evaluated by BERT

 -Lower-level knowledge gain:
  Pre-post knowledge score
  difference on 10 multiple-choice
  questions

Figure 4.3: Our work utilized the knowledge gained for assessing HOTS & LOTS, distraction self-reports, reaction
time to screen blur stimuli, and attention regulation behaviors of learners from a multimodal WEDAR dataset.

In this study, we utilized the public WEDAR dataset, which includes assessments for rep-
resenting LOTS from the multiple choice questions, HOTS from the text summarization
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task, moment-to-moment self-reported distractions, learners’ reaction time to the random-
ized screen blur, and attention regulation behaviors annotated every second, which has
approximately 8.7 hours long. The dataset was collected from 30 higher education learners
during screen-based e-reading. Please note that this study only used post-hoc features
since HOTS and LOTS were not collected in real-time; thus, predicting the post-hoc targets
(i.e., HOTS and LOTS) with real-time behavior features can be misleading.

Table 4.1: Pe-processed multimodal WEDAR dataset, which has been used for the XAI model training.

Feature categories # Feature names Feature description Categorical / Nominal
Dominance-related F1 behavior_eyebrow number of eyebrow behaviors/total number of attention regulation behaviors continuous (0-1)
(Attention regulation behavior) F2 behavior_blink number of blink behaviors/total number of attention regulation behaviors continuous (0-1)

F3 behavior_mumble number of mumble behaviors/total number of attention regulation behaviors continuous (0-1)
F4 behavior_hand number of hand behaviors/total number of attention regulation behaviors continuous (0-10
F5 behavior_body number of body behaviors/total number of attention regulation behaviors continuous (0-1)
F6 first_behavior (one-hot encoded) occurrences of having the most dominant attention regulation behaviors 5-classes (0, 1)
F7 second_behavior (one-hot encoded) occurrences of having the second dominant attention regulation behaviors 5-classes (0, 1)
F8 third_behavior (one-hot encoded) occurrences of having the third dominant attention regulation behaviors 5-classes (0, 1)

Expressiveness-related F9 expressiveness number of attention regulation behaviors/duration of the video continuous (0-1)
(Attention regulation behavior) F10 exp_level (one-hot encoded) low (Q1), mid (Q2), high (Q3) expressiveness levels of each participant 3-classes (0, 1)
Reaction time-related F11 indiv_reaction_average reaction time average of each participant continuous values

F12 reaction_time (one-hot encoded) fast (Q1), mid (Q2), slow (Q3) reaction time levels of each participant 3-classes
Reading speed-related F13 individ_reading_speed reading speed average of each participant (word/duration of reading) continuous values

F14 reading_speed (one-hot encoded) fast (Q1), mid (Q2), slow (Q3) reading speed levels of each participant 3-classes (0, 1)
HOTS & LOTS F15 LOTS post-test score-pre-test score (multiple choice, full score:10) continuous (0-10)

F16 HOTS BERTScore calculated based on written summarizations continuous (0-1)
F17 LOTS_level (one-hot encoded) low (Q1), mid (Q2), high (Q3) LOTS of each participant 3-classes (0, 1)
F18 HOTS_level (one-hot encoded) low (Q1), mid (Q2), high (Q3) HOTS of each participant 3-classes (0, 1)
F19 thinking_skills_clusters 3 clusters derived from K-means with LOTS and HOTS as feature vectors 3-classes (0, 1)

4.2.2 Feature Engineering of the WEDAR for the model training
As we aimed at the prediction of combinations of HOTS and LOTS, we identified four
behavioral categories of features from the WEDAR: dominance-related, expressiveness-
related, reaction time-related, and reading speed-related features as depicted in Table 4.1.
Figure 4.3 provides an overview of the features from the WEDAR used for our study.
1) Dominance-related features are extracted based on the frequency of a specific attention
regulation behavior that occurred, compared to the whole attention regulation behaviors
that occurred. Also, the feature category includes the number of each attention regulation
behavior found as each individual’s first, second, and third frequently used attention
regulation behaviors. 2) Expressiveness-related features indicate the number of attention
regulation behaviors that occurred compared to the duration of reading that has taken place.
The feature category also includes data on whether the individual belongs to a group with
high, mid, and low behavioral expressiveness. 3) Reaction time-related features concern how
long it took for individuals to react to the screen blur stimuli that were given at random
timings. The feature category also includes information about participants considered fast,
mid, or slow learners in terms of reaction time. 4) Reading speed-related features include the
cues concerning the individual reading speed and where each learner belongs to groups of
fast, mid, or slow readers. Lastly, 5)HOTS & LOTS feature categories include various features
that were used as the targets of the predictions to understand behavioral features affecting
different combinations of cognitive processing of individuals. LOTS was derived from the
multiple choice question scores, while the HOTS was gauged by the BERT scores evaluated
on learners’ summarization. The features LOTS_level (F17) and HOTS_level (F18) represent
each individual as high, mid, and low performers compared to all learners for their multiple
choice and summarization, respectively. The feature thinking_skills_clusters (F19) are
derived by the k-means clustering performed on individuals’ HOTS and LOTS when k
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has been decided as three in our case from the elbow method applied to the preprocessed
WEDAR dataset. Please see the following section for the details of calculating the HOTS,
LOTS, and groups with different levels of HOTS and LOTS combinations.

Pre-post multiple choice questions for evaluating LOTS
In the WEDAR, 10 multiple-choice questions related to the reading materials were given
before and after the reading. Such pre-post questionnaires are often used for evaluating
LOTS, focusing on the factual cognitive processing of learners. We calculated the LOTS by
subtracting the pre-test score from the post-test score, making the final LOTS range from a
scale of 0 to 10.

ScoreLOTS =
Npost

∑
i=1

Sposti −
Npre

∑
i=1

Sprei , (4.1)

where Sposti is the post-test score (0 or 1) for question i, while Sprei is the pre-test score (0 or
1). Note that the pre-test and post-test questionnaire content were the same, making the
LOTS range from 0 to 10.

BERT applied to the text summarization for evaluating HOTS
Evaluating text summarization by human evaluators can be subjective; thus, we utilized the
automatic evaluation technique. We employed the Bidirectional Encoder Representations
from Transformers (BERT), natural language processing model [180], to assess the HOTS
from learners’ summarization. BERT is a widely used language model because it can handle
various language tasks under the consideration of contexts. It is especially relevant to our
aim of understanding the similarity of learners’ summarization and the original text in
understanding learners’ ability to reconstruct the contents that they read. Based on BERT,
we evaluated participants’ summaries, resulting in precision, recall, and F-1 scores ranging
from 0 to 1. We used the entire reading content as a ground truth of the BERT model and
each learner’s overall summarization as inputs for evaluation. Recall, precision, and F-1
scores have been evaluated as R_BERT , P_BERT , and F_BERT , respectively, as below:

RBERT =
1
|X |

∑
xi∈x

max
x̂j∈x̂

x⊤
i x̂j , (4.2)

PBERT =
1
|||X̂
|||

∑
x̂j∈x̂

max
xi∈x

x⊤
i xj , (4.3)

FBERT = 2
PBERT ⋅RBERT

PBERT +RBERT
, (4.4)

where the ground truth that we extracted from the reading content has been x , while
the summarizations from the participants have been x̂ . While X is the set of vectors
representing the tokens from ground truth, X̂ is the set of vectors representing the tokens
from the summarizations given by the participants. xi and x̂j represent a vector in the X
and X̂ , respectively. x⊤

i x̂j and x⊤
i xj are dot products between vectors from xi to x̂j and

from xi to xj , respectively, calculating the average of the maximum similarity between each
token from the ground truth and given answers from participants. Note that we used the
FBERT as the HOTS of each learner since the F-1 score considers both precision and recall,
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which provides balanced perspectives of cognitive processing with higher-order thinking
skills in reading.

Learner segmentation based on combinations of HOTS and LOTS
To explore different levels and combinations of learners’ HOTS and LOTS, we first de-
fined the target combinations of HOTS and LOTS: 1) with k-means clustering method for
automatic clustering and 2) quartile analysis to define thresholds for high (1st quartile:
Q1), mid (2nd quartile: Q2), and low (3rd quartile: Q3) ranges of HOTS and LOTS. These
categorizations provide insight into how learners can be divided based on the use of HOTS
and LOTS.

Figure 4.4: Learner segmentation based on k-means clustering.

Figure 4.5: Learner segmentation based on quartile analysis.

Figure 4.6: K-means clustering and quartile analysis have been used for segmenting learners based on their HOTS
and LOTS.

Automatic unsupervised clustering: k-means clustering
As can be seen from Figure 4.6, we performed k-means clustering [181] using HOTS and
LOTS as feature vectors to segment the learners automatically. Based on the elbow method,
we determined k = 3 and obtained three clusters. The clustering results helped to define one
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group of learners (C2) with a relatively low LOTS range and two groups (C1 and C0) with
a comparatively higher LOTS range. One of the groups with high LOTS (C1) demonstrated
a higher HOTS, while the other (C0) exhibited a lower HOTS. The sample consisted of 12
learners in C0, 11 in C1, and 7 in C2, respectively. Note that we standardized HOTS and
LOTS by mean-max scaling for both segmentation, subtracting and scaling the mean to
unit variance [182] to ensure a fair comparison of HOTS and LOTS with different data
ranges.

Quartile analysis: defining the high, mid, and low ranges of HOTS and LOTS
We also conducted quartiles analysis [183] to define thresholds for high, mid, and low
ranges of HOTS and LOTS. For both HOTS and LOTS, learners in the top 25% (Q1) were
considered high, the middle 25% to 75% (Q2) were considered mid, and those in the 75%
(Q3) were considered learners with low HOTS and LOTS. This resulted in 9 (3 HOTS * 3
LOTS) thinking skills and combinations from learners with high, mid, and low HOTS and
high, mid, and low LOTS, respectively.
To understand the relationship of the groups of learners derived from the first (i.e., k-means)
and the second (i.e., quartile) segmentation methods, we analyzed the groups of learners
assigned based on different segmentation criteria as shown in Figure 4.7. As represented
in the figure and the literature study, HOTS and LOTS do not necessarily correlate, and
the first and second methods do not result in consistent learner segmentation. It supports
our attempt to predict different combinations of HOTS and LOTS based on individual
behavioral features and understand the critical components in each decision: it can further
help identify which cognitive processes can be used as targets of associated behavior
analysis and assist instructional design for future application.

Figure 4.7: The usage of high, mid, and low ranges of HOTS & LOTS and their relations to clusters derived from
k-means clustering.

4.3 Results
4.3.1 Model training protocols
Based on the decision tree, our model has been trained for accurate and explainable model
development. The decision tree also has the advantage of automatically excluding irrelevant
features and including only influential features by calculating the Gini impurity in its
training process. The prediction target has been: 1) multi-class prediction of automatically-
generated clusters derived clusters from k-means, and 2) binary prediction of high, mid, and
low usage of HOTS and LOTS, based on the thresholds derived from the quartile analysis.
It is important to point out that we used different target levels in prediction (i.e., multi-class,
binary) because these approaches are best suited to the distinct characteristics of each target.
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The clusters derived from the k-means method can be dynamic with added data points.
Therefore, it is more logical to understand features that make such clusters distinctive than
to comprehend the clusters themselves, which makes multi-level classification a more valid
approach.
However, the quartiles represent fixed, interpretable, and distinctive data segments into
low, mid, and high. This stable structure makes the binary classification approach more
valuable, enabling a clear and straightforward analysis of whether specific traits contribute
to the predictions of established thresholds. Therefore, Our methodological choices are
tailored to each data type’s unique properties and aimed at harnessing each classification
approach’s strengths.
Due to the limited sample size, we employed the SMOTE oversampling method to gen-
erate extra samples and match the number of samples to the most extensive label. We
followed the traditional sampling method, dividing the training and testing sets into 80%
and 20%, respectively. We used 5-fold cross-validation to train and test the data, which we
subsequently averaged to compensate for the limited sample size.
From the features that we listed in Table 7.1, we used one-hot-encoded F17 and F18 as the
training targets to achieve the quartile prediction. For cluster prediction, we set F19 as
the training target. We used dominance-related (F1-F8), expressiveness-related (F9-F10),
reaction time-related (F11-F12), and reading speed-related (F13-F14) features as predictors
in combinations and independently. Please refer to Table 4.2 for the accuracy of predictions.
We further conducted the feature importance analysis in the later section to understand
critical behavior components that are used for the cognitive processing prediction by
machines.

Table 4.2: Accuracies for predicting clusters and quartiles based on the decision tree.

Prediction objectives

Features thinking_skills_clusters (k-means)
(F19)

LOTS_level_high
(F17)

LOTS_level_mid
(F17)

LOTS_level_low
(F17)

HOTS_level_high
(F18)

HOTS_level_mid
(F18)

HOTS_level_low
(F18)

Random Guess 33.33 50.00 50.00 50.00 50.00 50.00 50.00
All (F1-F14) 72.00 67.33 49.33 67.33 70.66 66.66 72.00
Dominance-related (F1-F8) 62.00 64.66 63.99 79.33 52.66 58.00 72.66
Expressiveness-related (F9-F10) 36,66 71.33 52.66 71.33 38.66 49.33 40.00
Reaction time-related (F11-F12) 27.99 67.99 44.00 75.33 56.66 57.33 64.00
Reading speed-related (F13-F14) 42.66 78.66 65.33 78.66 60.66 72.00 70.66
1 The best performances are bolded The second best performances are underlined.

4.3.2 Accuracy of the model prediction with different feature cate-
gories

We implemented a decision tree in our training to achieve a simple implementation and
straightforward interpretation of the prediction. We set the maximum depth of the decision
tree model into 10 to ensure simpler interpretability and prevent possible overfitting.
As shown in Table 4.2, using all features led to the best prediction performances for
predicting the three thinking skill clusters derived from k-means, achieving an accuracy of
72.00%, highly surpassing the random guess that can be made by 33.33%. Considering the
prediction results coming from different feature categories, the accuracy ranges from 27.99%
with reaction-time-related features to 62.00% with dominance-related features; the overall
prediction seems to depend heavily on dominance-related features. Also, dominance-
related features achieved the highest accuracy for the quartiles of HOTS and LOTS, and
dominance-related features achieved the highest accuracy, at 79.33% for predicting the
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low LOTS and 72.66% for predicting the low HOTS. The result indicates that learners’
dominance-related attention regulation behaviors work as robust cues of learners’ low
HOTS and LOTS.
Reading speed-related features also worked as robust predictors for predicting overall
quartiles of HOTS and LOTS, with accuracy ranging from 60.66% to 78.66%. On the
other hand, expressiveness-related features from attention regulation behaviors were only
valuable for predicting low and high LOTS levels, with an accuracy of 71.33% each, while
showing limitations in predicting HOTS. Similarly, reaction time-related features have
shown sound prediction results for high (67.99%) and low (75.33%) LOTS while having
comparatively poor prediction results for HOTS and learners with mid-range HOTS and
LOTS. We assume that learners with low and high ranges of HOTS and LOTS show specific
behavior patterns that can inform the machine reasoning, while learners with mid-range
HOTS and LOTS did not show consistent behavior patterns, especially in expressiveness of
attention regulation behaviors and reaction time to the screen blur.

4.3.3 Model interpretation for identifying significant predictors for
cognitive processing

In this section, we examine plot trees and feature importance of models to identify the
essential behavioral features for predicting learners’ cognitive processing.

Figure 4.8: A plot tree to explain the model built upon the decision tree for predicting the thinking skill clusters.

Predicting three thinking skill clusters derived from k-means (F19)
Decision tree models provide great interpretability with the plot tree. Figure 4.8 illustrates
the model’s depth-by-depth decision-making process for predicting the three-level thinking
skill clusters. The tree uses Gini impurity to understand the quality of the split of groups
based on the condition, having 0 as the best purity with the best distinctions in the decision,
while 1 indicates the impurity, which requires another round of decision-making. Values



4.3 Results

4

55

Figure 4.9: The feature importance for predicting thinking skill clusters has been investigated.

in the bracket indicate the possibility that each condition is classified as C0, C1, and C2,
respectively.

Plot tree analysis for predicting thinking skill clusters derived from k-means (F19)
As can be seen from Figure 4.8, the first depth of the model considers the dominance of
hand behavior (F4) as the most influential feature in the decision-making: It informs that
if the feature marks less than 0.082, samples are classified as C1, making decisions for
21.4% of the samples. For the remaining 78.6% samples, the condition in the second depth,
expressiveness of the attention regulation behavior (F9) of 0.342, has been used. On the
right branch, 17.9% of the samples were classified as C0, having less than or the same as 1.5
as individual reading speed (F13) as the condition. The following condition of an individual
reaction time average (F11) of less than or equal to 0.793 classified 3.6% of the samples as
C0. Another 7.1% of the samples were classified as C1, with an individual reaction time
average (F11) of more than 0.793. From the left branch, 3.6% of the samples were classified
as C1, with a dominant hand behavior (F4) of more than 0.211. In the left branch, a second
dominant hand behavior (F7) of 0.5 was the following condition, and 32.1% of the samples
were classified as C2. The following condition of having dominance of body behavior (F5)
of less than 0.398 classified 7.1% of the samples as C0. Finally, the last condition classified
3.6% of the samples as C0, having less than or equal to 0.017 as eye behavior dominance (F1).
In contrast, 3.6% were classified as C2, with more than 0.017 as eye behavior dominance.
All in all, by conducting the feature analysis, we aimed to grasp how the model made the
decision. Having those procedures aligned is especially insightful for education researchers
and instructional designers, who work with the same sets of indicators and parameters. By
having such standards, they can take a more systematic approach to learning analytics and
subsequent intervention design, especially with learning behaviors.

Feature importance analysis for predicting thinking skill clusters derived from
k-means (F19) In Figure 4.9, we listed features that were used for the model training and
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ranked their feature importances derived from the tree model. The result shows that hand
behaviors (F4) are usually the dominant feature for predicting the thinking skill clusters
(F19). Not only the dominance of the hand behavior (F4, 28.32%) but also hand behaviors as
the first dominant (F4, 7.15%) and the second dominant (F7, 17.93%) behavioral features
contributed to making decisions for thinking skill clusters (F19). The expressiveness of
the learner’s behavior (F9, 25.32%) was the second most significant feature used to predict
the thinking skill clusters (F19). Additionally, individual reading speed (F13, 8.94%), the
dominance of eyebrow movements (F1, 6.97%), and body movements (F5, 5.36%) among
attention regulation behaviors were also used as indicators for predicting thinking skill
clusters (F19).

Predicting high, mid, low HOTS and LOTS (F17, F18)
Plot tree analysis for high, mid, low HOTS and LOTS (F17, F18) In our comparative
analysis, three decision tree models were developed to predict the high, mid, and low levels
of LOTS (Figure 4.10, 4.11, 4.12) and HOTS (Figure 4.13, 4.14, 4.15), respectively.
The three trees for predicting LOTS share a consistent set of predictors, utilizing a variety
of dominant hand (F4), mumble (F3) behaviors, and behavioral expressiveness (F9) play a
significant role in the prediction across all LOTS levels. Figure 4.10 for predicting the high
level of LOTS initiates the split with dominant hand behaviors (F4), suggesting its strong
influence. Subsequent splits on dominant mumble behaviors and behavioral expressiveness
(F9) illustrate a focus on nuanced behaviors to refine the prediction. The tree presents a
balanced path with splits occurring at both the left and right nodes, indicating diverse
sample distributions. In Figure 4.11, aiming at the mid-level LOTS prediction, individual
reading speed (F13) extends to greater depths, signaling a more complex decision-making
process with multiple behavioral and reaction time-related features such as dominant
blink behaviors (F2) and reaction time quartiles (F12), reflecting the intricate nature of
predicting mid-range outcomes. Figure 4.12 predicts the low LOTS level, revealing a notable
difference by starting with behavioral expressiveness (F9) as the primary split. It indicates
that expressive behaviors determine lower learning outcomes in LOT evaluation. Unlike the
previous models, Figure 4.12 simplifies the decision process with fewer splits, potentially
revealing more apparent distinctions among lower LOTS levels based on expressiveness
alone.
On the other hand, all models for predicting HOTS (Figure 4.13, 4.14, 4.15) have commonly
used the dominance of hand (F4), body (F5), andmumble (5) as critical features for prediction,
indicating universal applicability of such features to different HOTS levels. To predict high
levels of HOTS 4.13, body behaviors as the most common attention regulation behaviors (F6)
have been used as the root node, suggesting that initial body language plays a significant
role in predicting higher cognitive skills. Figure 4.13 is less complex, with fewer splits,
showing a more straightforward relationship between observable behaviors and high HOTS.
Figure 4.14 focuses on describing the mid-level HOTS, starting with individual reaction
average (F11), indicating that mid-level HOTS may be more closely linked to the arousal
levels of each individual. This model branches out into more levels of depth, requiring
a deeper analysis to achieve accurate predictions. To describe low HOTS levels (Figure
4.15), dominant eyebrow behaviors (F1) was used as the root node, having an intermediate
complexity between the high and mid-level models, showing a balance between behaviors
and individual traits in determining lower HOTS.
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Both LOTS and HOTS models utilized features related to the dominance of hand (F4),
body (F5), and mumble (F3) behaviors. It represents the dominance of attention regulation
behaviors as predictors of thinking skill levels (F19). The LOTS models often use dominant
hand behaviors (F4) as the root node, while the HOTSmodels vary, with the root node being
body behaviors as the most dominant attention regulation behaviors (F6) for predicting
high HOTS, individual reaction time average (F11) for mid HOTS, and dominant eyebrow
behaviors (F1) for low HOTS. It suggests that different aspects of behavior and individual
traits are considered for predicting different thinking skill levels (F19). The HOTS models
exhibited varying complexities, indicating that the prediction of HOTS levels may be
more complex and require a deeper understanding of the interplay between different
predictors. In contrast, the LOTS models appear more balanced, suggesting a more uniform
distribution of features across varying levels of LOTS. The mid-HOTS model stands out,
using an individual cognitive metric as the root, whereas the LOTS and other HOTS models
tend to prioritize behavioral indicators. It implies that individual cognitive metrics are
more predictive of mid-level HOTS, while observable behaviors are more indicative of the
extreme levels of both LOTS and HOTS.

Figure 4.10: A plot tree to explain the model built upon the decision tree for predicting the high LOTS.

Figure 4.11: A plot tree to explain the model built upon the decision tree for predicting the mid LOTS.
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Figure 4.12: A plot tree to explain the model built upon the decision tree for predicting the low LOTS.

Figure 4.13: A plot tree to explain the model built upon the decision tree for predicting the high HOTS.

Figure 4.14: A plot tree to explain the model built upon the decision tree for predicting the mid HOTS.

Feature importance analysis for high, mid, low HOTS and LOTS (F17, F18) Figure
4.16 shows that different behavioral features are essential in predicting LOTS and HOTS.
The dominance of hand behaviors (F4, 40.08%), mumble reading (F3, 39.77%), and behavioral
expressiveness (F9) have been identified as the most critical features for predicting high
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Figure 4.15: A plot tree to explain the model built upon the decision tree for predicting the low HOTS.

Figure 4.16: The feature importance for predicting high, mid, and low HOTS&LOTS have been investigated.

LOTS. For predicting mid LOTS, the dominance of movements in hand (F4, 25.52%), eyebrow
(F1, 14.91%), and body (F5, 11.67%) have been used as indicators. Low LOTS have been
predicted through features such as the dominance of blink behaviors (F2, 40.17%) and
movements in eyebrows (F1, 14.91%). The dominance of body movements (F5, 12.15%) as
the first dominant behavior and hand movements (F4, 22.18%) as the second dominant
behavior (F7) have also been considered significant. Behavioral expressiveness (F9, 5.82%)
has been identified as a predictor of low LOTS. In general, the dominance of diverse attention
regulation behaviors (F1-F5) and behavioral expressiveness (F9) have been considered for
predicting LOTS.
For high HOTS, individual reaction time average (F11, 26.94%) towards the screen blur
stimuli has been identified as the most critical feature. The dominance of mumbling (F3,
23.33%), movements from the body (F5, 10.61%), and hand (F4, 13.92%) have been considered
essential for predicting high HOTS. For learners with mid-HOTS, behavioral dominance of
eyebrow movements (F1, 63.27%) and hand movements (F4, 19.23%), as well as individual
reaction time average (F11, 17.50%), have been identified as critical features. For predicting
low HOTS, the dominance of the eyebrow (F1, 38.11%), hand (F4, 26.89%), and blink (F2,
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11.67%) have been used, along with individual reaction time average (F11) toward the
secondary blur stimuli (F12, 23.33%).
All in all, the dominant movements from the eyes (i.e., eyebrows (F1), blinks (F2)) were
commonly used for predicting both low LOTS and HOTS. Expressiveness (F9) has been used
for predicting LOTS. At the same time, learners’ reaction time (F11, i.e., arousal) has been
identified as a critical feature for predicting HOTS. Contrary to our hypothesis, reading
speed (F13) was not considered more important than other behavioral feature categories
for predicting overall LOTS and HOTS.

4.4 Discussion
Reaction time as a predictor of HOTS and expressiveness as a predictor of thinking
skill clusters and low and high LOTS The result indicates that reaction time (F11)
has only been used for predicting HOTS, while it has not been considered for making
judgments for LOTS and thinking skill clusters (F19). It might indicate that more arousal,
observed from fast reaction time, is likely related to learners’ HOTS. On the other hand,
the expressiveness (F9) is used for predicting high and low LOTS (F17) and thinking skill
clusters (F19). As higher expressiveness indicates more attention regulation behavior
during their reading, more distractions likely led to low LOTS (F17), while fewer attention
regulation behaviors have been interpreted to high LOTS (F17). All in all, we assume
that learners’ arousal has been targeted for predicting HOTS (F18), while more self-aware
distractions (i.e., attention regulation behaviors) have been used for predicting LOTS (F17),
which needs further validation.

Expansion of model is necessary with cognitive frameworks and more sample
collection Our work emphasizes the formation of an automated prediction system
based on XAI that helps with learning analytics and feature interpretations in e-reading.
However, due to the limited sample instances collected from 30 learners, more data inputs,
and following distribution changes in targeted thinking skill clusters, HOTS and LOTS
might change further feature interpretations and the feature importance analysis. This
work is meaningful in paving the way for an automatic machine learning feature analysis
for XAI, leveraged by hybrid human and machine intelligence. However, it can still be
nurtured by expanding behavioral and cognitive frameworks and more sample collections
for more generalized results.

Hierarchy of feature importances among behavior categories This work has imple-
mented four categories of features as predictors of learners’ HOTS and LOTS in e-reading.
Regarding accuracy, we found reading speed to be a reliable indicator of predicting HOTS
and LOTS, with an accuracy range between 60.66% to 78.66%, sometimes working as a
better indicator than attention regulation behavior-related features. However, when all
features have been taken for the prediction, reading speed has only been used to predict
the mid-range of LOTS, not for other targets with levels of HOTS and LOTS. In this sense,
we need further investigation into how reading speed is located among other features in
the model building with more extensive samples.
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4.5 Conclusion
This study focused on developing behavior-based XAI models in e-reading to predict learn-
ers’ cognitive processing based on learners’ utilization of HOTS and LOTS. Using our
multimodal WEDAR dataset, we extracted behavioral features related to learners’ attention,
including dominance and expressiveness of attention regulation behaviors, reaction time
to secondary blur stimuli, and reading speed. We hypothesized that these features could
serve as predictors of HOTS and LOTS. We adopted an unsupervised clustering method
(i.e., k-means clustering) and statistical quartile analysis to define targeted learners’ cogni-
tive processing in various levels and combinations. To achieve better explainability, we
employed decision tree models with maximum depths of 10 suitable for small datasets with
fewer feature categories.
The prediction results for thinking skill clusters and each high-mid-low level of HOTS
and LOTS demonstrate robust accuracies ranging from 65.33% to 78.66% across different
behavioral features and their combinations. The feature importance analysis reveals that
attention regulation behavior is consistently a strong predictor for all types of HOTS
and LOTS. According to the following critical component analysis of training features,
individual reading speed was found to be relevant only in predicting thinking skill clusters,
while behavioral expressiveness played an essential role in predicting thinking skill clusters
and LOTS. Individual reaction time to secondary stimuli was utilized only in predicting
HOTS.
In conclusion, our study successfully developed XAI models for behavior-based prediction
of learners’ cognitive processing with HOTS and LOTS in e-reading, leveraged by the
hybrid approach of combining human intelligence and machine reasoning. The findings
highlight the significance of attention regulation behavior as a consistent predictor across
different cognitive processing with levels of HOTS and LOTS. At the same time, we found
that expressiveness exclusively predicted thinking skill clusters and high and low LOTS,
which seems to be related to learners’ self-aware distractions shown by behavioral cues.
On the other hand, reaction time was used for predicting HOTS, which we found to be
related to learners’ arousal, which needs further validation. The results contribute to
understanding behavioral factors to predict learners’ HOTS and LOTS in e-reading and
provide valuable insights for educators and instructional designers.
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5
Data-Driven Persona Development and
Automatic Recognition for Real-Time

Applications: An Unsupervised
Machine Learning Approach

Different individual features of the learner data often work as essential indicators of learning
and intervention needs. This work exploits the personas in the design thinking process as the
theoretical basis to analyze and cluster learners’ learning behavior patterns as groups. To adapt
to the learning practice, we develop data-driven personas by clustering learners’ features based
on factual learning outcomes (i.e., knowledge gain, perceived learning experience, perceived
social presence) based on unsupervised learning, a more accessible and objective intervention
design strategy for e-reading practices. Using the Chi-square test, we quantitatively evaluate
different clusters driven by various unsupervised learning methods on the multimodal SKEP
dataset. Furthermore, for a more practical real-life application, we achieved automatic persona
prediction based on the attention regulation behaviors of learners. The subject-independent
evaluation results indicate the best classification accuracy of 70% for the four-level classification
task, differentiating three personas of learners with needs and another without feedback needs.
It also shows that time-based sampling on both independent and cumulative learner behaviors
works as robust predictors of learner personas, achieving a stable accuracy range of 65%-70%
throughout the e-reading with the SVM classifier. Our work inspires the design of a real-time
feedback loop for e-learning based on conversational agents.

This chapter is partly based on � Y. Lee., G. Migut., M. Specht. What Attention Regulation Behaviors Tell Us About
Learners in E-reading?: Adaptive Data-driven Persona Development and Application based on Unsupervised Learning,
IEEE Access (SCIE, IF=3.9) [184].
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U nderstanding users is an essential system design requirement for usability and better-
perceived services [185]. It is especially well-emphasized for digital product (e.g.,

software, online courses, eBooks) design since poor user requirement engineering causes
a perception gap between users and the practitioners, while users are often veiled with
unknown varieties [186]. Likewise, understanding learners’ traits and needs has been
a critical challenge in e-learning intervention design. Especially, learning and learner
necessities in e-learning tend to be more specific due to the physical absence of human
educators and peers, while keeping close attention and engagement remains a challenge
compared to the traditional on-site learning environment [156]. E-learning is becoming a
mainstream education with recent social changes (e.g., COVID-19 [187]) with widespread
e-learning platforms, digital devices, various forms of learning interventions, feedback
agents, and modalities (e.g., social robot [158]). Those are designed for diverse learning
objectives (e.g., formal and informal learning [188]) in e-learning and hybrid education
settings [189]. However, e-reading system development approaches for better engagement
seem scarce compared to the field’s rapid growth and necessities [190].
As a user-centric decision-making tool [185, 186], the concept of “personas” has taken place
in various domains, such as healthcare, knowledge management, social media, software
development, and games [191] since its first appearance in 1999 [192]. Persona was de-
vised as a practical and iterative [185] interaction design tool [192] in the design thinking
process [193]. Persona has been further elaborated as hypothetical “archetypal” represen-
tatives [194] with specific needs, goals [195], attitudes, skills, roles, and expected behaviors
[185, 196]. Those imaginary presences are believed to deliver certain behavioral traits,
perceptions, and beliefs of specific segments of people in the real-world [191]. Persona is
meaningful in providing a shared understanding of target users, their needs, and system
usage [197]. Recent advancements in big data, data science algorithms, and data infrastruc-
tures have made data-driven persona development and analytics more accessible than ever
[191], that has been traditionally done by several dozens of experts [198] for months and
years [199]. Even though feedback personalization in education has become more accessi-
ble with more accurate predictions available through sensors, algorithms, and computing
resources, according to our best knowledge, data-driven persona developments and the
following learning analytics in education for feedback system development, especially in
e-reading, have yet to be attempted.
In this regard, we develop data-driven personas using user modeling techniques based on
unsupervised learning and its analysis [185, 194]. Instead of designing the feedback first and
fitting learners with somewhat arbitrary criteria, we utilize the factual learning outcomes
(i.e., knowledge gain, perceived learning experience, perceived social presence) collected
from learners and use them as features for clustering learners, serving as the objective
ground truths for analysis. Our data-driven persona approach is especially valuable for
instructional designers and practitioners who lack standardized methods for analyzing
learners as groups for further learning analytics and intervention design. Even with the
same set of learner data and analytical objectives, it is nearly impossible to share the same
criteria when developing a persona with somewhat manual and qualitative methods, with
different perceptions and experiences of evaluators. Such deviations in decision-making
inevitably lead to subjective and inconsistent learner clustering, which hinders timely and
adequate intervention provision for learners.



5

65

Not merely working on the quantification and diversification of clusters, which has been
a focus of early development of quantitative persona [191], this paper strives for deeper
insights into learner analysis for e-reading intervention design by connecting the quantified
persona model to statistical analysis. We explore utilizing data-driven learner persona
to provide valuable insights into who learners are in terms of their categorical divisions,
feature compositions, and their needs as a group in one grasp with statistical interpretations
[200] and recognize them with classical machine learning classifiers.
From the perspectives of instructional designers, it is also more practical and feasible
to understand the semantic and statistical meaning of the core features of groups and
design interventions for them than making specific rules for individual features that deliver
fragmentary and linear information. Feature-based learner divisions often end up deriving
hypothetical learners with flat and stereotypical characteristics, which limits deeper insights
about learners. To compensate for the limitation, we suggest the intervention design based
on the data-driven persona using learners’ factual learning outcomes as major dimensions
of learner clustering.
Furthermore, we address a core issue of the utility of the above automatically generated
persona categories for the following intervention: predicting the learners’ persona cate-
gories for robust and timely learning interventions. To this end, we utilize human-labeled
video samples from the SKEP dataset [201] to train machine-learning models to achieve
the prediction of learners’ persona categories based on their real-time and accumulated
behaviors. The methods are validated via subject-independent protocols to ensure the gen-
eralizability of our method. Our automatic data-driven persona development framework
and its prediction can assist in forming a feedback loop for better learning outcomes and
experiences [195].
This work follows the procedure of 1) feature engineering on various types and levels of
factual learning outcomes, 2) implementation of various unsupervised learning techniques
and validation, 3) archetype extraction and data-driven persona development based on
quartile analysis, and 4) learner persona prediction based on attention regulation behaviors
(see Fig.5.1). We first utilize the multimodal SKEP dataset with the 25 multimodal features
that include various matrices (e.g., pre-post test, Attrikdiff questionnaire, Social Presence
questionnaire, and human annotation of six attention regulation behaviors for every second
on approximately 40 hours of video data) to understand diverse perspectives of factual
learning outcomes, collected from 60 higher education learners. It is a dataset that has been
carefully designed and collected to understand learner behaviors and internal attributes in
e-reading with emphatic and metacognitive feedback prompts from conversational agents.
See [158] for the experimental details.
As suggested in the recent review of [191], we implement and compare various clustering
methods on the dataset, such as k-means clustering, hierarchical clustering, Density-Based
Spatial Clustering of Applications with Noise (DBSCAN), and spectral clustering, that
represent various modeling methods (i.e., centroid, hierarchy, density, graph) with various
hyperparameters, which have further been cross-validated via Chi-square test. Subse-
quently, we conduct statistical analysis on each cluster to find distinctive and significant
clusters features and draw our insights based on it [197]. Using classical machine learning
models, such as AdaBoost, SVM, kNN, and Random Forest classifiers, we develop the
behavior-based prediction model for personas on multi-levels as a part of the potential
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Figure 5.1: Our work covers multimodal data processing, learner categorization based on unsupervised learning
methods, archetype extraction based on statistical analysis, and personas prediction based on learner behaviors.

feedback loop for e-reading. All in all, our research questions are as listed as followings.

• RQ1. How can learner features best reflect learners’ performances, experiences, and
perceptions of conversational agents’ interventions in e-reading?

• RQ2. How can unsupervised learning methods be used for learner pattern clustering
and validation?

• RQ3. How can we extract valuable archetypes of learners from different clusters and
develop data-driven personas based on them?

• RQ4. Can we predict learner personas based on attention regulation behaviors?

To summarize, our contributions are listed below.
1) To our best knowledge, it is the first attempt to extend the data-driven persona develop-
ment framework to e-reading with conversational agents. Personas provide learner clusters
with a more concrete, multi-dimensional synthesis of learner features that represent learner
categories differently from the cumbersome manual divisions of learners. Our feature
engineering and the clustering result can provide the foundation for future data-driven
persona-based learning analytics and intervention design for learners and instructors.
2) Despite its necessity, an extensive comparison among various clustering methods with
learner data has yet to be attempted. We implement four unsupervised models with various
modeling methods: k-means, hierarchical, DBSCAN, and spatial clustering. We conduct a
Chi-square test to find the similarity among clusters derived by different modeling methods
to validate clusters suggested by each other. It is a valuable attempt for future researchers’
model implementation decisions for unsupervised learning-based clustering.
3) We explore the application of proposed data-driven personas: predicting the learners’
persona categories for robust and timely learning interventions. We train machine-learning
models to predict learners’ persona categories based on their real-time and accumulated
attention regulation behaviors. It will provide a foundation for a solid HRI feedback
loop design in e-reading, promoting knowledge gain, perceived learning experiences, and
perceived social presence of learners. It is beneficial for the following learning analytics
and instructional design in e-learning for adaptive feedback implementation.

5.1 Related work
In recent years, more technology-enhanced learning and machine learning approaches
have taken roles to reveal hidden patterns in learning and help with the intervention design
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for the education administration and instructional design [202]. This section introduces
previous approaches using unsupervised machine learning methods in diverse learning
scenarios. The topic will be more specified with the review of data-driven persona devel-
opment, which will be the focus of this work. At the same time, the section on learning
analytics indicators on e-reading will help us derive important learner features and further
analysis. Lastly, we develop behavior-based machine learning models to bridge learning
analytics and data-driven persona prediction.

5.1.1 Unsupervised learning method for education
In this section, we focus on input features, objectives, and validation methods that have
been applied to unsupervised methods in education. [75] focused on individual factors
(e.g., gender, age, region, highest education, Index of Multiple Deprivation (IMD) bands,
disability) and the data from the previous course (e.g., studied credit, number of clicks), to
gauge the student involvement and their achievements in online-learning, using k-means
clustering. [203] segmented the students’ learning behaviors, utilizing data layers of 22
features (e.g., in information acquisition, solution construction, and solution assessment).
It applied a t-test to represent the significance of particular features and a sparse k-means
clustering for the feature selection and the final segmentation of learners, respectively. [204]
has used k-means clusteringwithmultimodal indicators, such as eye-tracking, physiological,
andmotion-sensing data, to automatically identify learners’ productivity states (e.g., neutral,
collaborative, non-collaborative) in collaborative learning. The model has been evaluated
through correlation analysis between learner states, task performances, and learning gains.
[74] has utilized student posts (i.e., textual dialogues) in MOOC for K-12 education to
understand functional similarities of discourses (e.g., questioning, statements, reflections,
scaffolding, references) via the k-means clustering, combined with bayesian information
criterion. For validation, machine-generated clusters have been compared with human-
coded clusters. [205] has divided learners based on their answers to system questions,
comparing clusters from hierarchical (i.e., hierarchical clustering) and non-hierarchical
(i.e., k-means clustering) clusters. For validation purposes, the within-group and between-
group squared sum have been evaluated, indicating that the non-hierarchical method
enables more detailed clustering results than the hierarchical method. [206] has used 12
engagement metrics (e.g., number of logins, number of forum reads, number of forum posts,
quiz reviews, assignment lateness, assignment submission) to cluster higher education
learners with k-means clustering method, aiming at personalized online education. Various
values of k have been applied to draw multi-levels of learner engagement clusters. [207]
has segmented higher education learners’ using the k-means clustering method based on
learners’ academic performance (e.g., students’ entry mode, residential category, scores of
courses, age, post-UTME scores, GPA, gender, class of degree) and validated the clusters
with a self-organizing map.
All in all, 1) from available implementation cases, it has been observed that the k-means
clustering method has been dominantly applied. The only exception was [205], which has
applied a hierarchical modeling method (i.e., hierarchical clustering) and a non-hierarchical
modeling method (i.e., k-means clustering) to cross-validate each cluster. 2) Large datasets
from online education platforms have often been used as input for modeling due to the easily
accessible data. However, because such a dataset often only conveys rather superficial
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quantitative log data (e.g., demographics of learners, number of clicks), result analysis
has shown its limitation without in-depth insights on the specific topics. It differentiates
the application of our SKEP dataset, which has been exclusively designed to understand
learner behaviors (i.e., attention regulation behaviors), performances (i.e., knowledge gain),
and internal states (i.e., perceived learning experiences, perceived social presence) with
metacognitive feedback prompts from conversational agents in e-reading. 3) There has yet
to be a fixed validation method for modeling results due to the nature of the unsupervised
machine learning method, which relies on practitioners’ further interpretations of results.
Thus, various validation methods (e.g., within-group squared sum, t-test) have been applied
based on researchers’ needs on model implementations. 4) Though all works have repre-
sented learning analytics as outcomes to certain degrees, there has yet to be an attempt to
directly analyze the effect of feedback prompts of conversational agents and connect them with
intervention loops. It supports our attempt to develop an automatic data-driven persona
and behavior-based prediction model that expands the feedback loop in e-reading with
conversational agents.

5.1.2 Data-driven Persona Development approaches
Personas have been developed as representative figures that carry diverse user roles (e.g.,
users’ characteristics, needs, and behaviors), profiles (e.g., demographic characteristics,
motivation, goals, and personalities of users), segments (e.g., user relationship to the sys-
tem, fundamental needs, characteristics of groups), and extreme characters (e.g., radical
personalities of users), that delivers personal, technical, relationship, opinion information
of users [185]. It started as a somewhat manual and qualitative analytics tool until recent
years’ proliferation of data, computing resources, and machine learning techniques [191].
The data-driven persona has been developed to compensate for the limitations of manual
and qualitative persona: 1) high cost with long development duration with high monetary
investments, 2) lack of objectivity and rigor due to the subjective criteria, 3) lack of scaling,
which often leads to poor adaptation in big-scale data, 4) misrepresentation of clusters
due to different insights and expertise of practitioners, and 5) expiration of validity with
sample updates [191, 194]. The persona has evolved from the 1) qualitative method and 2)
qualitative method with further quantitative validation in the early development. 3) Quan-
titative personas [208] have taken place with the implementation of unsupervised machine
learning techniques, which is often further supported by the qualitative interpretations of
practitioners on input indicators and clusters. Thus, the recent challenges of data-driven
persona development have mostly come from data quality as the model input and inter-
pretations of unsupervised models (e.g., data quality, data availability, method-specific
weaknesses, human and machine biases [191]). The inputs of recent work of data-driven
persona have ranged from accessible mouse-click log data to pricey data from surveys,
self-reports, interviews, and user observations [196]. Regarding model implementation, a
recent review has represented k-means clustering as the most used algorithm, followed
by non-negative matrix factorization and hierarchical clustering. Various methods, such
as latent semantic analysis [209], principal component analysis [191], and Cohen’s Kappa
[209], have been applied to best describe the distinctive cluster features and cluster valida-
tion using the clusters and new sample sets, respectively. Though no standardized methods
exist for cluster validations, the most common data-driven persona validation methods
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have been calculating the Euclidean distance between the different variables or testing
the Chi-square. At the same time, subject experts validated the cluster by reviewing the
clusters in a few pieces of literature [194].
To conclude, 1) the framework of data-driven persona development has yet to be applied
to the field of education, which seems to be especially valuable for instructional design
practitioners and researchers by representing learner groups with the synthesis of learner
features. 2)Comparative research among various unsupervisedmethods has been suggested but
did not take place in the field of data-driven persona development [191], which encourages
our attempt to compare modeling methods (i.e., centroid, hierarchy, density, graph-based)
and use each other for the cluster validation.

5.1.3 Indicators and measures of attentive e-reading
This section investigates various indicators to evaluate learners’ e-reading with emphatic
and metacognitive feedback prompts with conversational agents, especially based on
Human-Robot Interaction (HRI). Analytics4Action Evaluation Framework (A4AEF) [210],
an evidence-based learning analytics intervention evaluation protocol for online learning,
has been applied, that has empathized teaching presence, cognitive presence, emotional
presence, and social presence as core components of learning interventions. In the sub-
section of knowledge gain, various feedback strategies from human educators and the
existing systems are studied for insights into the feedback for better learning performances
[211]. In the subsections of perceived learning experiences and perceived social presence, we
investigate how multimodal feedback from systems is utilized and perceived by learners.
In the subsection of attention regulation behaviors in e-reading, we investigate observable
behavioral cues of learners that can be collectively used with other learning analytics
measures to understand learners’ attentional states during e-reading practices.

Knowledge gain
Knowledge gain is the primary goal of e-reading activities and vice versa; reading has
been one of the most fundamental forms of knowledge gain in higher education [158]. In
recent years, e-reading has become more commonplace with the rapid digitalization of
education and the widely-used smart devices [156]. Reading comprehension, reducing
reading times, and increasing meta-cognition have been considered the primary learning
objectives in e-reading, based on the ability to sift vital information from others [139]. The
knowledge gain evaluation has been conducted diagnostic, formative, and summative [212],
with questions about finding global or local information, text organization, identifying
main ideas, matching the sequence of events, and conclusions [139]. Several e-reading
strategies have been suggested for better knowledge gain: exploring, finding, analyzing,
and evaluating the reading material [213]. Furthermore, specific behavioral instructions
have been suggested, such as oral reading and revisiting mistakes [214].
Setting up the short-term goal related to the result (i.e., product goal) and the process (i.e.,
process goal) has also been suggested, known to improve learners’ self-efficacy, which
positively affects the choice of activities, effort, persistence, and achievement of learners
[215]. Observing the process goal, such as correct answers, test scores, and grades, was
suggested [215]. As known to negatively affect student motivation, learning capabilities,
and skill acquisition [215], resolving self-doubts in the learning process has also been
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suggested as a relevant feedback role. Regarding human educators’ feedback provision
pattern in reading, more self-corrections were expected from high performers, while more
frequent feedback was given to learners with lower learning achievements [214]. Some
human instructors focused more on contextual cues that are more relevant to our work,
aiming at overall comprehension. In contrast, some focused on specific cues that are more
relevant to the proficiency of certain skills [214].

Perceived learning experiences
Perceived experience is often interpreted and evaluated as User Experience (UX) in diverse
domains. One commonly referred definition of UX is users’ perceptions and responses
toward specific products and services based on users’ usage and anticipations [78]. The
increasing roles of conversational agents in everyday activities make the consideration of
UX in HRI more important [211], which affects the overall system acceptance [216]. In this
section, we look into the UX of the HRI, which is our focus as an intervention medium.
The recent HRI evaluation has been criticized for its questionable validity and reliability of
measures [217]. It seems to be partial because that UX can only be understood subjectively
through perceived users’ internal states [217], which makes the evaluation validation more
critical. Another comes from the fact that UX design implementation and evaluation of
intervention can only be understood through context, which requires the whole iteration
as a package but often takes place separately in most practices [211]. However, since HRI
is a relatively young research field, we still need the common theories, methods, models,
and tools [211] and dedicated studies for HRI design for specified objectives.
Though HRI evaluation can be partially inspired by the field of Human-Computer Inter-
action (HCI), HRI needs more specific evaluation methods as opposed to comparatively
traditional, passive, and computer-based facets of HCI [78]. In the same line, [211] indicated
the necessity of a systematic approach in HRI evaluation to guarantee a positive user expe-
rience regarding the system’s acceptance, usability, learnability, safety, trust, and credibility.
The presence of robot agents also makes the understanding of robots more essential, such as
contact with humans (e.g., physical robot, virtual robot), robot functionality (e.g., adaptive
function), robot roles (e.g., assistant, companion, partner), and social skills of the robot
(e.g., desirable to fundamental level) [217]. Understanding the functions of conversational
agents’ characteristics (e.g., speaking style, personality) and interaction properties (e.g.,
human-likeness [216]) is also emphasized, built upon users’ interaction needs and their
profiles [217]. [211] has focused on the roles of the HRI (i.e., do-goals, be-goals), looking
into the psychological need fulfillment, positive affect, and product perception of the robot
interaction [77]. [77] suggested pragmatic, hedonic-identity, hedonic-stimulation, and
attractiveness as primary qualities of UX evaluation, while [211] suggested diverse qualities,
such as relatedness, meaning, stimulation, competence, security, and popularity, as means
to measure needs in various activities (e.g., watching, listening, playing). Attractiveness,
perspicuity, efficiency, dependability, stimulation, and novelty have been suggested as HRI
UX evaluation measurements by [218], while users’ reactions and feelings were focused by
understanding perceived humanness, eeriness, and attractiveness for the robot acceptance
in [219].



5.1 Related work

5

71

Perceived social presence
Social presence has been defined as the sense of being in the company of another living being,
which has been widely investigated in social robot studies [220]. The social presence of
HRI has often been understood as part of UX, as forms of dependability [218], perceived
humanness [219], relatedness, security [218], and acceptance [216]. Perceived social
presence is a significant aspect differentiating HRI from other systems with artificially
embodied entities [220], including the HCI systems. As revealed in [158], learners perceive
that they recognize, understand, and communicate better with the HRI system with the
humanoid compared to the HCI system, leading to knowledge gain, even though both
feedback conditions were the same other than the assistance of a robot. Through a meta-
review, [221] has revealed that the in-person HRI poses positive effects on the combined
outcomes, efficacy, perceptions, and attitudes toward systems, compared to the remote
HRI, indicating the significant effects of the “physicality” of in-person HRI interfaces
on the learner perceptions. In this regard, we understand the perceived social presence
of physical humanoids as our focus in this section, separately from the perceived UX.
Perceived presence is known to enhance learner participation, satisfaction, [222], cognition,
and critical thinking [223]. Also, the sense of social presence is known to aid learners’
physical, emotional, and cognitive health in remote education, which seems especially
relevant to the recent online education in the post-pandemic era [220].
As means to evaluate the social presence of social robots, the following measures have
been investigated: perceived robot appearances [224], rapport building and relationship
dynamics [225], immersion, parasocial interaction, parasocial relationships, physiological
responses, social reality, and general social richness [226], salience, perceived actor-hood,
co-location/non-mediation, understanding, association, involvement, and medium socia-
bility [227]. Not merely focusing on perception towards the interaction medium itself
(i.e., robot), the perception toward the message has also empathized that are relevant to
the overall conversational agents [227]: attentional allocation, perceived message under-
standing, perceived affective understanding, perceived emotional interdependence, and
perceived behavioral interdependence [228]. [229] suggested the different effects come
from learner groups with varied consciousness, indicating that the higher social presence is
associated with the perceived learning and satisfaction in learners with low consciousness.
In contrast, the social presence did not affect the perceived learning or satisfaction in the
highly-conscious learners. Studies have suggested enhancing the social presence of learn-
ers: Using scaffolded and self-reflective topics for better self-disclosure, [230], facilitating
small group discussions [231], utilizing the storytelling [232], and providing personalized
features in implementation, such as personal profiles, text messages, individualized video
feedback, and one-on-one email communication [229].

Attention regulation behaviors in e-reading
Physical reading behaviors have been used as measurements to understand learners’
engagement and visual attention in e-reading, having various sensors, such as eye tracker
[14, 233, 234], motion sensors [23, 24], webcam [19, 156, 158], 3D-camera [116] and log
data layers [235], implemented. However, webcam-based attention feature extraction has
rarely been attempted, which could significantly assist the real-world feedback loop design
without complicated sensor implementations in various learning scenarios. This work
implements the webcam-based e-reading attention recognition framework of [156] for
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v
Attention regulation behaviors

(human annotation on video,
behavior label 0-5 for every second)

 - 0: Neutral (without attention regulation)
 - 1: Eyebrow (raising or bringing together)
 - 2: Blink (blink flurries or prolonged blink)
 - 3: Mumble (mumble reading)
 - 4: Hand (touching face or body)
 - 5: Body (adjusting torso or arm)

Post-hoc data (pre-post test, questionnaires)

Multimodal SKEP dataset

Knowledge gain
(pre-post test,

total score range: 0-14)

Knowledge gain =
Post-session score - Pre-session score

Real-time data (video, annotation)

Perceived social presence
(Social presence questionnaire,

7-scale Likert, 36 questions)
- Co-presence
- Attentional Allocation
- Perceived Message Understanding
- Perceived Affective Understanding
- Perceived Emotional Interdependence
- Perceived Behavioral Interdependence

Perceived learning experience
(Attrakdiff questionnaire,

7-scale Likert, 28 questions)

  - Pragmatic (7 questions)
  - Hedonic-Identity (7 questions)
  - Hedonic-Stimulation (7 questions)
  - Attractiveness (7 questions)

Figure 5.2: Multimodal SKEP dataset for attention regulation behaviors, knowledge gain, perceived learning
experience, and perceived social presence in e-learning with a conversational agent.

attention regulation behavior annotation. [156] suggested attention regulation behavior as
a critical cue where learners are aware of their attention loss and try to regain their focus
in e-reading. The behaviors have been movements from eyebrow (e.g., eyebrow raise, bring
together), blinks (e.g., blink flurries, prolonged voluntary blinks), mumble (e.g., mumble
reading), hand (e.g., touch body, face), and body (e.g., adjust torso, arm, head), as opposed
to neutral state without movements mentioned. Such behaviors have been revealed to
correlate significantly with self-reported distractions of learners, indicating the behaviors
as signs of attention loss and the following attention self-regulation. Video-based deep
learning models have been implemented as a good predictor of self-reported distractions
[156], knowledge gain, perceived learning experiences, and perceived social presence [158],
respectively in the real-world setting [156], as well as in the laboratory-based-setting with
the HRI system implemented [158].

5.2 Data pre-processing and unsupervised clustering based on factual
learning outcomes

This section introduces the dataset and performs data pre-processing to construct features
used for unsupervised learning. We represent feature constructions and further conduct
feature engineering by comparing the silhouette scores of manually and automatically
selected sets of features. We conduct unsupervised training based on various modeling
methods (e.g., k-means, hierarchical, DBSCAN, spectral clustering) and validate clusters
via the Chi-square test. In the process, we expect to tackle the following research question:

• RQ1. How can learner features best reflect learners’ performances, experiences, and
perceptions of conversational agents’ interventions in e-reading?

5.2.1 Multimodal SKEP Dataset
We utilize a multimodal SKEP Dataset (see Fig.5.2) collected from 60 higher-education
learners who use the English language for their daily education [201]. Participants were
recruited for an e-reading task on the screen (Age: M= 24.9, SD: 3.92; Gender: 37 males, 23
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females). They were given an e-reading system with emphatic and metacognitive feedback
from conversational agents through pop-ups and speech from a Furhat Robot [236], a
conversational agent in a humanoid robot form.
Before the e-reading, participants were given a pre-test with 14 questions to measure
their prior knowledge about the topic as a diagnostic knowledge measurement tool. The
e-reading content has had seven subsections with 4,750 words concerning “Waste manage-
ment and critical raw materials”. In the process, learners’ self-reports from the pre-post
test (e.g., knowledge gain) and questionnaires (e.g., perceived learning experience and
perceived social presence) were collected. At the end of every subsection of the screen-
based e-reading material, pop-up questions were given as formative measurements. At the
end of all subsections, another seven questions were given as a summative measurement
tool. Additionally, two post-session questionnaires took place to understand learners’
perceptions of the learning experiences and their perception of the system as a social
presence, respectively: the Attrakdiff questionnaire with 28 questions, which have prag-
matic, hedonic-identity, hedonic-stimulation, and attractiveness as its subdimensions, and
the Social Presence questionnaire with 36 questions that concerns co-presence, attention
allocation, perceived message understanding perceived affective understanding, perceived
emotional interdependence, and personal behavioral interdependence.
Also, throughout the experiment, the video data were collected through a webcam, and
multiple annotators later annotated learners’ behaviors for attention regulation. The video
data contains a total of 2,339minutes, reaching 40 hours. The video samples were segmented
every second, and 140340 frames were annotated into five attention regulation behaviors
(e.g., movements from eyebrow, blink, mumble, hand, body) and one neutral label that was
further cross-validated. Note that learner data from GUI-based or HRI-based conversational
agents from the SKEP dataset were not considered differently in this work. It is because our
data-driven persona aims to see learners’ perceptions and responses toward the feedback
system regardless of the specific type of feedback.

5.2.2 Manual vs. Automatic Feature Selection
Feature vectors representing the best subset of variables are often scrutinized in two
different ways: manually and automatically [237]. Manual feature selection is conducted
based on a good understanding of the domain and dataset, often criticized for human
bias and having deviated results from different evaluators. Automatic feature selection
is especially beneficial in high-dimensional data where dimension reduction of data is
essential and manual selection cannot achieve the utmost efficiency. However, automatic
methods also have limitations, such as information loss and low interpretability in results.
To achieve both semantically and scientifically sound results, we conducted the feature
selection 1) by manually dividing categorical features into three semantic levels and 2) by
conducting the automatic Principal Component Analysis (PCA) based on the percentage
of consensus in generalized Procrustes analysis. We compared the silhouette scores of
different sets of features, which offers the best distinctions among clusters. We found the
best-performing method, which helped us find the optimal feature vectors with the best
consistency of data clusters. The silhouette analysis and further applied elbow method
are used to understand the number of optimal clusters for future unsupervised training.
Note that mean-max normalization was applied to the SKEP dataset to make the subsets
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Table 5.1: SKEP dataset with low-dimensional, mid-dimensional, and high-dimensional features.

Low-dimensional Features Mid-dimensional Features High-dimensional Features
Knowledge Gain Knowledge Gain Knowledge Gain
Perceived Learning Experience - -

Pragmatic Quality 7 Sub-questions
Hedonic-Identity 7 sub-questions
Hedonic-Stimulation 7 sub-questions
Attractiveness 7 sub-questions

Perceived Social Presence - -
Co-presence 6 sub-questions
Attentional Allocation 6 sub-questions
Perceived Message Understanding 6 sub-questions
Perceived Affective Understanding 6 sub-questions
Perceived Emotional Interdependence 6 sub-questions
Perceived Behavioral Interdependence 6 sub-questions

identical to avoid potential bias from the different data ranges.

Manual Feature Selection
As can be seen from Table 5.1 and equation 5.1, 5.2, and 5.3, the SKEP dataset has data
with three layers: 1) low-dimensional features with three components (e.g., knowledge gain,
perceived learning experience, perceived social presence), 2) mid-dimensional features with
11 components (e.g., knowledge gain, pragmatic, hedonic-identity, hedonic-stimulation,
attractiveness, co-presence, attentional allocation, perceived message understanding, per-
ceived affective understanding, perceived emotional interdependence, perceived behavioral
interdependence measures), and 3) high-dimensional features with 65 components (e.g.,
knowledge gain, seven sub-questions of pragmatic, hedonic-identity, hedonic-stimulation,
attractiveness measures, six sub-questions of co-presence, attentional allocation, perceived
message understanding, perceived affective understanding, perceived emotional inter-
dependence, perceived behavioral interdependence measures). Those are three levels of
features with various dimensionality that make semantic sense to most human evaluators
based on the information hierarchy. Thus, we used those three levels of dimensional
features as manually selected features, which are listed in Table 6.1.

KnowledgeGain =∑N=7
i=1 ScorePreSessioni +∑N=7

i=1 ScoreInSessioni −∑N=14
i=1 ScorePostSessioni (5.1)

PerceivedLearningExperience =

∑N=7
i=1 ScorePragmaticQualityi +∑N=7

i=1 ScoreHedonic−I dentity
i

+∑N=7
i=1 ScoreHedonic−Simulation

i +∑N=7
i=1 ScoreAttractivenessi

28
(5.2)

PerceivedSocialPresence =

∑N=6
i=1 ScoreCo−presencei +∑N=6

i=1 ScoreAttentionalAllocationi
+∑N=6

i=1 ScorePerceivedMessageUnderstanding
i

+∑N=6
i=1 ScorePerceivedAf f ectiveUnderstandingi

+∑N=6
i=1 ScorePerceivedEmotionalInterdependencei

+∑N=6
i=1 ScorePerceivedBeℎavioralInterdependencei

36
(5.3)

Automatic Feature Selection Based on PCA
We conducted the PCA to achieve an automatic feature selection. PCA is often used
for unsupervised learning to reduce the data complexity by reducing the noise and the
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Figure 5.3: Number of principal components for explaining variance. 7, 10, 14, 20, and 31 components were
required to explain the 55%, 65%, 75%, 85%, and 95% variances, respectively.

dimensionality of data. By only selecting the principal components that explain the greatest
amount of variance, the computation becomes lighter with better clarity in convoluted and
multi-directional factors with minimal information loss. The equation below shows that
the PCA produces a linear composition of the original components until the d dimensions,
from the highest variance in the first element to the lowest variance in the last element.
The newly created k is called the principal component, which decides the new dimension
of subsets. Note that k<d.

PCi = a1X1+a2X2+⋯+adXd′ , (5.4)

where Xj is the initial function aj . j is the ith PC, while aj is Xj number coefficient.
As [238] indicated, 70% of explained variance is common, while [239] applied a total
variance ratio greater than 80% to reveal the most critical variables through the PCA. Below,
we applied variously explained variances to find the number of features required to achieve
specific proportions of explained variance. Note that 55%, 65%, 75%, 85%, and 95% have been
applied as the proportions of explained variance (see Fig.5.3). Feature numbers derived
from each proportion of explained variance have been applied for the silhouette analysis
in the next section (see Table 5.2). Note that the number of components in Fig.5.3 is 60,
equivalent to the sample number since samplenumbers < f eaturenumbers in this dataset.
In such a case, the PCA automatically takes the sample numbers as the feature numbers.

Feature Selection Methods Comparision: Silhouette Analysis
We have conducted silhouette analysis on manually selected features and automatically
selected features to find the best-distinguished clusters from the feature selection. Note
that the silhouette coefficient ranges between -1 and 1, and a score close to 1 indicates the
best performance.
In this study, silhouette analysis has been applied for two purposes: 1) measuring the
quality of the clusters based on different feature vectors as a part of the feature selection
process and 2) getting the first indication of the optimal number of clusters. See Table 5.2
for the silhouette coefficients derived from manually and automatically selected sets of
features. Various cluster numbers have been applied in the analysis process for further
insights. The result shows the best silhouette score has been achieved when manually
selected low-dimensional data has been applied, indicating the optimal number of clusters
as 6. Thus, this work uses knowledge gain, perceived learning experiences, and perceived
social presence as three feature vectors for unsupervised model training.
We assume that the PCA did not improve the performance of silhouette analysis, seemingly
because the PCA is based on the noise and the corresponding dimension reduction in the
dataset. In the PCA process, some essential data structures or features might have been
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Table 5.2: Silhouette analysis conducted on manually selected features and automatically selected features as a
part of feature selection.

Manual Feature Selection Automatic Feature Selection
Low-dimensional

(3 Features)
Mid-dimensional
(11 Features)

High-dimensional
(65 Features)

PCA
(31 Features)

PCA
(20 Features)

PCA
(14 Features)

PCA
(10 Features)

PCA
(7 Features)

Number
of

Clusters

2 0.679 0.451 0.282 0.297 0.276 0.261 0.265 0.324
3 0.604 0.397 0.194 0.171 0.188 0.201 0.217 0.232
4 0.641 0.406 0.174 0.114 0.126 0.118 0.129 0.159
5 0.647 0.451 0.149 0.094 0.083 0.101 0.118 0.148
6 0.729 0.367 0.143 0.077 0.076 0.103 0.131 0.125
7 0.670 0.338 0.116 0.026 0.059 0.085 0.076 0.099
8 0.531 0.250 0.115 0.020 0.042 0.090 0.070 0.097

Figure 5.4: Visualized results of different unsupervised learning methods: k-means, hierarchical, DBSCAN,
spectral clustering methods.

damaged, while all features were restructured as linear data and de-noised. In some cases,
the neighboring clusters might have been too close when feature selection was made based
on the PCA.

5.3 Unsupervised Learning for Learner Pattern Clustering and Com-
parative Analysis

In this section, we implement different unsupervised learning methods for further compara-
tive analysis, suggested in previous review [191], but has yet to be attempted in data-driven
persona development studies. We compare four unsupervised methods with various hy-
perparameters to evaluate the result consistency among methods as cross-validation. In
the process, we tackle the following research question:

• RQ2. How can unsupervised learning methods be used for learner pattern clustering
and validation?

Specifically, we implemented k-means clustering, agglomerative hierarchical clustering,
DBSCAN clustering, and spectral clustering methods that represent centroid, hierarchy,
density, and graph-based methods, respectively (see Fig.5.4 for the 3-D visualization of the
clusters).

5.3.1 Cross-validating clusters from various modeling methods via
Chi-square test

In this section, we apply the Chi-square test to validate the cluster distributions derived
from different modeling methods. The chi-square test is a frequently applied method
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to determine the statistical differences and homogeneity in one or more categories of a
contingency. We premised that the clusters are well-defined if homogeneity is found among
the models. As can be seen from Table 5.3, significant p values are observed, indicating a
significant relationship between categorical variables built upon different models. Thus,
from the following section, we use the cluster distribution derived from the k-means
clustering method, considering the model capability of being applied to larger datasets for
future research reproduction with increased samples. Note that the Chi-square test has
been conducted based on independent categorical cluster inputs (e.g., A, B, C, etc.).

Table 5.3: Chi Squared Test Applied to Unsupervised Models with Different Parameters.

k-means Hierarchical DBSCAN Spectral
Single Average Complete Ward Min Outlier Max eps

Value df p Value df p Value df p Value df p Value df p Value df p Value df p Value df p
k-means - - - - - - - - - - - - - - - - - - - - - - - -
Hierarchical Single 163 25 <.001* - - - - - - - - - - - - - - - - - - - - -

Average 163 25 <.001* 300 25 <.001* - - - - - - - - - - - - - - - - - -
Complete 163 25 <.001* 300 25 <.001* 300 25 <.001* - - - - - - - - - - - - - - -
Ward 163 25 <.001* 300 25 <.001* 300 25 <.001* 300 25 <.001* - - - - - - - - - - - -

DBSCAN Min Outlier 37.9 10 <.001* 52.9 10 <.001* 52.9 10 <.001* 52.9 10 <.001* 52.9 10 <.001* - - - - - - - - -
Max eps 77.6 15 <.001* 128 15 <.001* 128 15 <.001* 128 15 <.001* 128 15 <.001* 73.4 6 <.001* - - - - - -

Spectral 163 25 <.001* 300 25 <.001* 300 25 <.001* 300 25 <.001* 300 25 <.001* 52.9 10 <.001* 128 15 <.001* - - -

The single linkage combines clusters with the nearest data pair. The average linkage combines clusters with the
closest average distance between clusters. The complete linkage combines clusters, which have the maximum
distance between any two points of different clusters. The ward linkage combines clusters with minimized
within-cluster variances (=sum-of-squared distance) of all clusters. We apply the Eps of 0.205, where the result
shows the least outlier, while the K > 1. We apply the Eps of as 0.19, where the Eps has the smallest value before
the exponential increase in the number of clusters at 3.

5.4 Data-driven Persona Development and Statistical Interpretation
of Each Cluster

In this section, we conduct the statistical analysis on each cluster derived from the k-means
clustering method. In this section, unique features from each cluster are derived based on
quartile analysis to tackle the following research question:

• RQ3. How can we extract valuable archetypes of learners from different clusters and
develop data-driven personas based on them?

5.4.1 Archetype Extraction Based on Quartile Analysis using the
Low-dimensional Data

As shown in Table 5.4, we conducted the statistical analysis, built upon clusters derived
from the k-means clustering on factual learning outcomes. We first find the average feature
of all learners from all clusters. We further conduct the quartile analysis on each cluster
and see where each cluster is located from the whole set by comparing the mean value
of each cluster, which represents the most typical learner in the cluster, and the quartile
ranges from all learners.
Quartile analysis provides statistically critical information about the center point and the
spreads of the data [240]. It shows where a specific learner cluster is located from the
overall learner data points. Based on the quartile, we interpreted the learners into three
levels: if mean of cluster<1st quartile (25%) of all learners, we interpreted it as low, which
means that learners in the cluster show less tendency of having the specific feature than the
average learners. If 1st quartile (25%) of all learners<mean of cluster<2nd quartile (50%) of all
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Table 5.4: Statistical analysis conducted on clusters derived from k-means clustering result. Factual learner
features, such as knowledge gain, perceived learning experience, and perceived social presence, have mainly been
investigated through quartile analysis.

Statistical analysis (k-means)
Counts M SD Min 25% 50% 75% Max Interpretation

Knowledge
Gain

Overall 60 0.431 0.249 0.000 0.250 0.416 0.604 1.000
Persona A 19 0.438 0.123 0.250 0.375 0.416 0.500 0.666 Mid
Persona B 12 0.201 0.164 0.000 0.083 0.116 0.333 0.500 Low
Persona C 8 0.760 0.150 0.500 0.729 0.750 0.791 1.000 High
Persona D 8 0.135 0.098 0.000 0.062 0.166 0.187 0.250 Low
Persona E 6 0.736 0.081 0.666 0.666 0.708 0.812 0.833 High
Persona F 7 0.511 0.089 0.333 0.500 0.500 0.583 0.583 Mid

Perceived
Learning
Experience

Overall 60 0.491 0.244 0.000 0.310 0.444 0.652 1.000
Persona A 19 0.386 0.120 0.129 0.296 0.388 0.444 0.611 Mid
Persona B 12 0.819 0.128 0.592 0.787 0.824 0.898 1.000 High
Persona C 8 0.581 0.151 0.314 0.541 0.629 0.657 0.759 Mid
Persona D 8 0.236 0.007 0.148 0.185 0.194 0.300 0.370 Low
Persona E 6 0.635 0.171 0.370 0.574 0.648 0.694 0.888 Mid
Persona F 7 0.280 0.189 0.000 0.166 0.259 0.425 0.518 Low

Perceived
Social
Presence

Overall 60 0.482 0.206 0.000 0.327 0.523 0.606 1.000
Persona A 19 0.590 0.106 0.396 0.551 0.584 0.617 0.811 Mid
Persona B 12 0.438 0.208 0.047 0.341 0.433 0.603 0.745 Mid
Persona C 8 0.358 0.114 0.160 0.308 0.334 0.433 0.518 Mid
Persona D 8 0.435 0.162 0.235 0.320 0.415 0.530 0.726 Mid
Persona E 6 0.768 0.132 0.632 0.693 0.726 0.816 1.000 High
Persona F 7 0.215 0.122 0.000 0.155 0.264 0.301 0.330 Low

learners, we interpreted it as Mid, which means that learners in the cluster are located in the
average range of the particular feature (e.g., knowledge gain, perceived learning experience,
perceived social presence). If 2nd quartile (50%) of all learners<mean of cluster<3rd quartile
(75%) of all learners, we interpreted it as high, which means that learners in the cluster
show the strong tendency of having the particular feature than the average learners.

5.4.2 Archetype Extraction Based on Quartile Analysis using theMid-
dimensional and High-dimensional Data: Top-down Approach

We applied the quartile analysis to the mid and high-dimensional data to understand learn-
ers based on more detailed artifacts. While the quartile analysis on the low-dimensional
data provides a general understanding of learner clusters, the top-down approach based on
the mid and high-dimensional data lets a vivid understanding of learners based on more
detailed features. See Fig.5.5 for the visualized archetype based on the mid-dimensional
data. See Table 5.5 for the detailed archetype descriptions based on the high-dimensional
data.

5.4.3 Data-driven Personas built upon archetypes of different clusters
Persona A: archetypes derived from cluster 0
Persona A has been the most common type among all (60 participants), having 19 partici-
pants (31.67%) in the same cluster. Persona A has shown no significant knowledge gain and
perceived learning experiences. In the perceived social presence measure, persona A did
not show significant variances from the average learners, aside from one sub-measure from
perceived message understanding, that “it was easy to understand Readbot (i.e., feedback
system with conversational agents)”. All in all, persona A is the most average type of
learner among all participants.
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Figure 5.5: Archetype extraction and visualization based on the mid-dimensional data.

Table 5.5: Archetype extraction and quartile analysis based on the high-dimensional data.

Persona A Persona B Persona C Persona D Persona E Persona F
Low-
dimensional

Mid-
dimensional

High-
dimensional

High Low High Low High Low High Low High Low High Low
(Q3) (Q1) (Q3) (Q1) (Q3) (Q1) (Q3) (Q1) (Q3) (Q1) (Q3) (Q1)

Knowledge
Gain · · · ✔ ✔ · · ✔ ✔ · · ·

Perceived
Learning
Experience

Pragmatic
Q1. Technical (Low)-Human (High) · · ✔ · · · · · · · · ·
Q8. Impractical (Low)-Practical (High) · · · · · · · · · ✔ · ·
Q12. Unpredictable (Low)-Predictable (High) · · · · · · · · · ✔ · ·

Hedonic-
Identity

Q13. Cheap (Low)-Premium (High) · · · · · · · · · · · ✔
Q15. Separates me from people (Low)-Brings me closer to people (High) · · · · · · · · · · ✔ ·

Hedonic-
Stimulation

Q4. Conventional (Low)-Inventive (High) · · · · · · · ✔ · · · ·
Q24. Dull (Low)-Captivating (High) · · · · · · · · · · · ✔
Q27. Ordinary (Low)-Novel (High) · · · · · · · · · · · ✔

Attractiveness

Q3. Unpleasant (Low)-Pleasant (High) · · ✔ · · · · · · · · ·
Q9. Disagreeable (Low)-Likable (High) · · ✔ · · · · ✔ · · · ·
Q21. Repelling (Low)-Appealing (High) · · ✔ · ✔ · · ✔ ✔ · · ·
Q26. Discouraging (Low)-Motivating (High) · · ✔ · · · · ✔ · · · ✔

Perceived
Social
Presence

Co-presence

Q1. I noticed Readbot. · · · · · · · · · · · ✔
Q2. Readbot noticed me. · · · · · ✔ · · ✔ · · ✔
Q3. Readbot’s presence was obvious to me. · · · · · · · · · · · ✔
Q4. My presence was obvious to Readbot. · · · · · · · · · · · ✔
Q5. Readbot caught my attention. · · · · · ✔ · · ✔ · · ✔
Q6. I caught Readbot’s attention. · · · · · · · · · · · ✔

Attention
Allocation Q10. Readbot remained focused on me throughout our interaction. · · · · · · · · · · · ✔

Perceived
Message
Understanding

Q14. Readbot was clear to me. · · · · · · · · ✔ · · ·
Q15. It was easy to understand Readbot. · ✔ · · · · · · · · · ✔
Q17. Understanding Readbot was difficult. · · · · · · · ✔ · · · ·

Perceived
Affective
Understanding

Q19. I could tell how Readbot felt. · · · · · · · · ✔ · · ·
Q20. Readbot could tell how I felt. · · · · · · · ✔ · · · ·
Q22. My emotions were not clear to Readbot. · · · · · · · · · ✔ · ·
Q23. I could describe Readbot’s feelings accurately. · · · · · ✔ ✔ · · · · ·
Q24. Readbot could describe my feelings accurately. · · · · · · · · ✔ · · ·

Perceived
Emotional
Interdependence

Q25. I was sometimes influenced by Readbot’s moods. · · · · · ✔ · · ✔ · · ·
Q26. Readbot was sometimes influenced by my moods. · · · · · · · · ✔ · · ✔
Q27. Readbot’s feelings influenced the mood of our interaction. · · · · · ✔ · · ✔ · · ✔
Q29. Readbot’s attitudes influenced how I felt. · · · · · · · · ✔ · · ✔
Q30. My attitudes influenced how Readbot felt. · · · · · · · · · · · ✔

Perceived
Behavioral
Interdependence

Q31. My behavior was often in direct response to Readbot’s behavior. · · · · · · · · · · · ✔
Q32. The behavior of Readbot was often in direct response to my behavior. · · · · · · · · · · · ✔
Q33. I gave and took Readbot’s actions mutually. · · · · · · · · · · · ✔
Q34. Readbot’s gave and took my actions mutually. · · · · · · · · ✔ · · ✔
Q35. Readbot’s behavior was closely tied to my behavior. · · · · · · · · ✔ · · ✔
Q36. My behavior was closely tied to Readbot’s behavior. · · · · · · · · ✔ · · ✔



80 5 Data-Driven Persona Development and Automatic Recognition for Real-Time Applications: An Unsupervised Machine Learning Approach

Persona B: archetypes derived from cluster 1
Persona B has been the second most common type of learner group among all participants,
having 12 learners (20.0%) in the same segment. Persona B has achieved the second lowest
knowledge gain compared to other groups. However, Persona B has evaluated the system as
partially pragmatic and most attractive among all groups. The feedback from conversational
agents has been evaluated as “human”, “pleasant”, “likable”, “appealing”, and “motivating”
by persona B. Persona B did not show any significant perceived social presence. Persona B
is the learner type that perceives the system positively and has a good learning experience.
However, it did not lead to good knowledge gain, which is against of notion that the quality
of the learning experience somewhat leads to positive learning outcomes.

Persona C: archetypes derived from cluster 2
Persona C was derived from eight learners (13.33%). Persona C has shown high knowledge
gain among all participants and found the system “appealing” in the attractiveness of learn-
ing experience evaluation. However, persona C has responded generally negatively to the
social presence measures, especially in co-presence, perceived emotional interdependence,
and perceived affective understanding. Persona C has evaluated that “Readbot did not
notice me.” and “Readbot did not catch my attention.”, showing low sense of co-presence.
Furthermore, regarding perceived emotional interdependence, persona C answered that “I
could not describe Readbot’s feeling accurately.”. Persona C has responded that “I was not
influenced by Readbot’s moods.” and “Readbot’s mood did not influence the mood of our
interaction.”, showing the lower perceived emotional interdependence in two sub-measures.
All in all, persona C is the learner type that performs highly in knowledge gain, regardless
of mediocre learning experience and mediocre to low perceived social presence of the
system. Person C is a learner type that has trouble relating to conversational agents due
to his or her low co-presence with the system. However, the knowledge gain has been
achieved highest among all learners groups.

Persona D: archetypes derived from cluster 3
Persona D has derived from eight learners (13.33%). Persona D has achieved the lowest
knowledge gain among all participant groups. Also, persona D has evaluated the perceived
learning experience among all participant groups, especially in attractiveness and pragmatic
value of the system, perceiving the system as “disagreeable”, “repelling”, “discouraging”, and
“conventional”, respectively. In perceived social presence, persona D has provided answers
within the mid-range. However, in some perceived affective understanding sub-measures,
indicating that “Understanding Readbot was difficult.” and “Readbot could not tell how
I felt.”, while perceiving that, “ I could describe Readbot’s feelings accurately.”. Overall,
persona D is regarded as the learner type who performs poorly in knowledge gain based on
a poor perceived learning experience with the system. Persona D seemed discouraged and
repelled by the system that did not understand him or herself, likely in awareness that the
feedback was not based on their responses (i.e., intelligent system), having no difference
from the conventional one-way feedback system. In that regard, It seems that a better
interaction design based on an intelligent system might bring a better-perceived learning
experience and subsequent improvements in knowledge gain for persona D.
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Persona E: archetypes derived from cluster 4
Persona E has been built based on data from six learners (10.0%). Persona E has recorded
the second-highest knowledge gain among all learner groups. Persona E’s evaluation of his
or her learning experience was average. However, Persona E has evaluated the pragmatic
value of the conversational agents poorly, perceiving the feedback as ‘impractical” and “un-
predictable”. However, persona E evaluated the system as “appealing”. The most distinctive
feature of persona E came from its generally high perceived social presence, which has not
been found in other groups. The tendency has shown more obvious in assessing perceived
emotional interdependence, reporting their perceptions as “I was sometimes influenced by
Readbot’s mood.”, “Readbot was sometimes influenced by my mood.”, “Readbot’s feelings
influenced the mood of our interaction.”, and “Readbot’s attitudes influenced how I felt.”.
Accordingly, persona E has shown high perceived behavioral interdependence, perceiving
that “Readbot’s gave and took my actions mutually.”, “Readbot’s behavior was closely tied
to my behavior.”, and “My behavior was closely tied to Readbot’s behavior.”. Moreover,
in the co-presence sub-measures, persona E responded that “Readbot noticed me.” and
“Readbot caught my attention.”. Persona E has also reported that “I could tell how Readbot
tells.”, “Readbot could describe my feelings accurately.”, and “Readbot was clear to me.”,
showing high perceived message understanding and per affective understanding compared
to other groups of participants.

Persona F: archetypes derived from cluster 5
Persona F has been developed based on seven learners (11.67%). Persona F did now show
any significant knowledge gain compared to other groups of participants. The general
perceived learning experience and social presence have been the lowest. Persona F has
evaluated the system as “cheap”, “dull”, and “ordinary”, in Hedonic-Identity and Hedonic-
Stimulation measures. In the attractiveness sub-measures, Persona F found the system
“discouraging”.
In terms of perceived social presence, Persona F ’s responses toward co-presence and
perceived behavioral interdependence were all negative, indicating that “I did not notice
Readbot.”, “Readbot did not notice me.”, “Readbot’s presence was not obvious to me.”, “My
presence was not obvious to Readbot.”, “Readbot did not catch my attention.”, “I did not
catch Readbot’s attention.”, and “My behavior was not in direct response to Readbot’s
behavior.”, “The behavior of Readbot was not in direct response to my behavior.”, “I did not
give and take Readbot’s actions mutually.”, “Readbot’s did not give and take my actions
mutually.”, “Readbot’s behavior was not closely tied to my behavior.”, and “My behavior was
not closely tied to Readbot’s behavior.”, respectively. Also, persona F ’s perceived emotional
interdependence was also low, responding that “Readbot was not influenced by my mood.”,
“Readbot’s feelings did not influence the mood of our interaction.”, “Readbot’s feelings did
not influence the mood of our interaction.”, “Readbot’s attitudes did not influence how
I felt.”, and “My attitudes did not influence how Readbot felt.”. Low attention allocation
and perceived message understanding sub-measures from persona F have shown that
“Readbot did not remain focused on me throughout our interaction.” and “It was not easy
to understand Readbot.”.
Overall, Persona F did not consider conversational agents as beings with identity or being
good hedonic stimuli to e-reading. At the same time, poorly perceived co-presence seemed
to lead to persona F ’s low perceived emotional interdependence and behavioral interdepen-
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dence, subsequently. Interestingly, low perceived learning experience and social presence
did not negatively impact the knowledge gain of persona F. However, it also indicates room
for improvement in knowledge gain if guaranteed a better-perceived learning experience
and social presence of conversational agents.

5.5 Automatic persona predictions based on attention regulation
behaviors

Attention regulation behaviors are proven to be a robust predictor of learners’ attention
in e-reading [156]. In this section, we study if persona prediction can also be achieved
using attention regulation behaviors. We implement multiple classification models to
classify different patterns of personas via the attention regulation behaviors of learners.
We utilized the cross-subject evaluation protocol in all classification tasks. We chose the
classical 70-30 protocol of dividing 60 samples into 40 for training and 20 for testing. We
also scrutinize which part of the video sample can provide the best clues for persona
prediction by introducing comparative learning phase-based and time-based prediction
approaches. Also, we compared two different sampling methods of instant and cumulative
learner behavior labels. In the process, the research question below is answered:

• RQ4. Can we predict learner personas based on attention regulation behaviors?

5.5.1 Learning Phased-based & Time Duration-based Persona Predic-
tion

This section implements four classical machine learning classifiers: AdaBoost, Support
Vector Machine (SVM), k-Nearest Neighbors (kNN), and Random Forest. We predict learner
personas based on their behaviors shown during 1) various phases of learning and time
points based on 2) instant and cumulative behavioral data points. 3) we train on instant
and cumulative data so that our work can contribute to the real-time feedback loop by
investigating behavioral clues for predicting various personas.

5.5.2 Six-class Cluster Prediction (Multiclass Classification Task)
Six-class persona prediction via attention regulation behavior has been conducted to
differentiate all six personas (A-F) derived in the previous data-driven persona development
section. As seen from Table 5.6, The best performances have been 45% of accuracy, using
SVM and kNN applied to cumulative behaviors shown in various learning phases; the same
performance has been achieved in the kNN and Random Forest, using the time duration-
based method in 25%∼50% of reading duration. It is a significantly higher performance
than the random guess of 17%. There has been a general tendency that behavior from
instant behavior data from subtopic 5 data has achieved better accuracy than the other
part of instant data. Likewise, cumulative behavior data shown throughout subtopics 1-6
has derived the best result, with 45% as the best accuracy.

5.5.3 Four-class persona Prediction (Multiclass Classification Task)
We further conducted the four-class persona prediction (see Table 5.7). We selected three
personas that we found to have the feedback necessity among six personas: two personas
with low knowledge gain with a low and high perceived learning experience, respectively
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Table 5.6: Six-class persona prediction based on the learning phased-based & time duration-based learner behavior
data.

Learning phase-based Time duration-based
Instant Subtopic 1 Subtopic 2 Subtopic 3 Subtopic 4 Subtopic 5 Subtopic 6 Subtopic 7 ∼25% 25%-50% 50%-70% 75%∼

Random Guess 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17
AdaBoost 0.15 0.30 0.25 0.20 0.35 0.20 0.30 0.30 0.30 0.30 0.35
SVM 0.15 0.25 0.25 0.15 0.40 0.20 0.25 0.30 0.40 0.20 0.35
kNN 0.30 0.25 0.30 0.20 0.40 0.20 0.30 0.30 0.35 0.30 0.30
Random Forest 0.35 0.25 0.30 0.20 0.40 0.20 0.30 0.35 0.35 0.20 0.30

Cumulative Subtopic 1 Subtopic 1-2 Subtopic 1-3 Subtopic 1-4 Subtopic 1-5 Subtopic 1-6 Subtopic 1-7 ∼25% ∼50% ∼75% ∼100%
Random Guess 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17
AdaBoost 0.30 0.20 0.20 0.30 0.40 0.40 0.15 0.30 0.30 0.30 0.25
SVM 0.15 0.20 0.30 0.30 0.25 0.45 0.10 0.35 0.40 0.20 0.35
kNN 0.15 0.30 0.10 0.30 0.25 0.45 0.10 0.30 0.45 0.25 0.30
Random Forest 0.15 0.25 0.15 0.30 0.30 0.30 0.10 0.30 0.45 0.30 0.35

The best and the second best performances are bolded and underlined, respectively.

Table 5.7: Four-class persona prediction based on the learning phased-based & time duration-based learner
behavior data.

Learning phase-based Time duration-based
Instant Subtopic 1 Subtopic 2 Subtopic 3 Subtopic 4 Subtopic 5 Subtopic 6 Subtopic 7 ∼25% 25%-50% 50%-70% 75%∼

Random Guess 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
AdaBoost 0.20 0.20 0.30 0.30 0.30 0.15 0.20 0.50 0.55 0.60 0.55
SVM 0.35 0.40 0.35 0.35 0.35 0.40 0.40 0.70 0.65 0.70 0.70
kNN 0.35 0.25 0.35 0.45 0.45 0.60 0.25 0.65 0.70 0.55 0.65
Random Forest 0.20 0.25 0.35 0.35 0.4 0.35 0.20 0.60 0.45 0.60 0.60

Cumulative Subtopic 1 Subtopic 1-2 Subtopic 1-3 Subtopic 1-4 Subtopic 1-5 Subtopic 1-6 Subtopic 1-7 ∼25% ∼50% ∼75% ∼100%
Random Guess 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
AdaBoost 0.20 0.40 0.10 0.40 0.10 0.20 0.35 0.50 0.55 0.50 0.55
SVM 0.35 0.40 0.40 0.40 0.40 0.40 0.40 0.70 0.65 0.70 0.70
kNN 0.35 0.40 0.30 0.35 0.30 0.35 0.35 0.65 0.60 0.65 0.65
Random Forest 0.30 0.35 0.25 0.25 0.30 0.30 0.30 0.60 0.65 0.55 0.55

The best and the second best performances are bolded and underlined, respectively.

(i.e., Persona B, Persona D), which indicates low learning performances. Another cluster
was with the low learning experiences and social presence (Persona F), which suggests a
potential to improve system perceptions and the following knowledge gain improvements
with the future feedback loop implementation. We made the task to classify those three
personas from others (Persona A, Persona C, Persona E), which have been combined as
one label in the training process.
A four-class persona prediction is an economical approach to classify learners with learning
needs, compared to the six-level persona prediction for all learner personas. As seen from
Table 5.7, the time duration-based model has achieved the best accuracy both with learners’
instant and cumulative behavioral data points. The result shows the highest classification
accuracy of 70% via the SVM, kNN, and Random Forest classifiers with the instant behavior
data and the SVMwith the cumulative behavior data. It is a considerable improvement from
the 6-class persona prediction of 45% as the best prediction result and observers’ random
guesses, which has an accuracy of 25%. The SVM classifier has shown relatively stable
and robust performances in both instant and cumulative data in the time duration-based
method, proving the most appropriate classifier for real-time feedback loop development.
Model training on instant behavior data has shown generally higher accuracy than training
on cumulative data.
Once the model is implemented as part of the real-time feedback loop, the time duration-
based model using the SVM model based on both instant and cumulative video samples
can work as a stable and robust method among all combinations from attempted cases,
achieving the lowest 65% and the highest 70% accuracy.
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5.6 Limitations and future work
5.6.1 Feature engineering still requires high-level human judgments
As revealed in the feature selection process, evaluating multi-dimensional learner features
requires a deep understanding of the domain and the specific dataset. Especially learning
analytics and cluster classification greatly depend on how feature vectors and structures
are designed. Therefore, feature engineering for different learning domains and tasks
in future employment requires expertise with a deep understanding of the field and the
data. It emphasizes the importance of more iterative and context-based data collection and
learning analytics in a loop.

5.6.2 Combining expert annotation and k-means clustering might
provide more valuable insights

The k-means clustering method first chooses a random point and forms a cluster from
that point until the last sample. Thus, the quality of the randomly-chosen first data point
affects the clustering result, which might affect subsequent statistical analysis results. To
overcome such methodological limitations, we suggest involving experts in deciding the
centroids of each cluster for k-means clustering. By specifying the centroids rather than
starting from random data points, the model can significantly reduce the possibility of
selecting an outlier as the first centroid point and having misleading clusters that do not
appropriately represent the learner groups.

5.6.3 Feedback implementation for different cluster needs remains a
challenge

We aimed at the data-driven persona development to build a foundation for a feedback loop
in e-reading. Though we built up an architecture for automatic cluster generation, analysis,
and persona prediction based on learners’ behavior labels, we still need to implement
specific interventions for personas at needs and close the feedback loop. Thus, intervention
design and implementation in e-reading is our next research focus for the multimodal
feedback “loop” design in e-reading.

5.7 Conclusion
In this work, we implemented a framework of data-driven persona to a multimodal SKEP
dataset, which contains various data layers that reflect learners’ attention and perception
of their e-reading with feedback from conversational agents. We clustered learners based
on their knowledge gain, perceived learning experience, and social presence using various
unsupervised learningmethods to find the feedback necessities of different learner segments.
The Chi-square test has compared and validated machine-generated personas from different
modeling methods. In the process, feature selection methods (e.g., manual, automatic)
and different hyperparameters have been compared. We conducted the statistical quartile
analysis on each cluster based on clusters derived from the k-means clustering method. We
extracted each cluster’s archetypes that make the cluster distinctive from each other and
defined six personas. Furthermore, learners’ different attention regulation behaviors were
used to predict learner personas. In the process, diverse data points, such as instant and
cumulative learner behavior labels, have been explored as one dimension while having the
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learning phase and time duration as another. Various classical classification models, such
as AdaBoost, SVM, kNN, and Random Forest, have been applied to perform the 6-level
and 4-level classification tasks. The result indicates that 4-level classification for finding
personas with feedback needs, achieving 65-70% accuracy based on the SVM classifier
on the time duration sampling method, showing the potential for the real-time feedback
loop design. Overall, we aimed to build the architecture for further feedback prompts in
e-reading. Our automatic data-driven persona development and prediction can contribute
as a practical and effective learning analytics tool for real-time intervention design, greatly
assisting researchers and instructional designers in the field.
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6
Feedback Design Strategies: The Impact

of Conversational Agents and
Empathetic & Metacognitive Feedback

Reading on digital devices has become more commonplace, while it often poses challenges to
learners’ attention. In this study, we hypothesized that allowing learners to reflect on their
reading phases with an empathic social robot companion might enhance learners’ attention
in e-reading. To verify our assumption, we collected a novel dataset (SKEP) in an e-reading
setting with social robot support. It contains 25 multimodal features from various sensors and
logged data that are direct and indirect cues of attention. Based on the SKEP dataset, we com-
prehensively compared the difference between HRI-based (treatment) and GUI-based (control)
feedback and obtained insights for intervention design. Based on the human annotation of
the nearly 40 hours of video data streams from 60 subjects, we developed a machine learn-
ing model to capture attention-regulation behaviors in e-reading. We exploited a two-stage
framework to recognize learners’ observable self-regulatory behaviors and conducted attention
analysis. The proposed system showed a promising performance with high prediction results
of e-reading with HRI, such as 72.97% accuracy in recognizing attention regulation behaviors,
74.29% accuracy in predicting knowledge gain, 75.00% for perceived interaction experience,
and 75.00% for perceived social presence. We believe our work can inspire the future design of
HRI-based e-reading and its analysis.

This chapter is partly based on � Y. Lee., M. Specht. Can We Empower Attentive E-reading with a Social Robot? An
Introductory Study with a Novel Multimodal Dataset and Deep Learning Approaches, 13th International Learning
Analytics and Knowledge Conference (LAK)’22 [31].
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W ith the convergence of diverse e-learning platforms and peripheral device usage, e-
learning has become a mainstream education form over the last decade. The previous

year’s pandemic accelerated the need for e-learning due to the rapid transformation into
online and hybrid settings. In e-learning, many learners have trouble managing their
learning processes with less feedback on learning progress and support from educators.
Research on Learning Analytics (LA) has developed a variety of methods and approaches
to look into self-regulation support for learners in online environments [22, 241]. At the
same time, educators have difficulty checking learners’ engagement and progress and thus
cannot provide timely learning support.
Reading documents on screen and tablet devices is essential to online and self-regulated
learning. In the context of e-reading, attention management and keeping up attentive
e-reading has been a difficult challenge for learners [139]. Additionally, young readers
in the previous years have suffered from attention span reduction by using social media
and primarily video-based content [139]. On the one hand, low attention of learners in e-
reading leads to less effective and efficient learning [83]. On the other hand, it can also form
a negative loop resulting in learners losing interest and engaging less in reading activities
[242]. In this regard, our research investigates the impact of Human-Robot Interaction (HRI)
design with affective and meta-cognitive support as an added intervention for e-reading.
In recent years, HRI has been implemented in diverse education practices and domains (e.g.,
physics, math, handwriting, reading, vocabulary, and chess [188]). Educational support
has been implemented for various learning objectives (e.g., vocational training [243]) and
different target groups (e.g., elementary school students [244]), taking different roles in the
educational dialogue as educators, co-learner, and companions [245] in and outside the
classroom [246].
In our research, we focus on HRI for reading support as we consider reading a core activity
in most of today’s higher education activities, and more and more reading is done on digital
devices, from classical computer screens to tablets and mobile devices. We design our
Furhat Robot1 to function as a feedback agent in e-reading, which forms a social relationship
with its empathic feedback and human-like features with appearance, speech, and gestures.
Educators’ feedback with empathy and meta-cognition prompts have been directly related
to learners’ cognitive, affective, and behavioral development in learning, leading to positive
experiences and effective learning outcomes [247, 248]. Likewise, feedback with empathy
and reflection is considered desirable for the educational HRI design to establish social
relationships with learners and promote their critical thinking and meta-cognition [12, 13].
In this regard, we have the following research questions that we would like to focus on:

• How can HRI with empathic and meta-cognitive prompts support attention self-
regulation in e-reading?

• How can self-regulatory learner behaviors in e-reading be recognized through a
machine-learning approach?

• How can learning outcomes, perceived experience, and perceived social presence of
the social robot be predicted through the self-regulatory behaviors of learners?

1https://furhatrobotics.com/

https://furhatrobotics.com/
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• How can we develop a data-driven system to automatically conduct an attention
analysis in e-reading by intertwining multimodal data streams?

6.1 Background and related works
6.1.1 Attention theories and indicators
Human attention has been defined and interpreted diversely at an intersection of education,
psychology, neuroscience, and affective computing. [249] found that external attention
toward different objects, modalities, and features is closely interlinked with internal atten-
tion. For instance, emotional arousal, triggered by external stimuli, can change the level
of attention when acquiring information [250], form different internal associations [251],
and affect the levels of working memory involved [252]. [253] also revealed that affective
signals from sensory stimuli are one source that regulates various levels of awareness,
perception, and attention. Such a link between sensory stimulation and attention empha-
sizes the importance of engaging in intervention for more productive, motivating, and
better-perceived learning experiences [83]. [254] defined social attention as behaviors and
motivations to engage in learning as a part of social communication, followed by visual
attention towards learning materials.
However, in the context of e-reading and the implementation of HRI, the understanding of
attention seems to be more specific since it is an educational environment where human
agents (i.e., educators and peers) are absent. In this regard, our focus is to investigate the
HRI effects on e-reading via diverse measurements. As discussed above and argued in
the framework of Attention Network [255], human attention is characterized by not only
cognition but also by temperamental differences such as expression and control of emotions
and internal thoughts. In this regard, we examine multimodal cues that are direct and
indirect clues of attention: attention self-regulation, knowledge gain, perceived interaction
experience, and perceived social presence of the HRI.

6.1.2 Learning Analytics on HRI
We adopted the Analytics4Action Evaluation Framework (A4AEF) for our HRI analytics, an
evidence-based LA intervention evaluation protocol that can be applied to online learning
[210]. A4AEF has suggested teaching presence, cognitive presence, emotional presence,
and social presence as core components of learning interventions to assist learners in
planning, meaning construction, and facilitating engagement with the community of
inquiry (e.g., learning technologies, contents, peers, and instructor). It is typically achieved
by establishing a social learning space which is especially important in blended and online
settings. A4AEF has further emphasized the usefulness of predictive models for instructors
and learners based on learner data and analysis. We focus on four variables in our HRI
analytics approach related to learners’ attention: 1) attention self-regulation that are found
as self-regulatory behaviors, 2) knowledge gain as a cognitive learning outcome, 3) perceived
interaction experience from the learning practice, and 4) perceived social presence of a social
robot as a learning companion.

Attention self-regulation
With the convergence of sensor-driven approaches and machine learning techniques,
diverse multimodal datasets have helped to gain insights into learners’ cognitive and
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non-cognitive processes [256]. [241] indicated that there had been only a few studies
about behavioral and measurable indicators of self-regulation in learning compared to its
well-established theoretical and conceptual frameworks. Self-reporting is a traditional
measure to collect learners’ responses during or after learning activities, which is also
often criticized due to the high dependence on learners’ perception and awareness [257].
Biological signals from the body, brain, actions, and language have been implemented
to measure brain activity, while learner behaviors have been coded and combined with
diverse log data [241]. For instance, diverse parameters from the eyes, such as pupil
diameter [233], fixations [14], and the number of blinks [234] have been investigated as
cues of attention with the implementation of dedicated eye trackers and computer-vision
approaches. Learner emotion and arousal, which are known to be critical elements for
attention changes, have been interpreted through facial expression changes combined with
various data points [235]. Gestural cues from the hands and body have been studied for
individual, and group level attention [258]. In this work, we implement a framework of
[38] for the data collection and behavior labeling, which combines the classification of
self-regulatory learner behaviors and associated self-reported distractions in an e-reading
setting. Specifically, the behavioral cues of attention self-regulation include movements from
eyebrows, blinking, mumbling, hands, and body. We found such behavioral cues vital since
it is the moment when learners are aware of changes in their own attention, which are
also observable, that could directly lead to relevant intervention design. Model building
for attention regulation behavior recognition could also help to develop real-time loops for
further research.

Knowledge gain
Perceived interaction experience
Attention span is known to be highly associated with the motivations, and emotional
arousal of learners [259]. From the instructional design perspective, interaction is a critical
component that affects motivation and emotional arousal in e-learning, where learners
get better self-efficacy and adjust the cognitive load through sensory stimuli [260]. In this
regard, the concept of User Experience (UX) and interaction experience [261] has often been
adopted to understand learners’ emotions, beliefs, preferences, perceptions, and accomplish-
ments and applied to HRI and social robot evaluation, too [262]. The traditional circumplex
model of affects has interpreted affects by dividing them into two dimensions: positive or
negative valence and degree or extent of activation [263]. [264] has suggested an emotion
measurement by categorizing users’ perceptions based on appealingness, legitimacy, mo-
tive compliance, and novelty of emotions. The usability aspect of the interface has been
scrutinized through the System Usability Scale (SUS) [76], while Attrakdiff measurement
[77] has been developed for investigating diverse interface experiences and values that are
delivered to users, having Pragmatic, Hedonic-Identity (Hedonic-I), Hedonic-Stimulation
(Hedonic-S), and Attractiveness as its sub-dimensions. We implemented the Attrakdiff
measurement from [77] in our study since it has been a measurement developed especially
for evaluating the interaction quality and focused more on users’ affective perceptions,
which is our focus of interaction experience analysis.
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Perceived social presence
In e-learning, social presence has been understood as a key component for deep and mean-
ingful learning, contributing to learner participation and satisfaction towards learning
[222]. Furthermore, it is known to encourage the cognitive actions of learners, and their
critical thinking in learning processes [223]. Especially for e-reading with HRI, under-
standing the perceived social presence seems to be especially critical since the social robot
forms an additional layer in the learning environment compared to the GUI-based interface.
Traditionally, social robots have been evaluated for their interaction quality [254], per-
ception of the robot appearance [224], rapport building, and relationship dynamics [225].
Immersion, parasocial interaction, parasocial relationships, physiological responses, social
reality, and general social richness have been found as crucial factors of media as presence
[226], while it has been explicitly applied as a measurement for robot interaction in com-
parison with animated characters as social presence. The framework of Social Presence
[265] has emphasized attentional allocation, perceived message understanding, perceived
affective understanding, perceived emotional interdependence, and perceived behavioral
interdependence as criteria to evaluate the social presence, which has been adopted for HRI
evaluation for [228] the iCat, a companion robot for chess play. We implement the modified
Social Presence measurement since it is a measurement that has been well-established for
diverse domains, including HRI evaluation, with diverse sub-dimensions and its validity.

6.1.3 Behavior-based attention prediction
To our best knowledge, very little behavior-based attention prediction research has been
conducted in e-reading. [140] developed an attention prediction model in e-reading based
on multimodal cues, such as eyebrow, lip, head movements, and mouse orientation. [20]
used head orientation, eyelid, mouth height, gaze direction, and emotion to predict the six
levels of attention labeled by annotators (i,e., sleepiness, drowsiness, fatigue, distraction,
attention shift, concentration). [38] focused on self-regulatory learner behaviors (i.e.,
attention regulation behaviors) to regain attention during the e-reading and used it as a
predictor of self-reported distractions from learners. In this work, we collect attention
regulation behavior to identify learning behavior differences in HRI. As we found that
behavior patterns and analysis should vary based on a specific scenario [95], we collect a
novel dataset containing the HRI analytics on attention self-regulation, knowledge gain,
perceived interaction experience, and perceived social presence.
All in all, our contributions to the fields of Learning Analytics, Affective Computing, and
Human-Robot Interaction are as stated as follows:

• We developed preliminary HRI interventions with empathic and meta-cognitive
support for attentive e-reading. We analyzed learners’ e-reading with HRI from
diverse perspectives through direct and indirect attentional cues: attention self-
regulation, knowledge gain, perceived interaction experience, and perceived social
presence. It enables HRI analytics for both learners and instructors and further
assists the design of e-reading support.

• We collected a novel dataset (SKEP) with fivemeasurements and 25 features, spanning
a total duration of nearly 40 hours with 4,210,860 frames, which includes data from
sophisticated sensors, such as an eye tracker, and data layers with easy reproducibility,
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with a commercialized webcam and questionnaires. Rich data layers and intensive
human annotations are provided as ground truths that enable a comprehensive
analysis of HRI for e-reading.

• A data-driven system has been proposed with state-of-the-art deep learning mod-
els for recognizing attention regulation behaviors (i.e., low-level recognition) and
predicting knowledge gain, perceived interaction experience, and perceived social
presence (i.e., high-level understanding). This webcam-based approach makes our
work easy to reproduce and applicable to diverse reading-based e-learning scenarios
and can further be used to design and assess feedback.

6.2 A NOVEL DATASET FOR HRI-based E-reading ANALYTICS
6.2.1 Apparatus

30 Participants

Screen-based Reader

30 Participants

Pre-session

In-session

Post-session

Pre-test:14 Content-related Questions (Knowledge Gain)

Post-test: 7 Content-related Questions-Multiple Answer (Knowledge Gain)

Attrakdiff Questionnaire (Perceived Interaction Experience)

Social Presence Questionnaire (Perceived Social Presence)

GUI Condition HRI Condition

+ +

+

Screen-based Reader

Screen-based Reader

Screen-based Reader

+

+

+

+

+

Pop-up Questions on the Screen: True or False (Knowledge Gain)
Screen-based Reader

Webcam
Behavioral Cues (Attention Self-regulation)

Pupil Core Eye Tracker
Patterns from Eyes (Physiological Measure)

Furhat Robot
Emphatic & Reflective Feedback

+

Figure 6.1: Overview of the procedural steps of the GUI and HRI conditions.

We designed two interfaces: 1) a GUI-based system, with a monitor, mouse, and eye tracker
implemented, and 2) an HRI-based system, which has a monitor, mouse, eye tracker, and
Furhat Robot as physical components. See the footnote to check the specification of the
Pupil Core eye tracker2 with two infrared cameras and one head-mounted camera and
Logitech C505 HD Webcam3, that were implemented. For both conditions, an informative
2https://pupil-labs.com/
3https://www.logitech.com/

https://pupil-labs.com/
https://www.logitech.com/
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e-reading material with technicality, “Waste management and critical raw materials,” has
been provided through a screen-based reader, which we explicitly developed for this
study. The content has been chosen, aiming for an equal baseline knowledge for general
readers. The text contained 4,750 words and has been divided into 29 pages that cover
seven subtopics. The text has been implemented with 47pt on a 27-inch monitor, having
2560×1440 resolution. The setting has been optimized for the eye tracker implementation,
which requires a bigger font size than the usual PDF readers for high-resolution data
collection. See Figure 6.1 for a procedural summary of two experimental settings.

Did you understand 
the content that you just  

read about?

Are you clear about 
the subtopic that we just  

went through?

Did you like the text?

Did you understand 
everything in the text?

Have you been focused 
while you were reading?

Do you think you can 
apply the knowledge that you 

just learned?

Can you recall the 
main point of the subtopic 

in your mind?

My internal thumbs up for you! Keep up the good work!

No problem! We can always review once more!
Two seconds after the 

last page of subtopic 1 
has triggered

Yes

No

Alright, let's continue.N/A

Two seconds after the 
last page of subtopic 2 

has triggered

That's music to my ear! Let's move on.

I know, it's all about learning. We can go through the unclear part once more.

Yes

No

Alright, let's continue.N/A

Two seconds after the 
last page of subtopic 3 

has triggered

I am happy to hear that. I am interested in this topic, too.

I am sorry to hear that. I believe that you will like the next subtopic better.

Yes

No

Alright, let's continue.N/A

Two seconds after the 
last page of subtopic 4 

has triggered

That's super! Let's try to keep your good focus until the end of the text!

Maintaining good focus is always difficult. You are doing good already.

Yes

No

Alright, let's continue.N/A

Two seconds after the 
last page of subtopic 5 

has triggered

That's amazing! I am proud to be your reading companion.

It's okay. I always review once more if I don't understand something. Maybe you can do it too.

Yes

No

Alright, let's continue.N/A

Two seconds after the 
last page of subtopic 6 

has triggered

Wow, you are a fast learner!

I know it's not that easy. One tip is to reflect on the main point while you are reading.

Yes

No

Alright, let's continue.N/A

Two seconds after the 
last page of subtopic 7 

has triggered

Great, you are doing even better than I expected!

Recalling new information always takes. some time. It's all about practice.

Yes

No

Alright, let's continue.N/A

Feedback Trigger Robot Question
Learner 

Response
Emphatic & Meta-cognitive 
Robot Feedback: Speech

Big smile + Nod

Gesture LED

White blink (1.5s)

Big smile

Smile

Big smile + Nod

Big smile

Smile

Big smile + Nod

Big smile

Smile

Big smile + Nod

Big smile

Smile

Big smile + Nod
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Smile
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White blink (1.5s)

None

White blink (1.5s)

White blink (1.5s)

None

White blink (1.5s)

White blink (1.5s)

None

White blink (1.5s)

White blink (1.5s)

None

White blink (1.5s)

White blink (1.5s)

None

White blink (1.5s)

White blink (1.5s)

None

White blink (1.5s)

White blink (1.5s)

None

Figure 6.2: Emphatic & meta-cognitive HRI feedback protocol.

6.2.2 Materials
We implemented four measurements that are direct and indirect attentional cues. Data
features and granularity varies based on the data collection methods, collection timing,
and post-processing of data.

Attention self-regulation
Learners’ self-regulatory behavior has been collected through a video feed and annotated
second-by-second by human labelers as post hoc. Labels are observable behavioral cues
that indicate learners’ attentional shifts. As [38] revealed that movements from the 1)
eyebrow, 2) blink, 3) mumble, 4) hands, and 5) body works as good predictors of learners’
self-awareness on attention loss, we annotated 60 video samples by applying six labels,
including 6) neutral state as opposed to five attention regulation behaviour labels.
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Knowledge gain
Knowledge levels have been measured pre-session, in-session, and post-session, to under-
stand learners’ baseline knowledge and knowledge gained through the reading session.
Questionnaires with the same content have followed diverse formats (e.g., multiple choice,
true or false, multiple answers) to prevent learners from getting familiarized with questions
and making judgments without contemplating. We followed the formula below to reduce
the complication in calculating knowledge gain

Scorepre =
Npre

∑
i=1

Sprei , (6.1)

Scorepost =
Nin
∑
i=1

Sini +
Npost

∑
i=1

Sposti , (6.2)

KnowledgeGain = Scorepost − Scorepre , (6.3)

where Sprei is the pre-session score (0 or 1) for question i, while Sini is the in-session score (0
or 1) for question i and Sposti is the post-session score (0 or 1) for question i. Npre, Nin, and
Npost that indicate the total number of questions in practices for pre-session, in-session,
and post-session, which are 14, 7, and 7, respectively.

Perceived interaction experience
Attrakdiff measurement [77] provides assessments of learners’ perceived interaction. The
questionnaire has 28 questions with four sub-dimensions and seven scales between word
pairs: 1) Pragmatic quality refers to users’ perceived usability of the system (e.g., technical,
complicated, practical, straightforward, predictable, clearly structured, manageable). 2)
Hedonic-I focuses on characteristics that identify the system (e.g., connective, professional,
stylish, premium, integrating, brings me closer, presentable). 3) Hedonic-S investigates per-
ceived advancements of the system (e.g., inventive, creative, bold, innovative, captivating,
challenging, novel). 4) Attractiveness measurement assesses the likeability of the system
(e.g., pleasant, attractive, likable, inviting, good, appealing, motivating).

Perceived social presence
Social presence measurement [265] represents learners’ evaluation of interfaces as per-
ceived social beings. The questionnaire has 36 questions with six sub-dimensions: 1)
Co-presence refers to users’ perceived mutual awareness between the interface and the
user. 2) Attentional allocation refers to a users’ impression of exchanging attention with the
interface. 3) Perceived message understanding is users’ interpretation of mutual message un-
derstanding with the interface. 4) Perceived affective understanding is users’ perception that
both interface and users can interpret each others’ affective states. 5) Perceived emotional
interdependence conveys perceived mutual emotional impacts on each other. 6) Perceived
behavioral interdependence shows the perceived behavioral changes triggered by each other
between the user and the interface.
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6.2.3 Procedure
We recruited bachelor’s and master’s students on campus who use the English language
for their daily education. We kept nearly equal gender ratios and non-significant age
differences to prevent cognitive capability differences and following distinctions among
participants. GUI condition had 18 males and 12 females with an age range of 19 to 33
(M=25.8, SD=3.35). HRI condition had 19 males and 11 females with an age range of 19
to 37 (M=24.1, SD=4.30). Participants have been invited to an experiment individually
for an e-reading task. While a researcher in the GUI condition solely gave instructions
about the interface and the procedure, a Furhat Robot helped the researcher’s instruction
in the HRI setting so that participants could internalize how to make the speech input to
the robot. A screen-based pre-test questionnaire with 14 questions was given to measure
the baseline knowledge about the topic. There were 10 minutes of time limitations for
the pre-test. Once the pre-test was finished, a researcher entered the room, let learners
wear an eye tracker, and further calibrated it. A webcam was activated when learners
clicked the “start reading” button. Participants proceeded with the reading session by
reviewing the text on the screen reader. Throughout the process, seven pop-up questions
were given to both conditions at the end of each subtopic, while emphatic & meta-cognitive
robot feedback (Figure 6.2) was given two seconds after the last page of each subtopic was
triggered, only in the HRI condition. Once the reading session had finished, participants
were given a post-test questionnaire with seven statements as multiple-answer questions
in both conditions. Likewise, all participants received an Attrakdiff questionnaire with 28
questions and a Social Presence questionnaire with 36 questions as the final post-reading
session.

6.2.4 Dataset construction

Table 6.1: Summary of our novel attention self-regulation, knowledge gain, perceived interaction experience, and
perceived social presence with HRI in e-reading (SKEP) dataset.

Objectives Measurements Collection
Timing

Input
Channels Modalities Features Granularity Data

Formats

Attention
Self-regulation

Attention
Regulation
Behaviors

-Throughout
the session -Webcam -Behaviors

-Annotations

-Eyebrow
-Blink
-Mumble
-Hands
-Body

-Video
-Human Annotation
on Every Second
(30 fps on
4,210,860 Frames)

-AVI
-CSV

Patterns
from eyes

Eye
Tracking

-Throughout
the session -Eye Tracker -Eye

movements

-Pupil Diameter
-Gaze Positions
-Gaze on Surface/Markers
-Blinks
-Fixation
-Video (Head Mounted)
-Video (Infrared for Eyes)

-Infrared Cameras:
120Hz
-Frontal Camera:
30Hz

-AVI
-JSON
-CSV

Knowledge Gain
Diagnostic,
formative, and
summative assessments

-Pre-session
-In-session
-Post-session

-Mouse
Click -Text

-Pre-test
-In-session
-Post-test

-14 Instances
on Each Subtopic -CSV

Perceived
Interaction
Experience

Attrakdiff
Measurement -Post-session -Mouse

Click -Text

-Pragmatic Quality
-Hedonic-I Quality
-Hedonic-S Quality
-Attractiveness

-28 Questions on
Overall Interface
(7-Scale Likert)

-CSV

Perceived
Social
Presence

Social Presence
Measurement -Post-session -Mouse

Click -Text

-Co-presence
-Attentional Allocation
-Perceived Message Understanding
-Perceived Affective Understanding
-Perceived Emotional Interdependence
-Perceived Behavioral Interdependence

-36 Questions on
Overall Interface
(7-Scale Likert)

-CSV

As illustrated in Table 6.1, our SKEP dataset contains multimodal data with diverse objec-
tives, input channels, features, granularity, and data formats in different collection timing,
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which gives insights into direct and indirect cues of attention. Note that the data from the
eye tracker has not been used in this study.

6.2.5 Data processing and annotation
Sixty video samples from the GUI and HRI conditions with nearly 40 hours (2,339 minutes)
have been collected. The raw data has been segmented into every 30 frames (1 second)
for the second-to-second labeling from annotators. In total, the video data that has been
annotated are 4,210,860 frames. Two labelers (one doctoral student and one master’s
student) have been instructed about the labeling criteria for the annotation. Six labels
have been used, including neutral state, as opposed to five attention regulation behaviors:
movements in eyebrow, blink, mumble, hand, and body. In the second round, the labels were
summarized and cross-checked to address the inconsistent cases for validation. Note that
the behavior labels should be able to provide nearly homogeneous judgments regardless of
observers’ expertise in attention analysis since labeling only requires factual judgments
based on the criteria. See Figure 6.3 for an overview of the data processing and annotation
criteria.

Blink Mumble Hand BodyEyebrowNeutral

-Blink Flurries 
-Voluntary  
 Prolonged Blink 

-Mumble Reading -Touch Body 
-Touch Face

-Adjust Torso 
-Adjust Arm 
-Adjust Head 
-Lean Forward

-Eyebrows Raise 
-Eyebrows Bring 
 Together

-Without Attention
 Regulator  
 Behaviors

2,339 minutes 
(≈ 40 hours)

2,631,510 
Frames

60 Video Samples

59,010 
Frames

196,590 
Frames

563,640 
Frames

268,230 
Frames

1,048,170 
Frames

2. Video Segmentations1. Raw Videos 3. Attention Regulator Behaviors Annotation (Second-to-second)

4,210,860 
Frames

Segmentation (30 fps)

...

...

...

... ... ...

1,954,710 
Frames

2,256,150 
Frames

GUI HRI

30 Video 
Samples

GUI HRI

30 Video 
Samples

Figure 6.3: Data processing and annotation criteria.

6.3 Statistical analysis on attentional cues in E-reading: GUI vs. HRI
In the following, we present descriptive and statistical analysis to show the overall effects of
the treatment (GUI, control group and HRI, treatment group) on learners’ 1) attention reg-
ulation behaviors, 2) knowledge gain, 3) perceived interaction experience, and 4) perceived
social presence. Note that the average of all sub-dimensions has been derived to get the
overall Attrakdiff and Social Presence values. Furthermore, a one-way ANOVA (Welch’s)
analysis has been conducted to find the statistically significant differences between GUI
and HRI conditions.

Table 6.2: Attention self-regulation (behaviors) from GUI
& HRI.

Measurement GUI HRI One-way ANOVA
M(SD) F df1 df2 p

Neutral 1081.13(317.82) 1198.0(273.99) 118.73 1 83991 <.001
Eyebrow 3.50(3.57) 16.10(16.13) 11.78 1 87792 <.001
Blink 31.03(13.36) 28.83(11.18) 13.62 1 86616 <.001
Mumble 3.97(3.74) 40.43(34.14) 98.96 1 87040 <.001
Hand 65.93(93.50) 21.60(16.46) 1.41 1 84239 0.234
Body 189.43(100.48) 264.83(115.50) 425.43 1 81155 <.001

Table 6.3: Knowledge gain from GUI & HRI.

Measurement GUI HUM One-way ANOVA
M(SD) F df1 df2 p

Pre-test Score 3.47(2.52) 2.47(2.18) 2.711 1 56.8 0.105
Post-test Score 9(1.66) 9.3(1.86) 0.434 1 57.3 0.513
Knowledge Gain 5.53(2.86) 6.83(3.04) 2.908 1 57.8 0.094
Perceived Knowledge Gain 4.1(1.47) 5(1.14) 4.337 1 55.2 0.042
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Table 6.4: Perceived interaction experience from GUI &
HRI.

Measurement GUI HUM One-way ANOVA
M(SD) F df1 df2 p

Overall Attrikdiff 0.583(0.633) 0.537(0.511) 0.09777 1 55.5 0.756
Pragmatic Quality 1.1(0.721) 0.676(0.824) 4.49836 1 57.0 0.038
Hedonic Quality-I 0.324(0.833) 0.314(0.597) 0.00259 1 52.6 0.960
Hedonic Quality-S 0.348(1.12) 0.652(0.718) 1.56827 1 49.3 0.216
Attractiveness 0.562(0.852) 0.505(0.958) 0.05956 1 57.2 0.808

Table 6.5: Perceived social presence from GUI & HRI.

GUI HUM One-way ANOVAMeasurement M(SD) F df1 df2 p
Overall Social Presence 3.59(0.671) 4.14(0.484) 13.07 1 52.7 <.001
Co-presence 4.32(1.4) 5.45(0.796) 14.81 1 45.9 <.001
Attentional Allocation 3.59(0.823) 4.03(0.683) 5.18 1 56.1 0.027
Perceived Message Understanding 4.14(0.51) 4.48(0.437) 7.39 1 56.7 0.009
Perceived Affective Understanding 3.47(0.907) 3.73(0.606) 1.65 1 50.6 0.205
Perceived Emotional Interdependence 2.64(1.05) 3.33(1.02) 6.63 1 57.9 0.013
Perceived Behavioral Interdependence 3.39(1.4) 3.81(1.17) 1.60 1 56.2 0.211

6.3.1 Attention self-regulation
We labeled five attention regulation behaviors, which are sound indicators of learners’
perceived distractions [38], every second. The neutral behavior indicates the status without
any attention regulation behaviors. The dataset showed that the movements on the body
(1,048,170) as the most frequent form of attention regulation behavior, while the blink
(196,590 frames) and the eyebrow (59,010 frames) have minor cases among labeled attention
regulation behaviors. Mumble has recorded 563,640 frames, while hand movements have
shown 268,230 frames. As shown in Table 6.2, more neutral behavior has been observed
in the HRI (M=1198.0, SD=273.99) than in the GUI (M=1198.0, SD=273.99), while more
eyebrow, mumble, and body movements have taken more places in the HRI with statistical
significance. More mumbling and body movements have occurred in HRI since speech-
based interaction, and robot-looking has been a part of HRI design. According to our
observation, different individuals’ unique behavioral patterns, such as expressiveness in
behaviors, frequent usage of particular behaviors, and significant behaviors as attentional
cues, have been derived more from individual differences than conditions. In this regard,
further model training does not differentiate attention regulation behavior labels by experi-
mental conditions but combines both conditions as a whole to achieve attention regulation
behavior recognition and further predict other attentional cues.

6.3.2 Knowledge gain
Table 6.3 summarizes the overall knowledge gained in both conditions, with the pre-test
score, post-test score, and perceived knowledge gain. The GUI (M=3.47, SD=2.52) recorded a
higher pre-test score than the HRI (M=2.47, SD=2.18). However, a higher post-test score has
been documented in the HRI (M=9.3, SD=1.86) than in the GUI (M=9, SD=1.66), representing
higher knowledge gain in the HRI. However, the difference between groups did not show
statistical significance. The perceived knowledge gain after the reading practice was higher
in the HRI (M=5, SD=1.14) setting compared to the GUI (M=4.1, SD=1.47) on a significant
level (p=0.042). It indicates that empathic and meta-cognitive HRI feedback has helped
learners’ self-efficacy. We conducted a further Pearson’s correlation analysis between the
perceived knowledge gain and the actual knowledge gain to find if learners’ perception of
their learning achievement correlates to the objective learning outcomes. However, the
perceived knowledge gain did not show a correlation with actual knowledge gain (r=.071,
p=.589) both in the GUI (r=.052, p=.786) and the HRI (r=-.030, p=.876) settings.

6.3.3 Perceived interaction experience
Overall Attrakdiff. As seen from Table 6.4, the overall Attrakdiff measurement on the
GUI (M=0.583, SD=0.633) has gained higher scores than the HRI (M=0.537, SD=0.511). How-
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ever, our ANOVA analysis has shown a significance only in Pragmatic Quality measurement
between two conditions.

Pragmatic Quality. Table 6.4 shows that the GUI (M=1.1, SD=0.721) has been evaluated
to bemore pragmatic than the HRI (M=0.676, SD=0.824). Participants highly appreciated the
simplicity, practicality, straightforwardness, predictability, and clear structure of the GUI
compared to the HRI.The assessment of the HRI has shown a wide distribution, especially in
the “technical-human” measure, representing users’ contradicting perceptions. It indicates
that the presence of the reflective & empathic robot has often been perceived differently than
the original system design intention: we premised the HRI will be consistently perceived as
more “human” than the GUI system, but the evaluation has varied. We assume participants’
preconceptions of robots and human-robot interactions impacted their current evaluation,
which should be further investigated.

Hedonic-S The overall hedonic-S measure was highly evaluated in the HRI (M=0.652,
SD=0.718) compared to the GUI (M=0.348, SD=1.12). The HRI has been perceived as
inventive, creative, innovative, captivating, challenging, and novel than the GUI system.
A wide distribution of participant responses was found in the overall GUI for hedonic-
S evaluation. It seems to be because some users have perceived our GUI system as a
traditional e-reading system, while some perceived the pop-up questions as creative and
novel stimuli, which could be developed as a potential intervention with improvements.

Hedonic-I and Attractiveness. In hedonic-I (GUI: M=0.324, SD=0.833; HRI: M=0.314,
SD=0.597) and attractiveness (GUI: M=0.562, SD=0.852; HRI: M=0.505, SD=0.958) mea-
surements, the GUI has received slightly higher scores than the HRI without significance.
However, the HRI has been evaluated as more premium in the hedonic-I measure while be-
ing evaluated as more likable, inviting, and motivating in the Attractiveness measurement.

6.3.4 Perceived social presence
Perceived social presence. The overall Social Presence measurement has gained higher
scores in the HRI (M=4.14, SD=0.484) compared to the GUI (M=3.59, SD=0.671) on all
sub-dimensions (Table 6.5). An ANOVA analysis has shown significance in the overall
Social Presence, Co-presence, Attentional Allocation, Perceived Message Understanding,
and Perceived Emotional Interdependence.

Co-presence. Most participants perceived the HRI as a “presence”, while evaluation
of the GUI has varied. Co-presence has shown the highest evaluation result among all
sub-dimensions in the HRI (M=5.45, SD=0.796) while showing the widest distribution in the
GUI (M=4.32, SD=1.4). The same tendency has been observed from the perceived behavioral
independence measurement, showing that HRI is more often perceived as a “presence”
than the GUI.

Attentional Allocation, Perceived Message Understanding, Perceived Affective
Understanding, Perceived Emotional Interdependence, and Perceived Behavioral
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Interdependence. Unlike the GUI, users expected a certain attentional, intentional,
emotional connectivity with the HRI, showing different role expectations towards different
interfaces. Such perception toward HRI has likely to affect learners’ emotional (M=3.33,
SD=1.02) and behavioral (M=3.81, SD=1.17) susceptibility to the HRI, leading to higher
interdependence on emotional and behavioral levels. On the other hand, the broad spectrum
in the Attentional Allocation (M=3.59, SD=0.823) and Perceived Behavioral Interdependence
(M=3.39, SD=1.4) measurements in the GUI indicates that it was unclear for some users
whether the GUI reacts based on their behaviors (i.e., intelligent system) or if the feedback
was independent to participants. It seems to be because participants premised the HRI as
an intelligent system, though robot behavior has been pre-designed regardless of learners’
behaviors or speech: it indicates the necessity of developing an intelligent system based
on real-time learning analytics.

6.4 A data-driven system development with deep learning ap-
proaches for attentive e-reading analysis

This section introduces a data-driven system with deep learning approaches for developing
an attentive e-reading analysis. Specifically, we exploit a two-stage framework to build
the system by leveraging the rich data streams collected from the SKEP dataset. In the
first stage of low-level processing, we implement vision-based behavior recognition of the
subjects with computer vision technologies. In the latter stage of high-level analysis, we
utilize recognized subjects’ behaviors as feature vectors to achieve the attentive e-reading
analysis with machine learning models in a holistic way.

6.4.1 Recognizing attention regulation behaviors with computer vi-
sion techniques

Recent years, the deep learning and computer vision fields have made remarkable achieve-
ments in various vision tasks [266]. Inspired by those powerful AI models, we try to
leverage them to enhance the HRI-based attentive e-reading. More precisely, we imple-
ment three of the most standard temporal neural networks: CNN-RNN, CNN-LSTM, and
CNN-Transformer to achieve the low-level behavior recognition of subjects during their
e-reading. To have standard evaluations for all the reported results on the SKEP dataset, we
utilized the cross-subject evaluation protocol, which divides the 60 subjects into a training
group of 40 subjects and a testing group of 20 subjects. The training and testing sets have
94,519 and 45,843 samples, respectively. We use the six classes of annotated attention
regulation behaviors as the ground truth to train and evaluate the models’ performances.
In Table 6.6, we present the performances of these baseline networks.
As listed in Table 6.6, our observations are listed as follows: 1) the best methods’ accuracy
can go up to 72.79 %, which is much higher compared to a random guess over six classes
(16.67%). It verifies the powerful video recognition ability of deep learning models. 2)
RNN-based model has the highest performance 72.97% since larger-scale models like LSTM
and Transformer models easily overfit on our SKEP dataset. 3) Capturing shorter temporal
dynamics (temporal reasoning) is vital for better performance which proves again that
fewer parameters can avoid the overfitting issue (the best two performances are obtained
by setting the temporal step as 5). Note that the vast performance drop in 112-size images
with an accuracy of 47.72% (compared to 224 size with 72.97%) has been mainly caused by
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Table 6.6: attention regulation behavior recognition using deep neural networks on SKEP dataset. The highest
result is marked in bold. The second highest result is marked underline.

Model Type Temporal Step Video Input Size Accuracy

CNN-RNN
5 112 47.72%

224 72.97%

10 112 63.92%
224 62.03%

CNN-LSTM
5 112 58.17%

224 49.86%

10 112 34.19%
224 65.61%

CNN-Transformer
5 112 36.91%

224 72.84%

10 112 55.88%
224 65.89%

information loss due to the smaller image size. For instance, movements from mumbling,
eyebrows, and blinking are extremely subtle. It only takes 2-10 pixels to present those
regions at an image size of 112, which provides insufficient image information. However,
when it comes to size 224, feature learning can be significantly improved.

6.4.2 Automatic e-reading-based attention analysis using attention
regulation behaviors

In this section, we applied classical machine learning models to predict knowledge gain,
perceived interaction experience, and perceived social presence, using attention regulation
behaviors obtained from the previous stage as the feature vectors. Similar to the previous
stage, we utilized the cross-subject evaluation protocol. Note that the measurement of
attentive analysis (e.g. knowledge gain) is obtained based on the whole e-reading progress.
Thus one subject can have 60 samples in total (40 for training and 20 for testing). We
deployed five of the most classical machine learning models to learn the various attentive
patterns as shown in Table 6.7, 6.8 and 6.9.

Knowledge gain prediction
Knowledge gain prediction is of the highest importance among all measurements since
knowledge gain is the most fundamental objective of e-reading activities. We encoded
the distribution of attention regulator behaviors that happened within a given attention
span as feature vectors with dimensions of 1×N . N is the number of attention regulator
behaviors, as six in practice. Then, we fed the feature vectors to classifiers to predict learners’
knowledge gain. We present two evaluating settings: 1) fine-grained knowledge gain
prediction (5-level): excellent-good-average-poor-very poor; and 2) coarse knowledge gain
prediction (3-level): good-average-poor. Even through human observation, differentiating
fine-grained knowledge gains is difficult or nearly impossible. As shown in Table 6.7, for
the coarse(3-level) knowledge gain prediction, all the classifiers can achieve encouraging
results (above 63.57% accuracy) and relatively lower accuracy (around 40%) on challenging
fine-grained knowledge gain prediction, with the SVM classifier of the highest accuracy
for both fine-grained and coarse 45.0% and 74.29%, respectively.
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Table 6.7: Knowledge Gain (KG) prediction using attention regulation behaviors as a predictor.

Method Accuracy (%)
Fine-grained KG (5-level) Coarse KG (3-level )

Random Guess 20.00 33.33
Random Forest 38.57 69.29
AdaBoost 37.14 63.57
MLP 40.00 70.00
kNN 40.71 70.00
SVM 45.00 74.29

Perceived interaction experience prediction
Similar to knowledge gain, we trained the classifiers to predict the perceived interaction
experience of subjects. Instead of making it a regression task, we converted the task into a
classification task by assigning learners’ scores into positive (Attrakdiff overall and sub-
dimensions > 4), neutral (Attrakdiff overall and sub-dimensions = 4), and negative (Attrakdiff
overall and sub-dimensions < 4) based on the medium scale “4” from the Attrakdiff 7-Likert
scale. The prediction with the raw score shows whether learners will have positive, neutral,
or negative interaction experiences. However, using the raw score has a limitation in
that it leads to nearly-binary prediction (positive or negative) as it is improbable that
the evaluation result of a specific sub-dimension takes the exact neutral value. Thus, we
further defined the three classes into a normalized distribution [183] with the percentile of
participants’ scores (below 25%, 25-75%, and above 75%). As seen from Table 6.8, Random
Forest provides the best performance for all sub-dimensions of Attrakdiff measurement,
scoring the highest performance in the definitive score for the Pragmatic Quality prediction
with 92.5% of accuracy. The best accuracy lies on the Hedonic-I prediction with 87.5%.

Table 6.8: Perceived interaction experience prediction using attention regulation behaviors as a predictor.

Method
Accuracy (%)

Overall Attrakdiff Pragmatic Quality Hedonic Quality-I Hedonic Quality-S Attractiveness
Raw Normalized Raw Normalized Raw Normalized Raw Normalized Raw Normalized

Random Guess 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33
SVM 62.50 62.50 87.50 52.50 50.00 60.00 52.50 52.50 62.50 62.50
Random Forest 72.50 72.50 92.50 72.50 82.50 82.50 77.50 72.50 70.0 72.5
AdaBoost 52.50 67.50 90.00 57.50 57.50 87.50 70.00 70.00 60.00 67.50
MLP 62.50 75.00 87.50 45.00 65.00 47.50 42.50 40.00 70.00 57.50
kNN 60.00 62.50 87.50 47.50 57.50 62.50 42.50 42.50 62.50 62.50

Perceived social presence prediction
Perceived social presence prediction has followed the protocol of perceived interaction
experience prediction: using 1) splitting raw distribution to positive, neutral, and negative
levels and 2) dividing normalized distribution into the first (25%), second (25-75%), and
third quartiles (75%). Table 6.9 shows that the Random Forest classifier best predicted the
overall Social Presence (SP), Co-presence (CP), Attentional Allocation (AA), and Perceived
message understanding (PMU) for both raw and normalized distributions. The MLP also
has shown high performance for the Perceived Behavioral Interdependence measurement
(PBI) prediction. From the raw distribution, the highest result has been achieved with 92.5%
accuracy in both Co-presence (CP) and Perceived Emotional Interdependence measurement
(PEI) predictions. For the classes obtained from normalized distribution, the prediction
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results can go up to 100%, 97.5%, and 95% for predicting Co-presence (CP), Perceived Mes-
sage Understanding (PMU), and Perceived Emotional Interdependence (PEI), respectively,
representing the attention regulation behaviors as effective predictors.

Table 6.9: Perceived social presence measurement prediction using attention regulation behaviors as a predictor.
SP: Social Presence, CP: Co-presence, AA: Attentional Allocation, PMU: Perceived Message Understanding,
PAU: Perceived Affective Understanding, PEI: Perceived Emotional Interdependence, PBI: Perceived Behavioral
Interdependence.

Method Accuracy (%)
Overall SP CP AA PMU PAU PEI PBI

Raw Normalized Raw Normalized Raw Normalized Raw Normalized Raw Normalized Raw Normalized Raw Normalized
Random Guess 50.00 33.33 50.00 33.33 50.00 33.33 50.00 33.33 50.00 33.33 50.00 33.33 50.00 33.33
SVM 62.50 52.50 87.50 97.50 50.00 60.00 52.50 87.50 62.50 47.50 90.00 95.00 75.00 75.00
Random Forest 72.50 75.00 92.50 100.0 80.00 85.00 70.00 97.50 70.0 60.00 92.50 92.5 80.0 82.50
AdaBoost 52.50 65.00 90.00 97.50 57.50 67.50 67.50 87.50 60.00 57.50 85.00 90.00 70.00 70.00
MLP 67.50 67.50 90.00 95.00 70.00 72.50 70.00 90.00 75.00 37.50 77.50 92.50 85.00 82.50
kNN 60.00 55.00 87.50 97.50 57.50 57.50 42.50 87.50 62.50 37.50 90.00 95.00 67.50 67.50

Implementation details. In the above models, we set the following architecture hyper-parameters: CNN:
ImageNet-pre-trained [267] InceptionV3 [128] with N = 2048 feature dimensions and average pooling
for the last layer. RNN: LSTM: 1-Layer LSTM with N = 256 units. Transformer: Positional Embedding,
TransformerEncoder with N=2048 units, GlobalMaxPooling1D, and a fully connected layer to Softmax
output. The learning rate is all set as 0.0002 with a decay factor of 0.999 for every five training epochs
with a Titan RTX GPU. All other configurations follow the original network architectures unless stated
otherwise, such as temporal step and video input size in Table 6.6. We used Tensorflow/2.8 platform 4 for
deploying the deep learning models and scikit-learn Python 5 for machine learning models.

6.5 Conclusion
We comprehensively investigated the effect of social robots in e-reading by collecting a
novel SKEP dataset. In the SKEP dataset, we set HRI-based (treatment) and GUI-based
(control) conditions and captured rich multimodal features. The SKEP dataset includes more
than four-million frames of various sensor data and intensive human annotated ground
truths, which function as learners’ direct and indirect attentional cues during the e-reading.
We found that there have been specific role expectations toward different interface types,
which leads to more attentional, emotional, and social connectivity with the HRI. We
developed a data-driven system using the SKEP dataset with cutting-edge deep-learning
approaches. The proposed system showed a promising performance with high attention
regulation behavior recognition and high prediction results for knowledge gain, perceived
interaction experience, and perceived social presence. It proves the attention regulation
behavior as sound observable cues of direct and indirect attention cues in e-reading.

4https://www.tensorflow.org/
5https://scikit-learn.org/stable/

https://www.tensorflow.org/
https://scikit-learn.org/stable/
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7
Designing Feedback Timing: Deep

Learning-Based Attention Regulation
Recognition and Real-Time Feedback

Loop

This study is built upon a behavior-based framework for real-time attention evaluation of
higher education learners in e-reading. Significant challenges in AI model developments for
learning analytics have been 1) defining valid indicators and 2) connecting the analytics
results to interventions, balancing the generalization and personalization needs. To address
this, we utilized a public multimodal WEDAR dataset and trained a neural network model
based on real-time features of learners, aiming at predicting learners’ moment-to-moment
distractions. Real-time features for model training include 30 learners’ attention regulation
behaviors annotated every second, reaction times to blur stimuli, and page numbers indicating
various reading phases. Our preliminary model based on a neural network has achieved 66.26%
accuracy in predicting self-reported distractions. Based on themodel, we suggest a framework of
a Behavior-based Feedback Loop for Attentive e-reading (BFLAe). It has text blur as feedback, a
mechanism responsive to learners’ distractions that also works as data for next-round feedback.
The general feedback implementation rules are established on a statistical analysis conducted
on all learners. In addition, we propose a strategy for personalizing feedback using a quartile
analysis of individual data, promoting learner-specific feedback. Our framework addresses the
high demand for an automated e-learning assistant with non-intrusive data collection based
on real-world settings and intuitive feedback provision. The feedback system aims to help
learners with longer attention spans and less frequent distractions, leading to more engaging
e-reading.

This chapter is partly based on� Y. Lee., G. Migut., M. Specht. Behavior-based Feedback Loop for Attentive E-reading
(BFLAe): A Real-Time Computer Vision Approach, 32nd International Joint Conference on Artificial Intelligence
(IJCAI)’23, [268].
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W ith recent quantitative and qualitative growth in data and computing availability,
machine learning approaches are becoming more prevalent in learning analytics

and educational data mining [159]. Behavior-based learning analytics is one approach
that utilizes cameras and wearable sensors (e.g., eye tracker [140, 158]) to investigate
human needs and necessities from their lifestyle, habits, abnormal patterns, and conditions
[269]. In learning analytics, machine learning models are often used to predict learning
performances and specific internal states of learners from their affective (e.g., arousal,
valence [20, 140]) and cognitive states (e.g., mind-wandering [14, 142], switches of internal
thoughts [15]) that are associated with learners’ performances and experiences. These
approaches are applied to individual-level and group levels [22, 258] for various learning
scenarios. Based on real-time action recognition and assessment, most systems aim to
form an intervention loop and fundamentally aid learning [26, 189].
Regardless of their accurate prediction capabilities, sensor-based approaches are often
criticized for being intrusive [26], changing the nature of learning experiences. Thus,
various computer vision-based approaches [15, 23] have been suggested to make learning
and system design more seamless for real-world applications. Especially behavior-based
analytics is valuable in that particular behavior that machines recognize is also observable
and semantically interpretable to humans to some extent [160, 256]. Common challenges
in behavior-based machine learning applications in learning analytics have been 1) to find
valuable features for model training [160] and 2) to specify the implementation conditions
and parameters that best support the accurate recognition of targeted signals [32]. 3)
Also, closing the feedback loop, considering generalization and personalization [26] in the
analytics phases, and implementing the feedback has been difficult.
In this regard, our objective is to suggest a Behavior-Based Feedback Loop for Attentive
e-reading (BFLAe) framework, which involves 1) webcam-based video data collection,
2) computer vision-based learning analytics, 3) blur feedback implementation in text,
and 4) further cognitive&behavioral changes of learners as consequences of feedback
loop implementation. The framework is built upon a multimodal WEDAR dataset, which
provides valuable insight into learners’ behavior during e-reading activities. Our approach
involves training a neural network model on real-time features that reflect learner behavior,
including attention regulation behaviors, reaction times to blur stimuli, and page numbers
that reflect different reading phases from the public WEDAR dataset [141]. These features
provide a basis for predicting learners’ perceived distractions and form a foundation for
implementing feedback mechanisms. By implementing the blur feedback on the screen-
based e-reader, we aimed to close the feedback loop that enables the further loops, which
is not obstructive to the primary reading task and is semantically intuitive. Feedback could
potentially help learners reflect on their current state and strategize for future reading [159],
which may not be subjectively noticeable to them. The objectives of the behavior-based
real-time feedback loop have been 1) extending the overall attention span of learners and
2) reducing the frequency of distractions.
We believe that this personalized, behavior-based feedback loop offers a practical solution to
the challenges faced by the fields of Technology-Enhanced Learning (TEL) and Multimodal
Learning Analytics (MMLA), promoting more engaging, effective, and individually tailored
learning experiences [270]. This article contributes to the ongoing discussion of how best
to use technology and learning analytics to support learners. By presenting an innovative
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framework for an attention regulation behavior-based feedback loop in e-reading, we hope
to inspire further research and practical applications of behavior-based models in education.

Our contributions are as stated follows:

• According to our best knowledge, it is the first framework to introduce a real-time
feedback loop for attentive e-reading. Our webcam-based behavioral framework
is non-obstructive and applicable to diverse e-learning scenarios which involve e-
reading as a major learning activity. Our BFLAe framework with increasing digital
reading in formal and informal learning with prevalent digital technologies will be
more valuable.

• It is a framework built upon WEDAR, a multimodal public dataset collected in an
e-reading scenario. It offers more relevant data specified for attention measurement
for e-reading. With the implementation details depicted in our framework, the work
can be reproduced and further elaborated for specific scenarios based on different
tasks and implementation requirements.

• By specifying the statistical values of different behavior labels that represent attentive
(i.e., neutral) and distractive (i.e., attention regulation behaviors) learner states, we
provide researchers and instructional designers with options to make choices on
thresholds for the feedback trigger. As feedback necessities vary depending on the
system goals, our analysis result can provide valuable ground for the feedback rules
for different systems.

7.1 Behavior-based Analysis on Multimodal WEDAR dataset
In this section, we briefly analyze the multimodal WEDAR dataset. By doing so, we tried to
understand the dataset’s structure and attention regulation behaviors shown in e-reading
and potential patterns that are shown together with the self-reported distractions.

7.1.1 Preliminary analysis on attention regulation behaviors
We used the multimodal WEDAR dataset in our investigation [141]. This dataset comprises
human-labeled behavioral labels with five categories of attention regulation behaviors and
a neutral behavior as the label, all annotated in every second of the video data. These videos
were collected from 30 higher education learners. In particular, this study used real-time
distraction reports as the ground truth for distraction instances [118]. As depicted in Figure
7.1, the distribution of attention regulation behaviors in the dataset is not even. The most
common behaviors are body movements, which account for 18.5% of the behaviors, and
hand movements, which contribute 12. 1% to the duration of the video. The remainder
consists of eyebrow movements (3.1%), mumbling (2.6%), and blinking (2.1%). Furthermore,
neutral labels, indicating states of attention, constitute 90.9% of the behavioral labels. It
is important to note that multiple attention regulation behaviors can co-occur within the
same second, so the total proportions do not add up to 100%.
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Figure 7.1: The multimodal WEDAR dataset contains second-to-second annotation labels of attention regulation
behaviors and neutral behavior, consisting of varied label proportions.

7.1.2 Unobservable patterns between attention regulation behaviors
and self-reported distractions

We graphically represented the five categories of attention regulation behaviors and neutral
behaviors along with distraction reports to discern potential visual patterns between
attention regulation behaviors and self-reported distractions. As is evident in Figure 7.2,
participants exhibited a wide range of reading speeds, ranging from 461 seconds (7.7
minutes) to 1661 seconds (or 27.7 minutes). Moreover, we noticed substantial variation in
the use of attention regulation behaviors, as well as in the patterns of perceived distractions
and the reporting of these distractions. Given this unobservability, the integration of
machine learning becomes crucial. It also represents the limitations of human educators in
detecting complex patterns hidden within the behavioral patterns of learners.

Figure 7.2: Self-reported distractions and five attention regulation behaviors visualized in time for one-third of all
participants (P21 - P30)
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7.2 Framework of Behavior-based Feedback Loop for Attentive E-
reading (BFLAe) and its architecture
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Figure 7.3: The overall architecture of the Behavior-based Feedback Loop for Attentive e-reading (BFLAe)
framework includes four stages: 1) webcam-based video data collection, 2) computer vision-based learning
analytics, 3) text blur as intervention, and 4) cognitive&behavioral changes aimed by the feedback.

This section presents the system’s architecture, as shown in Figure 7.3. Drawing on
previous research in the realm of multimodal learning analytics [26, 32], critical factors in
forming a multimodal feedback loop for learning include 1) the alignment and integration
of data streams, 2) the identification of learning requirements, 3) informed design decisions
for multimodal feedback, and 4) the observation of implications within specific learning
scenarios. Consequently, we propose a four-stage approach to BFLAe.

7.2.1 Framework of BFLAe: four stages in system architecture
In the first stage, webcam-based video data is collected during e-reading. This method
offers an unobtrusive approach compared to other sensor-based strategies. The second
stage involves learning analytics, which is based on a model developed from attention
regulation behaviors and self-reported distractions. The following section will detail the
specific features used in model training and the rules for triggering system feedback. In
the third stage, a blur effect is applied to the reader’s screen for the feedback generation
condition, which was decided in the previous phase. The blur effect can be deactivated by
the learner clicking on the reading area. This stage not only aids learners by increasing
arousal but also serves as additional data for further learning analytics since the reaction
time provides crucial cues about the learners’ cognitive states. The final stage of the loop
aims to induce cognitive and behavioral changes in learners. Specifically, the system’s
objectives are: 1) extending the attention span between distractions and 2) decreasing the
frequencies of distractions, as measured by attention regulation behaviors, reaction speed
to the blur stimuli, and self-reported distractions.
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7.3 Behavior-based attention predictions based on Neural Network
This section introduces the features and computational model that we have established to
predict attention levels: a prerequisite step integral to the subsequent feedback generation.

7.3.1 Feature engineering of real-time features
The WEDAR dataset provides behavioral attributes in real-time from 30 higher education
learners engaged in e-reading. As referenced in Table 7.1, eight distinctive features have
been harnessed for model training. Five attention regulation behaviors were used as binary
features (feature 1) and independent features (features 2-6). Reaction times to secondary
blur stimuli, activated at random intervals, have been implemented as another feature
(feature 7). Reaction time is a classical measure used to assess learners’ arousal levels
[15, 175]: shorter reaction time is often interpreted as higher arousal, while a longer
reaction time is often considered an indicator of more distractions. The last feature is the
specific page number (ranging from 1 to 10) that the learners were on, which represents
the reading phases of the learners. For feature engineering, this data was one-hot-encoded
(feature 8). It is important to note that we have only extracted real-time features from the
dataset. This decision aligns with the feedback loop’s objective of a real-time approach.

Table 7.1: Real-time features have been pre-processed from the multimodal WEDAR Dataset.

# Feature name Feature description Categorical / Nominal
1 Attention_regulation_behavior_binary Occurrences of any of attention regulation behaviors 0,1
2 Eyebrow_occurence Occurrences of movements from eyebrow as attention regulation behavior 0,1
3 Blink_occurence Occurrences of movements from blink as attention regulation behavior 0,1
4 Mumble_occurence Occurrences of movements from mumble as attention regulation behavior 0,1
5 Hand_occurence Occurrences of movements from hand as attention regulation behavior 0,1
6 Body_occerence Occurrences of movements from hand as attention regulation behavior 0,1
7 Reaction_time Reaction time to randomly triggered blur stimuli Continuous
8 Page_number (one hot encoded) The page number that learners are currently on 1,2,3,4,5,6,7,8,9,10

7.3.2 Data pre-processing
We utilized eight real-time features described in Table 7.1 for our model training. We
initially partitioned our dataset into training and testing sets, comprising 80% and 20% of
the data, respectively. We balanced the data set, using the synthetic minority oversampling
TEchnique (SMOTE) to prevent an imbalance between distracted and attentive states so
that neither state would dominate the other in proportion and provide sufficient data points
for the training. Subsequently, we applied min-max normalization to confine the data
distribution between 0 and 1. This process was implemented to mitigate any potential bias
from different data ranges. Furthermore, min-max normalization is acknowledged for its
ability to accelerate training. It is particularly advantageous for our approach, which will
have many data points from second-to-second recognition.

7.3.3 Model training using neural network
As shown in Figure 7.4, we employ a sequential neural network model with its linear stack
of layers. Our network architecture comprises three hidden layers with a rectified linear
unit (ReLU) activation function. To mitigate the risk of overfitting, we incorporated a
dropout layer into our model, which is widely used for randomly nullifying a fraction of
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the layer’s output features during the training phase. In our case, the dropout layer is
configured with a rate of 20%, omitting one-fifth of the input. The final layer of our model
is a dense layer with a Sigmoid activation function, with an output range between 0 and 1.
It is an optimal choice for our binary classification task. The loss function is designated as
mean squared error (mse), the optimization algorithm is set as Adam, and the accuracy
is selected as the metric for model evaluation during training. The model has reached an
accuracy of 66.26%. This performance exceeds the 50.00% accuracy expected from random
guess, which implies that the prediction capacity of the model is considerably better than
the chance. The real-world implementation could be enhanced by integrating the feedback
rules, which will be further elaborated on in the next section.

Figure 7.4: Our model structure, built upon a neural network, consists of one input layer, three hidden layers, one
dropout layer, and one output layer.

7.4 Automatic feedback constructs with visual stimuli
This section introduces the rationale for implementing blur stimuli, feedback rules, and
Human-Computer Interaction (HCI) architecture (Figure 7.5). See Figure 7.4 for descriptions
of HCI, showing the functions of components and blur feedback applied in response to
learners’ distractions.

7.4.1 Type of feedback: blur stimuli
We suggest the implementation of blur on text area as automatic visual feedback (see Figure
7.6), which has also been used to measure reaction time in previous studies [15, 156]. In the
following, we introduce the advantages of introducing blur stimuli as part of a feedback
loop.
1) The blur stimuli serve a dual function: they trigger the learner’s arousal and simultane-
ously work as data points for future feedback loops. Different reaction times, behavioral
features, and self-distraction reports are incorporated into the screen-based reader as
next-round feedback, enabling more precise predictions and personalized feedback.
2) Critics often suggest that feedback interrupts the primary task by adding secondary tasks
to learners, inducing cognitive overload [158]. In this context, the interaction between the
learner and the system is semantically intuitive and actionable by having a prominently
placed deactivation button, where the learners naturally focus during the reading task.

7.4.2 Feedback implementation rules: statistical analysis on learner
behaviors indicating different attentional states

Thewindow size in machine learning refers to the number of data points that are considered
to capture information and contexts at each step, which is especially crucial for sequential
data processing [269]. We propose tailoring different window sizes to different attention
regulation behaviors to enhance the prediction of self-reported distractions. As evidenced
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Figure 7.5: HCI components and functions: page, webcam operation, blur deactivation, and distraction report
buttons.

Figure 7.6: Blur feedback is applied to the text area as an intervention triggered by recognized distractions.

in Table 7.2, derived from the WEDAR dataset, the minimum, maximum, average, median,
standard deviations, and quartiles of behaviors exhibit variability of the duration of each
state. The current distraction prediction model was designed based on second-to-second
labeling for all attention regulation behaviors. However, incorporating different behaviors
and applying a range of sliding windows could potentially improve the accuracy of the
learners’ distraction predictions.

Table 7.2: Statistical analysis conducted on durations of each behavior label, collected from 30 participants.

1Behavior labels have been annotated second-to-second, making the minimum, maximum, median, Q1, Q2, and Q3 values integers.
Durations (s)1

Attentional States Behavior Labels Min Max Mean Median SD Q1 Q2 Q3
Attention Neutral 1.0 124.0 9.44 5.0 12.73 2.0 5.0 12.0

Distraction

Eyebrow 1.0 5.0 1.20 1.0 0.52 1.0 1.0 1.0
Blink 1.0 5.0 1.14 1.0 0.45 1.0 1.0 1.0
Mumble 1.0 35.0 3.15 2.0 5.11 1.0 2.0 3.0
Hand 1.0 62.0 3.58 2.0 4.88 1.0 2.0 4.0
Body 1.0 44.0 3.20 2.0 2.85 1.0 2.0 4.0

The system’s feedback mechanisms can be varied according to its specified objectives. For
example, some may apply a window size spanning the third quartile to maximum values
of specific behavior for attention prediction. On the contrary, those who require stricter
self-regulation among learners may opt to utilize a window size between medium and
maximum values for the same task. By establishing specific ranges that act as a foundation
for feedback implementation, researchers and educational practitioners will benefit from
devising their intervention rules, drawing on general learning behavior. Please note that
our analysis has been performed on the WEDAR dataset. Thus, the predefined ranges
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may undergo further refinement with the accumulation of additional sample data in future
studies.

7.4.3 Considerations for Feedback Personalization: Quartile analysis
in individual data

The creation of personalized models can be facilitated by conducting quartile analysis in
individual data, considering individual differences in relation to their own unique behavioral
status [183]. Quartile analysis offers a way to position specific learners within the broader
learner population by distinguishing the first (0% to 25%), second (25% to 75%), and third
(75% to 100%) quartiles. This study recommends applying quartile analysis to individual
datasets for evaluating learner behaviors and performance. For example, in assessing the
reaction time to blur stimuli, each reaction of a single individual can be classified as a fast
(1st quartile), medium (2nd quartile), or slow (3rd quartile) response. These categories can
also be correlated with high, medium, and low arousal states. Through the accumulation of
such data as model features, we can enable the provision of more precise and personalized
predictions and feedback provision.

7.5 Conclusion
We propose a framework of behavior-based feedback loops for attentive e-reading. As
established in previous research, the challenge of closing the feedback loop has been a
recurring issue in the fields of TEL andMMLA.We leverage the multimodalWEDAR dataset
in this work, which aids in developing behavior-based predictions of learners’ perceived
distractions. Real-time features have been extracted to train a neural network that predicts
learners’ perceived distractions. These features encompass attention regulation behaviors,
reaction time to blur stimuli, and reading phases derived from page numbers. Our approach
involves the implementation of blur feedback in response to learners’ distractions and
establishing the foundation for feedback rules based on the statistical attention regulation
behavior analysis derived from general data. Simultaneously, we propose a strategy for
personalizing the feedback based on a quartile analysis of individual data. Our behavior-
based model addresses the emerging need for an e-reader with automatic learning analytics
and feedback mechanisms that can be applied to real-world scenarios.

7.6 Discussion and Future Work
Optimizing the window sizes of attention regulation behaviors for accurate distrac-
tion prediction A statistical analysis of learners’ data in e-reading has been performed
in the current framework. Broad ranges of learners’ attention regulation behaviors have
been derived, indicating learners’ states of attention and distraction. In future work, several
ranges of different behavior recognition technologies will be applied and tested. Doing so
will provide practical insights into real-time recognition and feedback generation that can
best assist our feedback objectives.

Testing the effects of the automated feedback from an intelligent e-reading system
Though the overall behavior-based feedback loop framework has been suggested, the effects
of implementing automated feedback still need to be tested: investigating the attention
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span and frequencies of distractions. Our intelligent system can be further evaluated
for subsequent effects, such as learning outcomes and perceived learning experiences,
with various qualitative and quantitative measures. Our next step involves comparing the
intelligent feedback loop based on the current BFLAe framework and time-based feedback.

Exploring the effects of feedback types and modalities In this work, we suggested
blur feedback due to its intuitive actionability and less cognitive load than other feedback.
However, with the same feedback timing, we still need to validate whether different
types and modalities (e.g., speech-based feedback from conversational agents) of feedback
provide additional value in learning. We will further test the effects of varying feedback
with various types and modalities built into our current attention recognition mechanisms.
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8
Real-time AI-based Feedback Loop
Implementation and Its Impacts on
Learners’ Attention Span, Learning
Outcomes, and Perceived Learning

Experiences

In higher education, real-time intervention for e-reading often remains unimplemented due to
technical challenges and misalignment of theoretical frameworks. To address such challenges,
we develop a real-time feedback loop to assist attentive e-reading, aligning affective computing,
education, and Human-Computer Interaction (HCI) leveraged by AI technologies. The system
aims to recognize learners’ real-time distractions and intervenes with learners for fewer
distractions and longer attention spans in e-reading. We trained on neural networks based on
the MediaPipe framework to recognize learners’ behavioral cues, named attention regulation
behaviors, that are known to correlate with perceived distractions. Screen blur as feedback
was triggered based on the hybrid neural networks and thresholds updating every page based
on learners’ current arousal and distractions, which was leveraged by k-means clustering. We
investigate how AI-based real-time feedback can help learners manage attention on behavioral,
cognitive, and affective levels. The result shows that the implemented system assists attention
management, leading to fewer distractions and longer attention spans for learners. The
explainability of AI-based automatic feedback is emphasized for affecting learners’ perceptions
about the system experience and its subsequent implications on learning outcomes. We further
investigate which behavioral components best predict learners’ knowledge gain using machine
reasoning, such as logistic regression and a decision tree. Our work suggests a practical
and empirical foundation for AI-based e-reading support with broad applicability, robust
recognition, and feedback adaptation strategies.

This chapter is partly based on� Y. Lee., G. Migut., M. Specht. An AI-based Feedback Loop for Attention Management
in E-reading: Adaptation Strategies for Real-time Distraction Recognition and Feedback Implementation, submitted
to a peer-reviewed journal.
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A ttention management has been a critical challenge for learners who engage in e-
learning [156]. Recent drastic changes from traditional classrooms to online and

hybrid settings [1] from the COVID-19 pandemic have made learners’ attentiveness [158],
connectivity, participation, and behavioral engagement [271] in e-learning even more criti-
cal. Technological advancements with widespread digital devices and learning platforms
have accelerated the trend [2]. In transitions, various theoretical approaches have been
made to fill the gap for e-learning from the perspectives of student participation [272],
satisfaction [273], educational productivity [274] and learning outcomes [275]. Meanwhile,
learners’ self-regulation has been emphasized more than ever [10] with learners positioned
in such a change regardless of their capability or readiness [1]. Also, real-time learning
supports [187] have been scarce despite their importance for learners adapting to the new
forms of daily education.
Especially, e-reading holds a unique position in higher education. Higher education
necessitates a substantial amount of self-directed reading [3], information processing [4],
knowledge comprehension [5], critical thinking [6], and knowledge reproduction and
application [7] through reading, all of which are integral to regular higher education and,
thus, closely tied to learners’ self-efficacy [8, 9], learning effectiveness [1], and academic
achievements [10]. However, the transition to e-reading has not been accompanied by a
thorough exploration of specific learning strategies or supports [276], leaving learning
management largely reliant on individual cognitive processes [277], motivations [278],
meta-cognition [279], and self-regulation [280]. While various learning domains (e.g.,
health sciences [281], foreign language learning [282]) have been considered as target
learning scenarios for real-time intervention based on multimodal data streams, the real-
time e-reading intervention has yet to be implemented.
Traditionally, learning analytics on e-learning have been taken post-hoc, based on the
large-scale log data collected from expansive educational platforms, such as MOOCs and
edX [283], having learning analytics results visualized on dashboards. Previous studies
sought meaningful insights about learners’ decisions, goals, and self-regulation [284].
However, the post-hoc dashboard analysis has shown its limitation as an intervention tool
because of its retrospective nature; thus, learners cannot act upon it at the exact moments
of intervention needs [150]. Dashboard feedback only becomes meaningful to learners
when the next round of education occurs [284], while keeping learners in e-learning for
the next iteration of education is a common challenge with a high dropout rate [1]. Also,
due to data regulations of e-learning platforms, learning data, primarily log-based, tends
to deliver somewhat distant and superficial information (e.g., demographics of learners,
number of clicks) about learners and learning [75], having approximately 60% [285] of
learning analytics conducted primarily based on a single type of data, which does not
support the multidimensional understanding of e-learning.
Sensor-based approaches have emerged in the last decade to address the limitations of
log-based data, utilizing multimodal data from various data streams and feeding them
to learning analytics [286]. With the current integration with various machine learning
techniques, studies have aimed to predict learners’ internal states regarding the cognitive
load and perceptions during learning [287]. In the process, various learners’ states have
often been used to predict learning performance and results [288] to find essential recipes
for learning success. However, due to the difficulties of integrating diverse data streams
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with different modalities, formats, and granularity [150], data processing and training often
require expertise and sizable computational resources [289]. Also, applying the real-time
approach requires practitioners with an excellent understanding and skills in technological
deployment, which lays another layer of the challenge in practice.
Furthermore, another challenge of utilizing the sensor-based approach in education has
been its obstructiveness in data collection; having various physical sensor implementations
brings obstructiveness in learning and changes the nature of the learning itself [290]. For
instance, biosensors, in the form of wearables (e.g., eye tracker [158]), are often implemented
to collect physiological information from learners and learning environments. In such
cases, data collection changes the learning ecosystems and obstructs education, leading to
bias in interpreting learning and learners [286]. In this context, remote detection, leveraged
by computer vision, has taken place to mitigate the limitation of traditional sensor-based
approaches [290]. Learners’ facial expressions and postures, combining other data layers,
such as discourse, have been used to evaluate learning on individual and group levels
[22]. However, despite these advancements, several challenges persist in developing the
feedback loop for e-reading, which we aim to address through our work:

• Feedback loop alignment: Although real-time intervention is often a fundamental
goal of real-time recognition of learners’ states and learning analytics, the real-
time feedback loop has rarely been attempted. It is because learning analytics
and feedback design are often conducted in isolation by different practitioners; the
indicator design, data collection, feedback strategies, system implementation, and
evaluation in practices are often not aligned, making the integration of frameworks
even more difficult.

• Generalizing and personalizing the feedback loop: Balancing the generaliza-
tion and personalization needs of learning has been a fundamental challenge of
experimental indicator design, learning analytics [150], feedback design, and im-
plementation. It is because the system should be general enough to accommodate
the learning needs of general learners, while the system should be able to capture
the specific needs and assist them as a personalized intervention. Various learning
indicators, theories, and feedback strategies should be investigated and implemented
in practice to achieve this objective.

• Closing the “real-time” feedback loop: Closing the real-time feedback loop entails
complicated technological alignments. Since recognition and feedback generation
should be run in parallel, algorithms should be designed and optimized for limited
computational resources. At the same time, the model should be able to capture
learning efficiently, together with the feedback algorithm, in a timely manner, which
requires various considerations in deployment and validations over iterations.

In this work, we develop a feedback loop for higher education learners’ attentive e-reading
to address articulated challenges. We design a hybrid model with robust accuracy that
can recognize learners’ attention regulation behaviors based on the MediaPipe framework
with the skeleton analysis [291]. When learners’ attention regulation behaviors, correlated
with self-reported distractions [156], are shown for longer than predefined thresholds
[292], the screen blurs, gently reminding learners of their distractions. These thresholds
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for the screen blur stimuli are updated on each page based on learners’ reaction time and
behavioral expressiveness, representing learners’ arousal and distractions, respectively,
adapting to learners based on their intervention needs [184]. Through our implementation,
we investigate the effects of AI-based feedback loops on learners’ distractions, knowledge
gain, and perceived interaction experiences during their e-reading. Our novel contributions
are as follows:

• First real-time implementation of a feedback loop for e-reading: According
to our best knowledge, it is the first attempt to implement a real-time feedback loop
designated for e-reading. We develop the AI-based automatic feedback loop based
on attention regulation behavior recognition. We investigate the effects of AI-based
feedback on learners’ attention management from various angles (i.e., distractions,
knowledge gain, and perceived interaction experience), which form a foundation for
future real-time e-reading support design and implementation.

• Low implementation requirements from webcam-based skeleton recogni-
tion: Thanks to our skeleton-based recognition, our framework can easily be applied
to various e-learning scenarios without environmental constraints or high computa-
tional requirements while keeping the robust recognition. Also, our webcam-based
approach is not intrusive to the learning activities and thus can be further applied to
diverse e-learning scenarios based on reading.

• Adaptive feedback implementation: An adaptive feedback strategy has been
designed based on the public WEDAR dataset [141] collected in e-reading in higher
education, which shares the same setting as our work. Often, adaptation strategies
clash with generalization needs for learning analytics and feedback provision. Our
approach segments learners based on attention-related behaviors (e.g., arousal, dis-
tractions). It recalibrates feedback frequencies on every page based on where they
belong on a group level (e.g., highly aroused learners with mid-range distractions
represented as C2 in our work), a new approach implemented in our work.

8.1 Related Work
This section articulates three practical questions for our feedback loop design and imple-
mentation. Previous works are reviewed from various angles and answered in subsections.

1. When and how to intervene with learners to inform them of their distractions?

2. Which machine learning approaches best suit real-time and robust attention regula-
tion behavior recognition in practice?

3. What adaptation strategies can be implemented in our real-time feedback loop?

8.1.1 When and how to intervene with learners to inform them of
their distractions?

This subsection investigates the behavioral framework of attentive e-reading that can be
utilized in our feedback loop design. For the feedback design, we study vital principles for
designing and implementing real-time multimodal feedback.
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Target behaviors: attention regulation behavior recognition and feedback genera-
tion based on Self-Regulated Learning (SRL)
In the revised Cyclical phases model adapted from Zimmerman and Moylan (2009) [293],
there are iterative phases of forethought, performance, and self-reflection for SRL. In
this work, we focus on the performance phase, where metacognitive self-monitoring and
self-control take an essential place where learners perform their learning tasks [293]. The
framework suggests that proactive task strategies and help-seeking are made as SRL in
the performance phase. Lai and Hwang (2020) further scoped the learning activity into
e-learning in their model, focusing on the role of systems and technological supports that
can actively assist learners with affective performances in e-learning [294].
The framework of attention regulation behavior from Lee et al. (2022) [156] represents
observable behaviors as cues of SRL in e-reading. In the framework, attention regulation
behaviors are defined as “learners’ earliest self-awareness of attention loss and following
observable behavioral changes as self-regulation”. Such behaviors are emphasized because
those are the “moments that learners are willing to and are still able to re-engage in their
learning tasks”, where learners necessitate learning supports, and the intervention can
maximize its effects. In the same framework, various movements from eyebrows, blinks,
mumble, hand, and body are specified as attention regulation behaviors in e-reading and are
proven to be correlated with perceived distractions [156], which is described in the “Mea-
surement” section in our work. For the model development for the behavior recognition
and designing feedback adaptation strategies based on k-means clustering, combined with
logistic regression, we utilize the public WEDAR dataset. Attention regulation behaviors
are used as target behaviors of recognition, while we further leverage the Behavior-Based
Feedback Loop for Attentive e-reading (BFLAe) framework [292] for designing the feedback
thresholds of each attention regulation behavior, which decides the timing of interventions.

Feedback rules: principles of real-time multimodal learning interventions
Though feedback plays an integral role in learning, the impacts of feedback on individuals
are known to vary [295]. Therefore, this subsection discusses various feedback principles
and conditions for e-learning interventions that can best support our real-time feedback
design.
Cognitive load has been considered a primary element for instructional design, directly
connected to the utilization of higher-order cognitive skills [296]. Several rules have been
suggested for managing cognitive load in multimedia-based instructional design [297] in
ways to prioritize and clarify the use of the multimodal feedback: offloading the cognitive
load into split sensory channels, segmenting, and pertaining once sensory channels are
working with high demands in working memory, weeding extraneous materials, and
directly signaling for problem-solving, eliminating redundancy, and synchronizing the
information for representational feedback through multisensory channels [297].
In the same vein, Non-intrusiveness to the primary task performance [298] has been em-
phasized, as interpreting and processing intervention can cause split attention and further
hinder the streamline of the task performance [4]. The redundant intervention has also
been known to cause split attention, which results in fewer working memory capacities
[299].
Timeliness of the feedback has also been mentioned as another critical principle of multi-
modal feedback. This is because intervening at the wrong time affects not only the distrust
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toward the AI-based automatic feedback but also the overall learning experience and
subsequent learning outcomes. It has been noted that immediate feedback works better
than post-hoc feedback [296], which supports our real-time approach. Timely feedback
provision is intertwined with accurate recognition [300] and design in application since
the feedback generation in AI-based recognition relies on the accuracy of the implemented
model and the model deployment.

8.1.2 Which machine learning approaches best suit real-time and
robust attention regulation behavior recognition in practice?

This section explores the effective recognition method with swift processing and robust
accuracy for real-time applications.

Model training methods: image/video-based vs. skeleton-based recognition
Previously, behavior-based attention recognition in e-learning has been conducted using
image [301] and video-based [156] models, supported by machine learning techniques.
Compared with image-based methods, video-based recognition, bolstered by deep learning
models, has been known to consider the temporal layers in the model, thus capturing
learners’ actions with movements better [156]. However, video-based methods have shown
limitations in real-time implementation due to the complexity of the model and the pro-
cessing speed, which often exceeds the available computational capacity and practical
implementations. In this regard, we explore a skeleton-based method based on Medi-
aPipe1 [302] to compensate for such a problem to enable the computationally inexpensive
real-time feedback loop. Skeleton-based methods analyze visual inputs and use them to
identify and track various joints and landmarks of the human body, which enables real-time
behavior analysis and multimodal interactions (e.g., behavior-based augmented reality
[303]). The model training can be conducted based on the multi-dimensional matrices of
arrays extracted from joints as data input, which enables the training with fewer resources.
Also, the model can still consider temporal layers by feeding it with data extracted from
subsequent frames, which is 30 frames in our work. Below, we articulated multiple advan-
tages of utilizing the skeleton-based attention regulation behavior recognition in closing
the real-time feedback loop, which is the rationale behind our model design decision.

• Low computational requirements: The skeleton-based method extracts only
specific landmarks of the human face and body in the 3D space and can transform
that information into the form of multi-dimensional matrices. Such processing from
high-dimensional data (i.e., videos) to low-dimensional data (i.e., NumPy arrays) can
streamline the model training and its real-time implementation.

• Accurate behavior recognition with spatial and temporal understandings:
Since the MediaPipe framework has already been built for capturing particular target
features (i.e., human poses and actions), it provides a solid foundation for a spatial
understanding of human behaviors in 3D spaces. At the same time, it can also be
used to understand temporal information of the movements, which is essential for
recognizing attention regulation behaviors.

1https://developers.google.com/mediapipe
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• Applicability without environmental constraints: The conventional problem
in image and video-based approaches has been that the model can also learn ir-
relevant visual features of non-targeted objects in training. The problem is more
evident with physical environmental changes (e.g., lighting changes, objects in the
background) that highly hinder model applications in real-life settings. However,
the skeleton-based method can be applied to various environments thanks to its
landmark extraction from the human body, making the model highly adaptive to
multiple application scenarios and users.

8.1.3 What adaptation strategies can be implemented in our real-time
feedback loop?

State-of-the-art feedback personalization strategies in e-learning
As indicated in the review of personalized feedback in e-learning [304], theoretical and
empirical feedback strategies for e-learning have yet to be established, and the general
effect of adaptive feedback needs to be investigated. The previous approaches to adap-
tive/personalized feedback design have been done: 1) rule-based and 2) feature-based. The
rule-based approach is based on simple if-then principles, thus more straightforward in the
application and interpretation [305]. On the other hand, feature-based feedback, leveraged
by AI, operates based on the black box method; thus, the rationale behind AI-based feed-
back sometimes brings doubts due to its low explainability. The previous personalization
approaches in e-learning have been geared toward student performances, motivation &
engagement, and SRL based on individual goals, knowledge states, learning progress, learn-
ing behaviors, emotional or motivational conditions, and various student traits [304]. The
feedback messages delivered through such feedback have been evaluative and informative,
and those were applied to university online courses, blended learning, and formative assess-
ment [304]. Feedback personalization in real-time has yet to be attempted in educational
intervention design. Especially, adjusting the timing of the feedback interval has yet to be
used as a feedback adaptation strategy, which we would like to study in our work.

Feedback adaptation strategy: learner segmentation based on behavioral features
Providing personalized real-time feedback, especially to unknown users, is a common
challenge since there is often insufficient data to determine their characteristics, goals, skills,
and needs [185]. In such cases, user segmentation is an effective method to address such
issues. It segments users into groups based on their individual features, such as preferences,
behavioral patterns, and demographics, which are critical to discerning different groups
with distinctive features [184].
In previous work, Lee et al. (2023) [184] chose critical components essential in under-
standing user interactions as learners’ knowledge gain, perceived interaction experience,
and perceived social presence with the feedback system and clustered learners based on
k-means clustering. It effectively addressed the concerns of balancing generalization and
personalization needs in feedback design. From the instructional designer’s perspective,
making design choices for multiple groups is more straightforward than making decisions
for a myriad of people with unknown features [184], which makes the approach generally
applicable. At the same time, by having multi-dimensional “personas” derived from clus-
tering results, it is easy to specify learners’ preferences, challenges, and needs, which can
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Figure 8.1: The overall framework: attention regulation behavior recognition based on MediaPipe framework and
feedback adaptation strategies based on k-means clustering

be used for feedback personalization.
In this regard, we investigate critical components in understanding learners’ attention
management and distractions and use it as a means to make the feedback adaptive based
on their learning needs through our work.

8.2 Methods
8.2.1 Overview of real-time feedback loop for attention management
This section represents the overall framework of our work (see Figure 8.1). Due to the
context and domain-specific nature of the behavior analysis [156], we utilized the WEDAR
dataset as a foundation of our work, which has the same target learning scenarios and
settings: attention regulation behaviors of higher education learners in e-reading. The
WEDAR dataset consists of video data with second-to-second behavior annotation on
attention regulation and various log data, such as self-reported distractions, reaction time
to the randomized screen blur, and knowledge gain evaluated from pre-post questionnaires.
We applied the MediaPipe framework [291] to the video samples with 30 participants,
and found landmarks on the pose, face, and hand. Each one-second clip has been divided
into 30 frames, and the landmarks of each frame have been calculated with 1662 features,
which consists of 126 landmarks in hands, 132 landmarks in pose, and 1404 landmarks
in the face. Thirty multi-dimensional matrices from each frame, representing the spatial
information of face and body, were used for the training, so the learners’ “movements”
with temporal features can also be taken into account for the model training. As a result,
two behavior recognition models, a binary model for differentiating attention regulation
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behavior vs. neutral and a multi-class classification model for finding each type of attention
regulation behavior and neutral behaviors, have been developed for further model fusion
in the deployment.
Aside from the behavior recognition models, we developed a model that can cluster learners
according to their reaction time to screen blur and behavioral expressiveness using the
WEDAR dataset. We first defined 3 clusters via k-means clustering with the elbow method
to predict to which cluster the new instances from our newly collected dataset would be
assigned. Based on the cluster membership and its recognition via logistic regression, we
set up the feedback adaptation strategy: the personalized update of the feedback interval.
The system provides more frequent feedback for learners who need more learning support
than other learners with less feedback needs. More details on how we implemented it are
available in the following sections.

8.2.2 System architecture and algorithm overview
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Figure 8.2: Overall system architecture with the data streamline and model deployments.

This subsection explains our work’s overall system architecture and algorithm deployments
(see Figure 8.2). Our reading system contains ten pages of text with different lengths. The
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system’s primary function is to 1) provide screen blur feedback to the text area based on
the automatic recognition of attention regulation behaviors for an extensive period of time
and 2) collect various log data related to different learning behaviors that are used for the
next round of feedback adaptation, which forms a loop.
Behavior recognition is conducted based on binary and multi-class classification model
fusion. We took the hybrid approach since it often achieves more robust accuracy, compen-
sating for each model’s weaknesses [306]. By having two rounds of behavior recognition
using a hybrid approach, we intended to minimize the false-positive case of recognizing
attention regulation behaviors, especially mixed recognition between “body” and “neutral”
labels, which leads to subsequent false positive feedback triggers that could greatly hinder
learners’ e-reading and lower the overall trust towards our system.
Once 30 frames are collected through the webcam within a second, the multi-dimensional
matrices processed through MediaPipe go through the binary model to discern whether
the behavior is “neutral” or one of “attention regulation behaviors”. Please refer to the
subsection of “Binary classification model design and configurations for training” for
technical details. If the binary model recognizes the behavior as “neutral”, it passes and
starts the behavior recognition for the next frame set in the next second. If the behavior is
recognized as “attention regulation behavior”, the frames go to the multi-class classification
model to classify the specific types of attention regulation behaviors. The multi-class
classification model has been trained to differentiate six classes (eyebrow, blink, mumble,
hand, body, and neutral). Please see the subsection of “Multi-class classification model
design and configurations for training” for the details of the model training.
For personalizing the feedback, the thresholds update every page based on learners’ behav-
iors on the previous page. From the clusters derived from the k-means clustering with the
WEDAR dataset and logistics regression model to discern derived clusters, the feedback
trigger thresholds are updated at the beginning of every new page. Learners’ reaction
time to blur stimuli that indicate their arousal and the learners’ behavioral expressiveness,
indicating more perceived distractions, are used as data inputs for predicting the clusters
via the logistics regression. For learning groups requiring more behavioral corrections, the
system shortens the feedback intervals. In contrast, the interval stays the same for learners
with good behavioral performances, adapting to different feedback needs. Please refer to
the subsection “Model design for feedback adaptation: k-means clustering combining with
logistic regression” for details for k-means and logistic model training and coefficients
applications for feedback interval updates.

8.2.3 Attention regulation behavior recognitionmodel developments
with neural networks

As indicated in the previous section, multi-dimensional matrices with 1662 behavioral
features with 30 frames have been used for the model training. This section discusses how
the binary and multi-class classification models were trained and validated for further
implementation in the system.

Binary classification model design and configurations for training
For the binary model training, we first balanced the number of samples of all the attention
regulation behaviors. We only have 572 samples of “blink” behavior, while examples of
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other behaviors range from 696 to 3067 samples. We have randomly chosen 572 samples
from each attention regulation behavior, making the sum of attention regulation behavior
samples 2860 (572*5). It was to prevent label imbalance, which often affects the recognition
accuracy. At the same time, we randomly chose 2860 out of 20943 samples from the
“neutral” label. For the model training, we divided the training and testing set into a ratio
of 80%-20%. Furthermore, we assigned 25% of the training set as the validation set, which
made the ratio of training, testing, and the validation set 60%, 20%, and 20%, respectively.
Please refer to the Table 8.1, in which we designed a 1D convolutional neural network
(CNN) model to perform classification. Notably, the original WEDAR dataset exhibits a
class imbalance, with neutral behaviors (20,943 instances) being approximately three times
more prevalent than attention regulation behaviors (8,177 instances). In fine-tuning, we
assigned a weight of 1.1 to neutral behaviors and 1 to attention regulation behaviors. Our
binary classification model was trained over 1,000 epochs, employing binary cross-entropy
as the loss function. This approach was designed to mitigate the risk of overpredicting
attention regulation behaviors, thus reducing the likelihood of false-positive feedback.
Upon evaluation using the test set, the model achieved an accuracy of 72.46%.
The model initiates with a 1D convolutional layer (‘conv1d_16‘) of 64 filters, which allows
the network to learn complex features from the input data of unspecified length, while
another 1D convolutional layer (‘conv1d_17‘) maintains a depth and significantly reducing
the parameters. To stabilize and accelerate training, a batch normalization layer (‘batch_-
normalization_4‘) has been employed, followed by a max-pooling layer (‘max_pooling1d_-
12‘) that downsamples the spatial dimensions by half, mitigating the risk of overfitting
while preserving the salient features. Furthermore, a dropout layer (‘dropout_12‘) was
inserted to prevent the co-adaptation of hidden units by randomly omitting a fraction of
them during training. The following convolutional (‘conv1d_18‘ and ‘conv1d_19‘) and
max-pooling layers (‘max_pooling1d_13‘ and ‘max_pooling1d_14‘) iterate the feature
extraction and down-sampling processes. A second dropout layer (‘dropout_13‘) was
placed before the global max-pooling layer (‘global_max_pooling1d_4‘), summarizing
the most significant features in the temporal dimensions. Two dense layers (‘dense_-
8‘ and ‘dense_9‘) progressively refined the extracted features into 32-dimensional and
2-dimensional spaces, respectively, the latter aligning with binary classification.

Multi-class classification model design and configurations for training
To train the multi-class classification model, we utilized the same number of samples for
each class as in the binary classification task, comprising 2,860 instances each of attention
regulation and neutral behaviors. The dataset was divided into training, testing, and
validation sets with proportions of 60%, 20%, and 20%, respectively. The class weights were
assigned inversely proportional to the original data distribution, resulting in weights of
2.190 for eyebrow, 3.501 for blink, 2.418 for mumble, 2 for hand, 0.995 for body, and 2 for
neutral behaviors. This weighting strategy was fine-tuned to achieve better accuracy. The
model underwent 2,000 epochs of training, achieving an accuracy of 72.74% on the test set.
The confusion matrix providing detailed insights is depicted in Figure 8.4.
As can be seen in Table 8.2, the initial layer of the model, a 1D convolutional layer (conv1d_-
19) manages the initial feature extraction, while another 1D convolutional layer (conv1d_20)
further refines the feature abstraction. In order to stabilize the learning process and to
reduce internal covariate shifts, a batch normalization layer (batch_normalization_6) has
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Table 8.1: Binary classification model development for recognizing attention regulation behaviors vs. neutral
behaviors (2-class)

_________________________________________________________________
 Layer (type)                     Output Shape           Param #   
=================================================================
 conv1d_16 (Conv1D)               (None, 30, 64)         319168    
                                                                 
 conv1d_17 (Conv1D)               (None, 30, 64)         12352     
                                                                 
 batch_normalization_4 (Bat       (None, 30, 64)         256       
 chNormalization)                                                
                                                                 
 max_pooling1d_12 (MaxPooli       (None, 15, 64)         0         
 ng1D)                                                           
                                                                 
 dropout_12 (Dropout)             (None, 15, 64)         0         
                                                                 
 conv1d_18 (Conv1D)               (None, 15, 64)         12352     
                                                                 
 max_pooling1d_13 (MaxPooli       (None, 7, 64)          0         
 ng1D)                                                           
                                                                 
 conv1d_19 (Conv1D)               (None, 7, 64)          12352     
                                                                 
 max_pooling1d_14 (MaxPooli       (None, 3, 64)          0         
 ng1D)                                                           
                                                                 
 dropout_13 (Dropout)             (None, 3, 64)          0         
                                                                 
 global_max_pooling1d_4 (Gl       (None, 64)             0         
 obalMaxPooling1D)                                               
                                                                 
 dense_8 (Dense)                  (None, 32)             2080      
                                                                 
 dropout_14 (Dropout)             (None, 32)             0         
                                                                 
 dense_9 (Dense)                  (None, 2)              66        
                                                                 
=================================================================
Total params: 358626 (1.37 MB)
Trainable params: 358498 (1.37 MB)
Non-trainable params: 128 (512.00 Byte)
_________________________________________________________________
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Table 8.2: Multi-class classification model development for recognizing five types of attention regulation behaviors
and neutral behaviors (6-class)

_________________________________________________________________
 Layer (type)                     Output Shape           Param #   
=================================================================
 conv1d_19 (Conv1D)               (None, 30, 64)         319168    
                                                                 
 conv1d_20 (Conv1D)               (None, 30, 6           12352     
                                                                 
 batch_normalization_6 (Bat       (None, 30, 64)         256       
 chNormalization)                                                
                                                                 
 max_pooling1d_12 (MaxPooli       (None, 15, 64)         0         
 ng1D)                                                           
                                                                 
 dropout_10 (Dropout)             (None, 15, 64)         0         
                                                                 
 conv1d_21 (Conv1D)               (None, 15, 64)         12352     
                                                                 
 max_pooling1d_13 (MaxPooli       (None, 7, 64)          0         
 ng1D)                                                           
                                                                 
 conv1d_22 (Conv1D)               (None, 7, 64)          12352     
                                                                 
 max_pooling1d_14 (MaxPooli       (None, 3, 64)          0         
 ng1D)                                                           
                                                                 
 dropout_11 (Dropout)             (None, 3, 64)          0         
                                                                 
 dense_8 (Dense)                  (None, 3, 32)          2080      
                                                                 
 dropout_12 (Dropout)             (None, 3, 32)          0         
                                                                 
 global_max_pooling1d (Glob       (None, 32)             0         
 alMaxPooling1D)                                                 
                                                                 
 dense_9 (Dense)                  (None, 6)              198       
                                                                 
=================================================================
Total params: 358758 (1.37 MB)
Trainable params: 358630 (1.37 MB)
Non-trainable params: 128 (512.00 Byte)
_________________________________________________________________

been applied, normalizing the output from the convolutional layer. A max-pooling layer
with size 2 (max_pooling1d_12) has been employed, reducing the spatial dimensions of the
output by half without introducing additional parameters. Subsequently, a dropout layer
with the rate of 0.25 (dropout_10) has been applied, randomly setting a proportion of input
units to 0 at each update during training time, which helps to prevent overfitting. Two more
convolutional layers (conv1d_21 and conv1d_22) have continued the hierarchical feature
extraction, with max-pooling layers with size 2 (max_pooling1d_13 and max_pooling1d_14)
that progressively down-sample the spatial dimensions of the extracted features, further
enhancing the model’s translational invariance. An additional dropout layer (dropout_11)
with a rate of 0.25 and a densely connected layer (dense_8) facilitated a transition from
feature extraction to classification. Subsequently, a dropout layer (dropout_14) with a
rate of 0.5 has been applied. Finally, the penultimate layer employed global max pooling
(global_max_pooling1d), reducing each feature map to a single value summarizing the
presence of each learned feature in the input. Finally, a dense output layer (dense_9)
extracted high-level features to the output space.

8.2.4 Hybrid approach to decrease the false-positive feedback trigger
Intervening through non-timely feedback with learners leads to distrust toward AI-based
automatic feedback [307]. It negatively affects the overall learning experience and motiva-
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tion in learning [159]. We adopted the model hybrid approach to decrease the false positive
feedback [306], a strategic and practical approach suggested from the previous work in
real-time educational feedback implementation [308]. Combining the confusion matrices
from the binary (Figure 8.3) and multi-class (Figure 8.4) classification models, we calculated
the False Positive Rate (FPR) of predicting the attention regulation behaviors that lead to
false positive feedback. This process shows how the model fusion effectively decreases the
false positive feedback trigger.
The FPR of the overall attention regulation behaviors in 1 second is 7.68% when solely imple-
menting the multi-class classification model, having 2.98%, 0.35%, 2.25%, 1.92%, and 0.18% of
FPMultiClass,Eyebrow, FPMultiClass,Blink, FPMultiClass,Mumble, FPMultiClass,Hand, and FPMultiClass,Body,
respectively. However, our hybrid approach of adding the binary model to the architecture
dramatically reduces the FPR to 2.2%, having FPR of 0.85%, 0.11%, 0.65%, 0.54%, and 0.05%
of FPREyebrow, FPRBlink, FPRMumble, FPRHand, and FPRBody, respectively, as indicated in
the equations articulated below. Once further implemented with the feedback threshold,
ranging from 2 to 9 seconds, the chances of triggering false-positive feedback from a
behavior drop down from nearly 0% since the rate takes square 2 to 9 square with the
threshold implementation.

Figure 8.3: Confusion matrix from the binary classification model.

FPREyebrow = FPBinary,AttenReg × FPMultiClass,Eyebrow = 0.282 ∗ 0.030 ≈ 0.0085(0.85%), (8.1)

FPRBlink = FPBinary,AttenReg × FPMultiClass,Blink = 0.282 ∗ 0.004 ≈ 0.0011(0.11%), (8.2)

FPRMumble = FPBinary,AttenReg × FPMultiClass,Mumble = 0.282 ∗ 0.023 ≈ 0.0065(0.65%), (8.3)

FPRHand = FPBinary,AttenReg × FPMultiClass,Hand = 0.282 ∗ 0.019 ≈ 0.0054(0.54%), (8.4)

FPRBody = FPBinary,AttenReg × FPMultiClass,Body = 0.282 ∗ 0.002 ≈ 0.0005(0.05%). (8.5)

Model design for feedback adaptation: k-means clustering combining with logistic
regression
This section discusses how feedback adaptation was achieved in our real-time loop. Though
the baseline feedback thresholds were designed to accommodate general users based on
the previous research [292], our work also considers learners’ behaviors during the reading
practice in deciding the feedback intervals.
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Figure 8.4: Confusion matrix from the multi-class classification model.

Figure 8.5: K-means clustering was conducted on the WEDAR dataset based on the reaction time to the screen
blur and behavioral expressiveness. Three colored sections were derived from the logistic regression model
training for predicting C0, C1, and C2 clusters.

First, from the WEDAR dataset, 30 learners’ reaction time to screen blur and behavioral
expressiveness have been used as feature vectors for k-means clustering. Instead of using all
sample instances, we utilized averaged results of individuals because each individual might
have a different baseline reaction time and behavioral expressiveness. Imbalances among
different learners’ data points might diminish the traits we can learn about individual
differences. See the equations below to see how we calculated individuals’ reaction time to
blur stimuli as

x̄i =
1
ni

ni
∑
j=1

xij , (8.6)
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where each individual i (i = 1,2,… ,30) has ni data points from reaction time instances
that are different based on individuals, while j (j=1, 2 …, ji) indicates the reaction time
data point index for each individual. xij represents each reaction time data point for an
individual and x̄i shows an individual reaction time to screen blur.
Given the WEDAR dataset with behavioral data from 30 individuals, behavioral expressive-
ness has been calculated as

Ei =
ai
bi
, (8.7)

where each individual i (i = 1,2,… ,30) exhibits ai attention regulation behaviors and has bi
total behavioral data points, the behavioral expressiveness, Ei, for each individual i.
Using reaction time to screen blur and behavioral expressiveness as feature vectors, we
conducted the k-means clustering. We applied the mean-max normalization to the data to
prevent possible bias from different data ranges. The elbow method, a commonly applied
statistical method for finding an optimal k for clustering, was applied and derived 3 as
k in our case. As seen from Figure 8.5, three clusters have been derived: cluster 0 (C0)
with the fast reaction time and low behavioral expressiveness, which we see as an ideal
group of learners with more arousal and fewer distractions. Cluster 1 (C1) has been defined
as learners with comparatively fast reaction time and high behavioral expressiveness,
requiring more feedback than learners assigned to C0. Cluster 2 (C2) is a group with
relatively slow reaction time and mid-range behavioral expressiveness, requiring more
feedback. The specific coefficient has been calculated for the centroids of each cluster,
which has been visualized as × in Figure 8.5. Note that one sample from the WEDAR
dataset has been classified as an outlier and, thus, removed from the clustering task. This is
due to the fact that k-means clustering is susceptible to outliers, thus can lead to misleading
clustering results.
We adopted the logistic regression method to predict where learners belong to clusters at
the beginning of a new page. Logistic regression has been carefully compared with other
methods, such as K-Nearest Neighbors (kNN), and chosen for its computational efficiency,
which is essential for our real-time approach. Also, because of its low variance, the method
causes fewer overfitting issues, especially for cases with limited data that apply to our
scenario. Please note that we also considered directly calculating the distance between the
new data points and centroids of each cluster to assign new data points; however, we used
the prediction based on the logistics regression for the future framework extension and
better applicability of our work with scalability. If we add more features in determining
the clusters with increased dimensions, calculating the distance becomes exponentially
intensive in terms of computational capacity, which is unsuitable for real-time deployment
of our framework.

Thresholds design and updates for different learner clusters
The thresholds (T) of triggering the screen blur have been designed differently for each
attention regulation behavior. It combines the mean (�) and standard deviation (�) of the
duration of each attention regulation behavior, which was derived from [292], that has also
been developed from the WEDAR dataset:

T (y) = ⌊�(y)+�(y)⌉, (8.8)
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Thresholds[eyebrow,blink,mumble,hand,body] = [T (durationeyebrow),
T (durationblink), T (durationmumble),
T (durationhand), T (durationbody)].

(8.9)

It is to find the points that would be considered significantly above average, which means
significant attention regulation behavior usage compared to the average instances. To
make it easily applicable, we only took ⌊x⌉, representing the nearest integer to x data point,
which made each attention regulation behavior baseline thresholds of the eyebrow, blink,
mumble, hand, and body as 2, 2, 9, 9, and 7, respectively. Figure 8.6 shows how the system
interface looks once the blur feedback is applied to the text area.

Figure 8.6: Screen blur is triggered for recognizing attention regulation behaviors for longer than adaptive
thresholds.

Based on the clustering result at the beginning of each page, Θ0, Θ1, and Θ2 have been
designed for learners assigned in C0, C1, and C2, respectively. Since we do not know
the absolute weight values proven to work as the most effective intervention, we set the
coefficients proportionally based on their centroids. We updated the threshold a maximum
of nine times, not making the threshold always bigger than the average attention regulation
behaviors. In any case, it was not to trigger the feedback for learners who show the average
range of attention regulation behaviors. In this case, the minimum k is calculated as

[2 2 9 9 7]× k9 ≥ [2 2 4 4 4] , (8.10)

k ≥ ( 23
10)

1
9 ≈ 0.915. (8.11)

Once applying min-max normalization to centroids of C0, C1, and C2, the behavioral
expressiveness of C0 is 0.205, and the reaction time average is 0.135, which made the
scaling factor of C0 as 36.133 (1/0.205*1/0.135). The behavioral expressiveness of C1 is 0.834,
and the reaction time average is 0.223, making the scaling factor of C1 5.377 (1/0.834*1/0.223).
The behavioral expressiveness of C2 is 0.468, and the reaction time average is 0.705, making
the scaling factor of C2 3.031 (1/0.468*1/0.705). Please note that we considered C0 as an
ideal group and made Θ0 as 1, which does not change the feedback intervals. Based on the
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equation (11), we normalized each scaling factor between 0.915 and 1, and derived Θ0, Θ1,
and Θ2 as the following:

Θ0 = 0.915+( 36.133−3.031
36.133−3.031)× (1−0.915) = 1 (8.12)

Θ1 = 0.915+( 5.377−3.031
36.133−3.031)× (1−0.915) ≈ 0.924 (8.13)

Θ2 = 0.915+( 3.031−3.031
36.133−3.031)× (1−0.915) = 0.915. (8.14)

8.2.5 Experimental conditions
We had four experimental conditions: 1) control group, 2) baseline group, 3) treatment_-
subcondition 1 (treatment_sub1), and 4) treatment_subcondition 2 (treatment_sub2) as
below.

Control condition (data from 30 participants)
The control condition is the WEDAR dataset with screen blur feedback at randomized
timing. The control condition was compared with our prototype with AI-based behavior
recognition and feedback. The control group condition has been further compared with
treatment conditions with our prototype on learners’ self-reported distractions, knowledge
gain, and perceived system experiences.

Baseline condition (data from 30 participants)
Since we aimed to understand not only the objective effects of AI-based feedback on
distractions but also learners’ perceptions of system experiences with the AI-based feedback,
we included the baseline group as one experimental condition. The WEDAR dataset does
not contain data regarding learners’ perceptions of their system experiences; thus, the
baseline condition was collected by asking participants about their perceptions of computer
screen-based e-readers before the experiment.

Treatment_sub1 (data from 15 participants)
Participants in the Treatment_sub1 condition was based on the prototype that we developed
with behavior recognition and AI-based feedback. Learners were tested without being
notified about the feedback mechanisms behind the AI-generated screen blurs.

Treatment_sub2 (data from 15 participants)
Participants in the Treatment_sub2 condition was based on the prototype we developed
with behavior recognition and AI-based feedback, which is the same as the Treatment_-
sub1 condition, but with an explanation of the feedback mechanisms before they were
tested. While experiment instructions were given, the definition and examples of attention
regulation behaviors and their correlation to self-reported distractions were explained.

8.2.6 Measures
Attention regulation behaviors: behavior labels
In the previous study [156], attention regulation behaviors have been defined as five
observable behavioral categories: movements found from eyebrow (e.g., raise or bring
together), blinks (e.g., blink flurries, prolonged blink), mumble (e.g., mumble reading), hand
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(e.g., touching face, body), and body (e.g., adjusting head, torso, arm). In this work, we
followed the annotation criteria and experiment design from [156], so the effect of the
behavior recognition-based AI feedback can be directly compared with the WEDAR. After
we annotate the newly collected video samples, we further investigate the occurrence
of attention regulation behavior in relation to self-reported distraction in our work, in
comparison with the WEDAR.

Knowledge gain: multiple-choice & summarization
In this work, learners’ knowledge gain is understood in two folds: assessing learners’
factual knowledge based on the multiple-choice questions [167], while summarization task
reflects learners’ deeper comprehension, knowledge synthesis, and critical thinking skills
[170]. We designed the pre-test and post-test questionnaires with the same content, with
10 multiple-choice questions related to the reading material. We extracted the pre-test
result from the post-test result to gauge the knowledge gained through the reading. The
summarization task was asked for one main topic and the 10 subtopics after reading. To
avoid the possible bias from human evaluation, we implemented the Bidirectional Encoder
Representations from Transformers (BERT) model, a transformer-based Natural Language
Processing (NLP) model, which has also been adopted for the summarization evaluation
[309]. Since the model provides scores that average each answer’s precision and recall
with contextual embeddings, semantic similarity to the original text, and coherence of
summarization, we adopted it as an effective automatic summarization evaluation method.

Perceived interaction experience: AttrakDiff questionnaire
AttrakDiff questionnaire, a tool developed for understanding users’ perceptions towards
interactive products [77], has been used to understand learners’ perceived interaction
experience with AI-based feedback. It is a tool that has been previously adopted for the
Human-Computer Interaction (HCI) [310] and Human-Robot Interaction (HRI) [158] evalu-
ations. The questionnaire consists of 28 questions, and we compared learners’ perceptions
regarding computer screen-based e-readers (baseline) and our e-reader with AI-based auto-
matic feedback (treatment) with the pre-post comparison. The questionnaire evaluates
four dimensions: 1) Pragmatic quality, which concerns perceptions about the usability
of the system, and 2) hedonic identity (hedonic-I), which figures out users’ perceptions
that identify the system. It includes 3) hedonic stimulation (hedoinc-S), which is about
advancing values that the system conveys, and 4) attractiveness, which delivers perceptions
regarding the likeability of the system.

8.2.7 Procedure
30 higher education learners (male: 17, female: 13) have been invited for an e-reading task.
They were tested with a system with AI-based screen blur feedback based on real-time
attention regulation behavior recognition. Participants were students who use the English
language for their daily education with frequent computer-based reading (frequently to
usually: 5.8 out of 7-scales Likert). They participated in the study voluntarily via the TU
Delft study recruitment portal and campus.
The participants were individually invited to the experiment room with a laptop 2 and a
2Dell XPS 15 9570, Intel(R) Core(TM) i7-8750H (CPU), NVIDIA GeForce GTX 1050 Ti (GPU)
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mouse, which makes the experiment environment similar to their daily computer-based
reading environments. Participants were requested to work on the pre-test questionnaire to
measure their 1) prior knowledge regarding the reading content (e.g., Disneyland in Paris)
with 10 multiple-choice questions. Also, an AttrakDiff questionnaire was given to measure
learners’ preconceptions about computer screen-based e-readers and their perceptions of
them (baseline).
Once the pre-test was finished, instructions were given differently based on the different
sub treatment conditions (treatment_sub1, treatment_sub2), though all 30 participants
were given the same system. It was to evaluate how the explainability of the feedback
would affect the perceptions about their learning experiences with AI-based feedback in
e-reading and the subsequent learning outcomes.
1) For 15 participants in the treatment_sub1 condition, the detailed mechanism behind the
feedback trigger has not been described. It has only been instructed that feedback occurs
based on their behavioral cues to keep them attentive. 2) For another 15 participants in
the treatment_sub2 condition, the definition of attention regulation behaviors, examples
of behaviors, and their correlation to self-reported distractions have been elaborated.
Furthermore, participants in the treatment_sub2 condition were informed that feedback
thresholds update on each page, corresponding to one of three groups derived from k-
means clustering based on their learning behaviors. During e-reading, all participants were
asked to report their distractions via the big button on the interface for the self-reported
distraction analysis, regardless of the treatment condition.
After reading, all participants received the same questionnaire: 1) First, the post-test
questionnaire had 10 multiple-choice questions that were the same as the pre-test questions.
However, unlike the pre-test questionnaire, there were additional questions for participants
to summarize the main topic and 10 subtopics in short sentences. 2) There has been a
following AttrakDiff questionnaire to ask about their perceived experiences with the system.
Please note that all questionnaires have been given paper-based to prevent participants’
potential confusion in perceiving the system evaluation process as part of their learning.

8.3 Results
In this section, we investigate the various effects of our system implementation. First,
we focus on learners’ attention regulation behaviors to understand learners’ arousal and
perceived distractions on group and individual levels. Second, with statistical and correla-
tion analyses, we study the effects of AI-based feedback on learners’ knowledge gain, a
fundamental objective of the e-reading activities. Through the feature analysis from the
decision tree and coefficient analysis from the logistic regression, we strive to find what
works as critical components for predicting high knowledge gain. Lastly, we understand
the perceived interaction experiences of learners and see the effects of AI-based feedback
and the roles of explainability of feedback.

8.3.1 Effects on Learners’ Behaviors: self-reported distractions and
attention regulation behaviors

Statistical analysis on self-reported distractions with ANOVA
In this subsection, we investigate self-reported distractions of learners in control, treat-
ment_sub1, and treatment_sub2 conditions. The analysis is closely linked to our implemen-
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tation goal, aiming at 1) fewer distractions and 2) extending the overall attention span with
decreased distraction intervals. 2-condition and 3-condition comparisons were conducted
to see if the explainability of AI-based feedback affected learners’ perceived distractions.
Furthermore, the one-way Analysis of Variance (ANOVA) was conducted to evaluate if the
distinctions between the groups were statistically significant. As represented in Table 8.3,
in both 2-condition and 3-condition comparisons, the treatment group reported fewer dis-
tractions than the control group. In the 2-condition comparison, the control group reported
an average of 11.2 times distractions, while the participants in the treatment condition
reported 6.5 times of distractions. The difference between the control and treatment groups’
self-reported distinctions in the 2-condition comparison was more evident (p=0.024) than
in the 3-condition comparison (p=0.068).
In the 3-condition comparison, treatment_sub1 with AI-based screen blur feedback without
feedback rules explained, the distraction has been reported on average 6.87 times, while in
the treatment_sub2 condition with AI-based screen blur feedback with rules explained had
self-reported 6.13 times of distractions on average. The result indicates that our AI-based
feedback contributed significantly to decreased distractions. The effect was evident even
without the explainability of the feedback, which shows that the implementation of the
feedback affected the improvement in objective attention management.

Table 8.3: The number of self-reported distractions and their significance in 2-condition comparison and 3-
condition comparison.

Number of distraction reports (times)

Conditions M(SD) One-way ANOVA
M(SD) F df1 df2 p

2-condition
comparison

Control 11.2 (9.39) 5.47 1 47.3 0.024Treatment (sub 1 & 2) 6.50 (5.59)

3-condition
comparison

Control 11.2 (9.37)
2.91 2 34.7 0.068Treatment_sub1 6.87 (6.45)

Treatment_sub2 6.13 (4.79)

The interval of the self-reported distractions has statistically significantly (p=0.025) in-
creased in the treatment condition (142 seconds) compared to the control condition (88.6
seconds) in the 2-condition comparison. When looking into the 3-condition comparison,
the distraction interval of treatament_sub1 has been reported as 107 seconds, while it from
treatament_sub2 has been 178 seconds. It suggests that AI-based feedback has contributed
to increased distraction report interval, meaning it has contributed to increased learners’
attention spans. The result indicates that having explainability of the feedback contributed
to the increased distraction report interval but without statistical significance. In line
with the previous result regarding the number of distractions, adopting AI-based feedback
positively and significantly influenced distraction intervals and learners’ attention spans,
an objective contribution of our AI-based screen blur feedback in e-reading, regardless of
the feedback explainability. Please note that the self-reported distraction has been analyzed
only in available instances. For instance, learners who did not report distractions were
not considered for this analysis (each of the two instances in the WEDAR dataset and our
work). Also, the distraction interval analysis was not conducted for participants with only
one self-reported distraction instance.



138
8 Real-time AI-based Feedback Loop Implementation and Its Impacts on Learners’ Attention Span, Learning Outcomes, and Perceived Learning

Experiences

Table 8.4: The distraction intervals and their significance in 2-condition comparison and 3-condition comparison.

Intervals of distraction reports (s)

Conditions M(SD) One-way ANOVA
M(SD) F df1 df2 p

2-condition
comparison

Control 88.6 (47.6) 5.49 1 34.1 0.025Treatment (sub 1 & 2) 142 (108)

3-condition
comparison

Control 88.6 (47.6)
2.88 2 21.1 0.078Treatment_sub1 107 (55.6)

Treatment_sub2 178 (135)

Statistical analysis on attention regulation behaviors for the future feedback
thresholds design
We analyzed attention regulation behavior durations to see any behavior differences coming
from different conditions. We followed the analysis method of the BFLAe framework [292],
which we used in our work for deciding the feedback thresholds. This analysis helps under-
stand how long learners typically show attention regulation behaviors in their e-reading.
Thus, it gives the average and exceptional ranges of behaviors that we can use for setting up
feedback trigger thresholds. As described in the subsection of “Feedback implementation
with personalization”, the rationale of our current feedback implementation has been based
on the attention regulation behavior recognized for extensive periods (i.e., the integer part
of (Mean+SD of each attention regulation behavior)), which concluded baseline thresholds
of the WEDAR as 2, 2, 9, 9, and 7 seconds for movements of eyebrow, blink, mumble,
hand, and body, respectively. Our work represents new baseline thresholds for different
sub-conditions: 1, 2, 6, 9, and 7 seconds for AI-based screen blur without explainability
while having 1, 2, 11, 9, and 7 seconds for AI-based screen blur with explainability.
Our analysis has shown a consensus about the baseline statistics of each attention regulation
behavior regardless of experimental conditions. It helps the general interpretations and
utilization of attention regulation behaviors as essential indicators for the AI-based feedback
loop design. For example, the median of neutral, eyebrow, blink, mumble, and hand has
been 5, 1, 1, 2, and 2 seconds, regardless of the experimental conditions. Similar patterns
were observed in the quartiles of various experimental conditions: the first quartiles of
neutral, eyebrow, blink, mumble, and hand have been reported as 2, 1, 1, 1, and 1 second(s) in
all conditions. The second quartiles of neutral, eyebrow, blink, mumble, and hand behaviors
are commonly reported as 5, 1, 1, 2, and 2 second(s). The third quartiles, likely to be related
to feedback triggers since the third quartiles hold more prolonged attention regulation
behaviors, eyebrow, blink, and hand, were the same as 1, 1, and 4 second(s) regardless of
conditions. The result can be used as a foundation for behavior-based attention analysis
and feedback design for e-reading.

8.3.2 Effects on Learners’ Cognition: Knowledge gain
Statistical analysis with ANOVA
The average knowledge gain, represented by the multiple-choice questions and summariza-
tion results, recorded the highest in the treatment_sub2 condition without significance in
the 3-conidtion comparision (see Table 8.6). As can be seen from Figure 8.7, the distribution
of the knowledge gain evaluated through multiple-choice questions shows statistically
significant skewness to the left (skewness: -0.925, std error skewness: 0.309, Z=-2.99),
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Table 8.5: One-way ANOVA conducted on three classes (one control, two treatment groups with different feedback
instructions) on knowledge gain and perceived interaction experiences.

Attention regulation behavior durations (s)
Conditions Labels Min Max M (SD) Median Q1 Q2 Q3

Control

Neutral 1.0 124.0 9.44 (12.73) 5.0 2.0 5.0 12.0
Eyebrow 1.0 5.0 1.20 (0.52) 1.0 1.0 1.0 1.0
Blink 1.0 5.0 1.14 (0.45) 1.0 1.0 1.0 1.0
Mumble 1.0 5.0 3.15 (5.11) 2.0 1.0 2.0 3.0
Hand 1.0 35.0 3.58 (4.88) 2.0 1.0 2.0 4.0
Body 1.0 62.0 3.20 (2.85) 2.0 1.0 2.0 4.0

Treatment
_sub1

Neutral 1.0 117.0 11.61 (15.22) 5.0 2.0 5.0 16.0
Eyebrow 1.0 2.0 1.07 (0.25) 1.0 1.0 1.0 1.0
Blink 1.0 5.0 1.12 (0.54) 1.0 1.0 1.0 1.0
Mumble 1.0 19.0 2.83 (3.30) 2.0 1.0 2.0 3.0
Hand 1.0 56.0 3.63 (5.40) 2.0 1.0 2.0 4.0
Body 1.0 18.0 3.33 (2.42) 3.0 2.0 3.0 4.0

Treatment
_sub2

Neutral 1.0 227.0 9.65 (13.98) 5.0 2.0 5.0 12.0
Eyebrow 1.0 4.0 1.05 (0.32) 1.0 1.0 1.0 1.0
Blink 1.0 3.0 1.14 (0.41) 1.0 1.0 1.0 1.0
Mumble 1.0 32.0 4.78 (5.98) 2.0 1.0 2.0 6.0
Hand 1.0 76.0 3.63 (5.7) 2.0 1.0 2.0 4.0
Body 1.0 42.0 3.42 (3.62) 2.0 1.0 2.0 4.0

Table 8.6: One-way ANOVA conducted in 3-condition comparison with control, Treatment_sub1, and Treatment_-
sub2 groups on knowledge gain and perceived interaction experience.

Measurement Control Treatment_sub1 Treatment_sub2 One-way ANOVA
M (SD) F df1 df2 p

Knowledge gain Multiple-choice 7.57 (2.14) 7.00 (2.85) 8.13 (1.36) 1.192 2 30.5 0.317
Summarization 0.820 (0.006) 0.821 (0.006) 0.825 (0.004) 2.692 2 24.6 0.88

while the knowledge gain measured through the summarization task shows the skewness
to the right without statistical significance (skewness: 0.435, Std Error Skewness: 0.309,
Z=1.41). It indicates that the multiple-choice questions were generally perceived as more
manageable than the summarization task, with generally higher scores gained than from
the summarization task.
We found distinct patterns in the data distributions among experimental conditions in com-
paring multiple-choice question results. The control group exhibited a broad distribution,
with its median centered around 8.0, culminating in a peak of 8.5. On the contrary, the
distribution of treatment_sub1, with a median similarly positioned as the control group,
starts from a higher point. This distribution remained relatively steady, with a subtle
increase extending from the median to a score of 9. treatment_sub1 generally yielded
higher scores with a more uniform distribution than the control group. On the other hand,
the distribution of treatment_sub2 commenced above 5.0, presenting a relatively elevated
median of approximately 8.5 and demonstrating an exponential distribution therein. It
indicates that participants in the treatment_sub2 condition generally achieved higher scores
with narrower distributions than the control group and treatment_sub1.
In comparing conditions based on the summarization result, there has been a tendency
for the control group to have very thick mid-range scorers around the median of 0.820.
However, the treatment_sub1 condition started with higher scores than the control group,
resulting in generally even distributions with a slight increase at around 8.5 scores. The
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distributions of the treatment_sub2 began from a relatively higher point than the control
and the treatment_sub1 condition, with an exponential growth at approximately 8.5 to 9
scores.
Overall, implementing the AI-based feedback increased the knowledge gain shown through
multiple-choice, with an exponential increase in participants with a high score band of 7.5
to 10. In the summarization task, adopting AI-based feedback with explainability brought
students with higher score bands, generally higher than the control group and the treatment
condition without feedback explainability without statistical significance.

Figure 8.7: Knowledge gain distributions for multiple choice and summarization tasks in 3-condition comparison
with control, Treatment_sub1, and Treatment_sub2 groups.

Correlation analysis between results from multiple-choice and summarization
task
In this subsection, we investigate a potential correlation between the evaluation results
from multiple-choice and summarization. We hypothesized that there would be a positive
correlation between them, assuming that high scorers in the multiple-choice question
would achieve highly in the summarization task and vice versa.
We first calculated three quartiles (i.e., Q1, Q2, Q3), providing ranges of low (0-25%), mid
(25-75%), and high (75-100%) scores gained in each task in three experimental conditions,
respectively. We assigned each learner 1, 2, and 3 based on the quartiles they belong to
and conducted Pearson’s correlation analysis. The result showed no correlation between
evaluation results from multiple-choice and summarization (r=-0.125, p=.343), indicating
that achieving well in one measure does not guarantee a high score in another in all
experimental conditions.
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Comparing high-mid-low achievers in retrospect: relation to attention regulation
behaviors and perceived interaction experience
In this section, we strived for critical behavioral and affective components that might be
related to the high knowledge gain, using correlation and tree-based analysis. We first
hypothesized that higher achievers would have better perceptions of the system during
their learning and would show more specific behavioral patterns in the learning process.
However, unlike our assumption, correlation with perceived interaction experiences was
not found in any cases among higher achievers, lower achievers, and combined achievement
results.
We further utilized logistic regression and tree-based methods to deduce potential compo-
nents to predict the high-mid-low achievers in knowledge gain. For the machine-based
prediction, the following post-hoc features have been used to train the logistic regression
and decision-tree models: “sub-conditions (3-class comparison)”, “main conditions (2-class
comparison)”, “pretest (multiple-choice)”, “posttest (multiple-choice)”, “Attrakdiff total
(AttrakDiff)”, “Pragmatic (AttrakDiff)”, “Hedonic-I (AttrakDiff)”, “Hedonic-S (AttrakDiff)”,
“Attractiveness (AttrakDiff)”, “distraction numbers”, and “distraction intervals”. Two ma-
chine learning models were selected since we can trace the coefficients of each feature or
find the feature’s importance in retrospect. By understanding the rationale behind machine
reasoning, we can further investigate features that might be critical for learners’ knowledge
gain. We used 60 sample instances with three experimental conditions and adopted the
traditional training and testing sample split of 80-20 ratios. As a result, predicting learners’
knowledge gain with the multiple-choice questions has achieved 83.33% accuracy through
the logistic regression and 91.67% accuracy through the decision tree.
The feature importance analysis from the decision tree (see Figure 8.8) indicated that the
most influential feature in predicting the knowledge gain (multiple-choice) has been the
“posttest result”, regardless of the “pretest result”. Learners’ perceived “attractiveness” has
taken 19.4% of feature importance, while “distraction intervals (9.7%), “Hedonic-I (5.7%)”,
“Hedonic-S (4.6%)”, and “Pragmatic (3.2%)” qualities have been considered importantly for
predicting the low-mid-high knowledge gain evaluation with multiple-choice questions.
Though the coefficient does not directly provide the importance of the feature, it is helpful
to grasp the directional and proportional relationship between knowledge gain and other
indicators. The coefficients from the logistic regression model have shown that the “posttest
(coef: 1.409)” result best supports the predictions of the low-mid-high knowledge gain
via multiple-choice questions. Also, lower “pretest (coef: -1.149)” scores often result in
higher knowledge gain scores, and “ Hedonic-S (coef: -0.712)” affects the prediction of
low-mid-high achievements in multiple-choice questions. Note that general AttrakDiff
evaluation results show negative coefficients with low-mid-high knowledge gain because
the lower scores in the AttrakDiff measure indicate a more positive perception of learners.
3-class sub-conditions (0: baseline, 1: treatment_sub1, 2: treatment_sub2) have also had
high negative coefficients (coef: -0.547) with the knowledge gain clusters, indicating that
the AI feedback contributed to the higher knowledge gain compared to the control group
with randomized feedback, and the positive effects of the AI feedback on knowledge gain
was stronger with the feedback explained to learners (see the Figure 8.9).
We also strived to predict the low-mid-high level achievers in the summarization task.
However, logistic regression and the decision tree did not achieve robust prediction accura-
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Figure 8.8: Feature importance analysis conducted for predicting knowledge gain clusters (3-level) from multiple-
choice, using decision tree.

Figure 8.9: Feature importance analysis conducted for predicting knowledge gain clusters (3-level) from multiple-
choice, using logistics regression.

cies (33.3% each), showing the same prediction accuracy as random guesses from humans.
It might be because the features and the 60 sample instances we used for the prediction
were insufficient to decide the summarization scores. Another possibility is that the BERT
model’s summarization score might not provide a valid evaluation of learners’ knowledge
gain. Please note that we did not go deeper into such possibilities since conducting the
coefficient and feature importance analysis in our work was on finding the potential,
influential features that affect the machine prediction on different levels of knowledge gain.

8.3.3 Effects on Learners’ Perceptions: Perceived interaction experi-
ences

Table 8.7: One-way ANOVA conducted in 3-condition comparison with control, treatment_sub1, and treatment_-
sub2 groups on perceived system experience.

Measurement Baseline Treatment_sub1 Treatment_sub2 One-way ANOVA
M (SD) F df1 df2 p

Attrakdiff Overall 3.73 (0.386) 3.79 (0.991) 3.29 (0.472) 4.928 2 24.6 0.016
Pragmatic 2.84 (0.583) 3.56 (1.20) 2.99 (0.856) 2.370 2 24.1 0.115
Hedonic-Identity 3.77 (0.474) 4.00 (0.950) 3.72 (0.548) 0.482 2 25.6 0.623
Hedonic-Simulation 4.77 (0.590) 3.48 (1.14) 2.99 (0.677) 39.727 2 25.8 <.001
Attractiveness 3.55 (0.501) 4.14 (1.45) 3.47 (0.629) 1.347 2 24.2 0.279
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Statistical analysis with ANOVA
As can seen from Table 8.7, treatment_sub2 has recorded the best evaluation among
baseline, treatment_sub1, and treatment_sub2 conditions in the hedonic-I, hedonic-S, and
attractiveness measures, while the baseline condition has shown the best evaluation in the
pragmatic measure.
According to the ANOVA analysis, statistical significance has been found from the over-
all AttrakDiff measure, in which we averaged four measures (i.e., pragmatic, hedonic-I,
hedonic-S, and attractiveness) and the hedonic-S measures: it indicates that learners’ per-
ceptions on overall AttrakDiff measure and the hedonic-S were significantly differently
depending on experimental conditions. Through Pearson’s correlation analysis, we tried to
find the correlation between individual responses from each of the AttrakDiff. The result
represents the overall AttrakDiff measure to be significantly correlated with all submea-
sures: pragmatic (r=0.638***, p=<.001) hedonic-I (r=0.772***, p<.001), hedonic-S (r=0.610***,
p<.001), and attractiveness (r=0.904***, r=p<.001). The notably strong correlation with
attractiveness and the fact that the overall AttrakDiff score tends to increase significantly
by its attractiveness. Pragmatic quality has been significantly correlated with hedonic-I
(r=0.343**, p=.007) and attractiveness (r=0.0.636**, p=.007), indicating that the usability of the
system is related to both pleasure derived from task-related use (Hedonic-I) and perceived
attractiveness. It did not correlate with hedonic-S (r=-0.045, r=0.732), representing that
pragmatic quality does not necessarily affect the pleasure derived from the products’ fea-
tures of satisfying learners’ psychological needs for novelty and stimulation. Hedonic-I has
shown a significant correlation with attractiveness (r=0.759, p<.001), suggesting that when
users derive pleasure by using the system to achieve goals, they also find it more attractive.
Hedonic-S has shown a correlation with attractiveness (r=0.321*, p=0.012), indicating that
the aesthetic and appeal of the system are somewhat related to its ability to satisfy a user’s
need for stimulation and novelty.

AttrakDiff analysis
In this section, we investigate the learners’ perceived system experience with descriptive
analysis (see Figure 8.10). We compared the learners’ responses based on different experi-
mental conditions. Our focus has been: 1) comparing the baseline and the two treatment
conditions to understand the perceived effects of an AI-based feedback adoption (baseline
vs. treatment (sub 1 & 2)). Second, we strived to understand 2) the role of feedback explain-
ability by comparing responses towards the two treatment conditions (treatment_sub1 vs.
treatment_sub2).
Baseline condition with traditional e-readers without feedback has been evaluated as
more “practical”, “predictable”, and “manageable”, perceiving it has the most pragmatic
quality among 3 experimental conditions. Also, it has been seen as somewhat more
“professional” and “presentable” in the hedonic-I measure, indicating the importance of
aesthetic considerations in system design, which has not been implemented in our work.
Baseline condition has been evaluated as slightly more “undemanding”, “pleasant”, and
“good” in hedonic-S quality and attractiveness, respectively. Other than eight submeasures
out of 28, AI-based feedback has been evaluated more positively compared to the baseline:
4 out of 7 from pragmatic quality, 5 out of 7 from hedonic-I, 6 out of 7 from hedonic-S, and
5 out of 7 from attractiveness has been evaluated better than the baseline, showing the
improvement made via the AI-based feedback.
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Figure 8.10: AttrakDiff analysis conducted on three experimental conditions: baseline, Treatment_sub1, and
Treatment_sub2 conditions.

As mentioned in the subsection of “experimental conditions”, the only difference between
the treatment_sub1 and treatment_sub2 has been the instructions given to participants re-
garding the feedback rules though the exact same systemwas tested. As a result, treatment_-
sub2 with feedback explainability has been seen as more “human”, “simple”, “practical”,
“straightforward”, “predictable”, “clearly structured”, and “manageable” in the pragmatic
quality measure, while it has been evaluated as “connective”, “professional”, “integrating”,
“brings me closer to people”, and “presentable” in hedodnic-I measure. At the same time,
treatment_sub2 has also been perceived as more “inventive”, “creative”, “innovative”, “cap-
tivating”, “undemanding”, and “novel” through hedonic-S measures while being assessed as
“pleasant”, “attractive”, “likable”, “inviting”, “good”, “appealing”, and “motivating” in terms
of attractiveness.
In summary, the results underscore the importance of explainability in AI-generated
feedback and its impact on learners’ perceptions. The result represents that when feedback
rules are clearly communicated and understood, the system tends to be more favored
and trusted, which might have impacted enhanced knowledge gain. It emphasizes that
agreeable machine reasoning fosters greater human trust and is an essential insight for
AI-based feedback implementation.
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8.4 Discussion
The importance of feedback explainability in AI-based feedback: As revealed in the
analysis of perceived system experience, the overall AttrakDiff and hedonic-S measures
have shown statistically significant favor of system users for AI-based automatic feedback
with the explainability, compared to feedback without the explainability. The results
emphasize the importance of transparency and explainability in the AI-based feedback
provision, which extends the discussion of the conventional explainable AI approaches
into the realm of feedback design.
Importance of the hedonic attractiveness of the system for learners’ perceptions:
The correlations between hedonic and pragmatic qualities in the result suggest that these
aspects of user experience are not mutually exclusive and can influence each other: a
functional product (pragmatic) also tends to be pleasurable to use (hedonic), and vice versa.
Attractiveness plays a pivotal role and is significantly correlated with overall submeasures.
It underscores the importance of aesthetics and physical appeal in user perception and
system experience, which has not been proactively underpinned in our prototype only
with the GUI wireframe and, thus, should be studied further with the next round of
implementations.
Feedback loop combining with other feedback components: In line with the previous
discussion point, the feedback can be understood in line with other feedback components,
such as feedback messages and multimodal feedback agents. Our work focused on imple-
menting non-intrusive and timely feedback. However, the feedback messages supported by
generative AI and feedback delivered through other multimodal feedback interfaces, such
as conversational agents with a physical presence and speech-based interaction, might
change the implications of the AI-based feedback.
Exploration of feedback adaptation with generative AI: Since our study aimed to
find the potential effects of the AI-based feedback system with the feedback adaptation
strategy, we adopted the rule-based thresholds, which are computationally inexpensive
for real-time application and with interpretability. However, generative AI might further
support our scenario, especially when the feedback is adopted via other conversational
agents (e.g., chatbot, human-robot interaction).

8.5 Conclusion
In this work, we developed a feedback loop based on hybrid models to recognize learners’
attention regulations in e-reading using skeleton-based neural networks. Theoretical and
technological considerations have been aligned to decide the model training, feedback
threshold design, feedback adaptation, and system evaluation. We evaluated the effects of
implementing AI-based feedback, focusing on learners’ behaviors, cognition, and percep-
tion by investigating learners’ self-reported distractions, knowledge gain, and perceived
interaction experiences.
Four experimental conditions have been compared: a control condition with randomized
feedback based on the public WEDAR dataset, a baseline condition to understand learn-
ers’ perceptions about conventional computer-based readers without feedback, and two
treatment conditions with and without explainability about the feedback mechanisms.
The result indicates that our AI-based automatic feedback based on attention regulation
behavior recognition contributed to fewer distractions and longer attention spans, regard-
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less of the feedback’s explainability. It shows our system objectively contributed to the
attention management of learners engaged in e-reading. Also, implementing feedback has
contributed to knowledge gain, helping learners achieve knowledge gain evaluated through
multiple-choice and summarization tasks. Regarding the perceived interaction experiences,
the evaluation of AI-based feedback with and without the explainability varied: learners
highly valued the system’s inventiveness, creativity, boldness, innovation, activation, and
novelty, which stimulated learners when the instructions about the feedback mechanisms
were introduced. It indicates that learners appreciate the system feedback more once they
understand the rationale behind the specific feedback.
All in all, our work offers an empirical and comprehensive understanding of closing the
AI-based real-time feedback loop in e-reading, with critical insights into designing and
implementing the adaptive feedback loop.
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9
Summary & Conclusion

9.1 Summary

W ith the widespread use of digital devices and platforms, e-reading, referred to as
digital reading on computers in this dissertation, is becoming more commonplace in

formal and informal education. Especially in higher education, the impact of e-reading is
more significant since learners are required to register, comprehend, remember, reconstruct,
and apply the knowledge based on their independent reading as a part of regular education.
E-reading also directly affects learning outcomes, learners’ self-efficiency, and learning
success. Traditionally, for e-learning, log data for the post-hoc analysis of intervention
has been used, while Technology-Enhanced Learning (TEL) approaches, leveraged by
sensing and machine learning technologies, developed sophisticated real-time learning
analytics and learning support. However, despite the importance of e-reading in higher
education and technological advancements that enable seamless TEL applications, real-time
intervention design and implementation for e-reading seem scarce. In this regard, this
dissertation explores the possibilities of adopting a real-time feedback loop in e-reading,
leveraging multimodal data reasoning and learning analytics based on AI technologies.
In this dissertation, Part I has been designed to answer the research question “What are
the state-of-the-art advancements and challenges in multimodal data aggregation, feedback
design, and implementations in the context of TEL?’’. Previously developed multimodal
learning systems with multimodal data inputs and feedback outputs for various learning
objectives have been investigated to explore the ecosystem of TEL through a scoping
review, introduced in Chapter 2.
A research question, “What theoretical and technical approaches can be taken to recognize
learners’ attention regulation in e-reading for higher education?’’, has been aimed to
be tackled in Part II. Chapter 3 explored various observable behavioral indicators from
cognitive science, education, and affective computing that show learners’ attention loss,
which this dissertation defines as “attention regulation behaviors’’. Such behaviors have
been utilized for training neural networks based on image-based and video-based samples
to accurately predict the moments of learners’ attention loss (Chapter 4) and their cognitive
processes, such as learners’ usage of higher-level and lower-level thinking skills, during
reading practices (Chapter 5).
Part III answered the research question “How can automatic AI-based feedback in e-
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reading assist attention management for higher education learners and further affect their
learning outcomes, perceptions, and interactions?’’. It consists of three studies to design
the feedback components to assist learners’ recognized distractions. Chapter 6 investigated
various feedback interfaces (e.g., GUI, Speech-based robot), feedback messages, and traits
(e.g., meta-cognitive, emphatic). Also, the effects of the feedback implementations on
learners’ perceptions and learning outcomes (e.g., knowledge gain, perceived learning
experience, perceived interaction with the interface) were investigated. Chapter 7 studied
ideal feedback timing by defining thresholds for the feedback trigger for the recognized
attention regulation behaviors. It investigated the normal and abnormal ranges of behavior
representations of learners and suggested them as a rationale for deciding the feedback
trigger thresholds. Lastly, Chapter 8 combined the hybrid skeleton-based computer vision
neural networks with the adaptive feedback strategies for developing a feedback system
for e-reading, combining insights from previous explorations.
All in all, the main research question that extends across the dissertation was “How can a
multimodal feedback loop, informed by automatic attention recognition, enhance e-reading
experiences for higher education learners?’’. This chapter summarizes the main findings
from each study as conclusions. The limitations of current work and future suggestions
are presented in the following general discussion, closing the dissertation.

9.2 Main findings about the state-of-the-art multimodal learning
systems (Part I)

The scoping review on multimodal learning systems has been conducted in Chapter 2, based
on 30 papers published between 2010 and 2023. In terms of multimodal data collection
and aggregation, it was found that most systems rely on the sensor-based approach by
combining visual, auditory, and tactile inputs aligned with text-based log data, aiming at
real-time, on-site analytics and interventions. Those were primarily for individual learners
in K-12 and higher education. Computer-vision approaches allowed more stealth learning
analytics, enabling automatic recognition and classification of learning states. Log-based
data, a traditional resource for learning analytics, has been observed as a standard layer of
multimodal data input, while learners’ text-based inputs in learning are becoming a more
critical resource to understand learning processes and needs with the current advancement
of Large Language Models (LLMs). The questionnaire-based and observation-based data
stream was a meaningful layer of the data for both a qualitative understanding of learners
and as a ground truth of the machine learning model training, where human expertise is
critical. For the feedback design, feedback modalities (e.g., visual, auditory, tactile), charac-
teristics (e.g., spatial, temporal), timing (e.g., real-time, post-hoc), functions (e.g., semantic,
intuitive), and types (e.g., graphics, dashboards, text, sound effects, music, video, physi-
cal movements, vibrations) have been suggested as critical components. Those feedback
components were known to interconnect in design and application processes. Specifically,
various intuitive and semantic features have been emphasized in graphics, texts, and dash-
boards. Auditory feedback has also been favored for its semantic and pheonic features
for making sound effects, voice, and music. Physical movements and vibrations provide
real-time corrections to learners by stimulating the different sensory channels in learning
other than primarily dominant visuals, making the feedback more intuitive. Different
data streams and feedback designs were found when systems are geared toward cognitive,
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affective, and psychomotor domains in learning, which decides where and how multimodal
learning systems are implemented. In conceptual learning, language learning, and medical
education, multimodal feedback assisted knowledge delivery and comprehension, while
multimodal feedback provided real-time evaluation for clear communication. Also, various
combinations of visual, auditory, and tactile feedback, often found in sports and musical
education, were used to correct learner behaviors in real time or assist further analytics for
reflection.

9.3 Main findings about real-time attention recognition (Part II)
Through the literature study, learners who engage in e-reading were found to experience
constant fluctuations in attention, and the current attention management has been highly
dependent on learners’ self-regulation. In Chapter 3, various observable indicators of
learners’ self-regulation from cognitive science, education, and affective computing were
investigated. Learners have shown self-regulatory behaviors to sustain their attention
level to overcome their perceived distractions, and specific behaviors were shown as
efforts to regain learners’ cognitive arousal. According to the literature study, eyebrow
movements were found to be a sign of cognitive arousal and re-engagement in the task,
while blink flurries are known to be spontaneous efforts to sustain attention and increase
wakefulness. Learners were known to use mumble reading as auditory stimulation to
decode the complicated text better. Hand movements were found to be efforts to re-engage
and refocus on the learning task, while body movements show affective states and cognitive
arousals. In this regard, such behaviors were defined as ”attention regulation behaviors”
in this dissertation, indicators of self-aware distractions and voluntary/semi-voluntary
actions to regain focus. Pearson’s correlation analysis was conducted using the WEDAR
dataset in e-reading, collected for the dissertation, which has the video dataset with second-
to-second human annotation of attention regulation behaviors, reaction time to stimuli,
and self-reported distractions. As a result, significant correlations were found between
attention regulation behaviors and self-reported distractions. Also, internal correlations
were found among most attention regulation behaviors, which supported the rationale
behind the model training for automatically recognizing attention loss based on behavioral
cues. Furthermore, second-to-second image-based recognition based on ResNet with
various configurations and video-based recognition with CNN-RNN were compared to
find the best-performing model. As a result, the video-based method has shown the best
performance compared to the image-basedmethods (75.70% vs. 69.73% in subject-dependent
settings and 68.43% vs. 25.90% in subject-independent settings), presumably due to the
temporal layers that it contains, which provides information about movements. Also,
we conducted attention regulation behavior recognition using various machine learning
models (e.g., kNN, SVN, AdaBoost, MLP), using multiple spans of the behavior inputs (2, 4,
8, 16 seconds). The result represented the best accuracy with MLP with a span of 8 seconds,
with 89.41±6.91% accuracy. Also, it achieved the most distinctive classification between
attentive and distractive states when applying the t-SNE, which supports the choice of the
behavior input spans of 8 seconds. This chapter successfully defined behavioral indicators
of attention loss and developed models that assist in the recognition of learners’ attentional
states.
In Chapter4, various behavioral indicators were investigated to find the critical component
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in predicting learners’ usage of Higher-Order Thinking Skills (HOTs) and Lower-Order
Thinking Skills (LOTs) in e-reading, leveraging the explainable AI approach. HOTs are
the ability to analyze, synthesize, and evaluate knowledge, while LOTs are the ability
to remember, understand, and apply knowledge. Evaluating such qualities was found
to use different measures such as writing summarization, essays, and conducting oral
presentations to evaluate HOTs to see learners’ knowledge synthesis and its applications.
On the other hand, LOTS were often evaluated through multiple-choice, true/false, and
fill-in-the-blank questions to test the knowledge acquisition and its understanding. In
this work, a multiple-choice question score has been used to represent learners’ LOTs,
while learner summarization via Bidirectional Encoder Representations from Transformers
(BERT) has been used to gauge learnes’ HOTs. Since HOTs and LOTs do not necessarily
correlate, we made a matrix with HOTs and LOTs performances as 3 clusters derived
from the k-means clustering and 9 clusters derived from quartile analysis on two axes
(i.e., HOTs, LOTs). Various behavioral features based on attention regulation behavior
occurrences, behavioral expressiveness, reaction time, and reading speed were used to
predict learners’ HOTs and LOTs combinations. As a result, The prediction results for
thinking skill clusters and each three-level HOTs and LOTs demonstrated robust accuracies
ranging from 65.33% to 78.66% across different features and their combinations. Attention
regulation behavior has been found to be a consistently strong predictor for all levels
of HOTs and LOTs. Individual reading speed was relevant only in predicting thinking
skill clusters derived from k-means clustering. Expressiveness played an essential role in
predicting thinking skill clusters and LOTs, while individual reaction time was influential
in predicting HOTs. This chapter uncovered how learners’ behaviors work as robust
predictors of learners’ usage of thinking skills in e-reading. Instructional designers and
educational practitioners often miss key characteristics of learners that represent their
intervention needs. Chapter 5 leveraged unsupervised learning techniques to cluster and
derive multi-dimensional characteristics of learners as“personas”. Personas were made
recognizable through further machine learning model training so the work can be used
for learning analytics and feedback provision. Based on the WEDAR dataset, three factual
learning outcomes (i.e., knowledge gain, perceived interaction experience, and perceived
social presence of the conversational agent as feedback interface) have been chosen as low-
dimensional features, while the dataset also contains mid and high-dimensional features.
Based on the comparison between automatic and manual feature selection methods, manual
feature selection based on the low-dimensional features has recorded the best silhouette
score, indicating the best distinctions among clusters. The k-means clustering method
has been chosen to segment learners into various groups representing personas. Various
unsupervised methods, such as hierarchical, DBSCAN, and spectral clustering, were used
to cross-validate the clusters. The Chi-squared test has confirmed that using different
unsupervised methods has significant homogeneity in categories of contingency, validating
the clustering result. Quartile analysis has been applied to six clusters derived from k-
means, making six learner persona types with multi-dimensional characteristics. On top of
it, recognition of each persona has been strived based on attention regulation behaviors.
In the process, various sampling methods (e.g., instant vs. cumulative, learning-phased vs.
time-based) and various classical machine learning methods in its persona prediction were
examined. Aside from performing the 6-class classification to predict six persona types,
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four persona predictions with the most feedback needs have also been conducted. The SVM
classifier has shown relatively stable and robust performances in the time duration-based
method, proven as the most appropriate classifier for real-time feedback loop development,
having stable 65%-70% accuracies on both instant and cumulative samples for the 4-class
classification task. All in all, this chapter provided the feedback adaptation strategy based
on the multi-dimensional learner features that represent various learner types effectively
and efficiently.

9.4 Main findings about the real-time feedback design (Part III)
In Chapter 6, the impact of the conversational agent and its empathic and metacognitive
feedback were investigated compared to the GUI-based system. Two e-reading systems,
based on the Human-Robot Interaction (HRI) and GUI, were developed respectively. Learn-
ers’ knowledge gain, perceived interaction experience, and perceived social presence from
the HRI-based and GUI-based interfaces were compared. HRI-based feedback was im-
plemented via a Furhat robot with a human face, facial expressions, and speech-based
input and output, while GUI-based feedback had a pop-up with yes or no buttons for user
inputs. During the e-reading, quiz questions were given on the screen at the end of each
subtopic. At the same time, only the HRI-based system provided emphatic and metacogni-
tive feedback through the robot speech regarding learners’ answers and correctness. The
result indicates that comparatively higher knowledge gain and perceived knowledge gain
were achieved with the HRI feedback. Also, the HRI feedback was emotionally favored
for being inventive, creative, innovative, captivating, and challenging, which is related to
hedonic-stimulation quality. In the meanwhile, the overall social presence has been highly
evaluated with the HRI-based system compared to the GUI-based system, especially having
significance in the average social presence measure and co-presence measure, indicating
that learners appreciated the physical presence of the robot interface and perceived the
HRI as ”social beings” in the interaction process. The accuracy of recognizing the attention
regulation behaviors based on various deep learning models, such as CNN-RNN, CNN-
LSTM, and CNN-Transformer, have been compared, resulting in the CNN-RNN as the
best-performing model with 72.97% accuracy. Furthermore, attention regulation behaviors
were further used to predict learners’ knowledge gain, perceived interaction experience,
and perceived social presence. In predicting the 3-level knowledge gain with high-mid-low
distinctions, the SVM classifier has performed 74.29%. For predicting the perceived interac-
tion experience, the random forest has shown the highest performance in predicting the
overall experience, pragmatic quality, raw hedonic-identity, raw hedonic-stimulation, and
raw and normalized attractiveness scores, ranging across 70% to 92.5% accuracies. This
chapter has proven that attention regulation behavior is a robust predictor of learners’
attentional, cognitive, and psychological states in e-reading and interaction with feedback.
Chapter 7 aligned four stages of system architecture in developing the real-time feedback
loop for attentive e-reading. The framework is an iterative loop of four stages: 1) capturing
learners’ behaviors in e-reading via webcam, 2) reasoning and recognizing the learners’
distractions based on the neural networks leveraged by computer vision, 3) intervention
(screen blur) based on the pre-designed feedback rules, and 4) triggering the positive
cognitive and behavioral changes of learners, which we fundamentally aimed as extended
attention span and fewer distractions. With iterations, feedback triggers behavioral changes
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in learners and simultaneously works as the next round of input for attention recognition.
This chapter also defines the reasoning behind having the screen-blur feedback. The
fundamental function of the blur feedback was to trigger the learner’s arousal while not
bothering the primary e-reading task performances while introducing a non-intrusive but
alarming intervention commonly referred to as a challenge in real-time intervention design.
At the same time, the reaction time to the blurred stimuli can simultaneously work as
data points for future feedback loops because it provides meaningful insights into learners’
arousal. Lastly, the chapter also investigates the normal and abnormal ranges of attention
regulation behaviors, which can be further utilized for the feedback timing design. Based
on the quartile analysis of the duration of each attention regulation behavior occurrence
in the WEDAR dataset, low-mid-high ranges of attention regulation behavior thresholds
have been derived, which defines the normal and abnormal behavior ranges of learning
behaviors. This chapter has contributed to the system architecture design, the type of
feedback, and the rationale behind the feedback timing design.
Previously found insights have been comprehensively combined in Chapter 8 for develop-
ing a prototype. Implementing a real-time feedback loop that helps the attention span with
fewer distractions has been the fundamental focus of the e-reading system with AI-based
feedback. From the literature study, it has been found that skeleton-based behavior recogni-
tion has advantages in lower computational requirements and broader applicability without
environmental constraints compared to the video-based method. Multi-dimensional matri-
ces of facial and body landmarks have been derived based on the MediaPipe framework to
leverage the advantage of having temporal layers in data, an advantage of the video-based
method. Using the WEDAR dataset, binary and multi-class models have been developed
to recognize attention regulation behaviors effectively. At the same time, a model fusion
of binary and multi-class classification has been applied to minimize the false-positive
recognition of distractions and subsequent feedback triggers, which is critical for learners’
perceived trustworthiness toward the feedback and the system. The primary feedback rule
has been that once the attention regulation behaviors are recognized for more than the time
defined in the predefined thresholds, the blur was applied to the screen, and learners were
gently reminded of their distractions. At the same time, clicking on the button to deactivate
the blur screen was meant to cut the tendency for distraction. Feedback design took an
adaptive approach in that the threshold was adapted on every page based on learners’
behaviors on the previous page. Based on the behavioral expressiveness and reaction speed
to the blur, which indicated the distractions and arousal in behaviors, three learner clusters
were derived from k-means clustering. The blur was designed to be given more frequently
for learners with more intervention needs. Several aspects of the prototype were evaluated
on various experimental conditions: distractions, learning performances, and learners’
perceptions were evaluated on 1) a control group with randomized feedback timing, 2) a
treatment group with the AI-based screen blur feedback without explanation about the
feedback mechanism, and 3) a treatment group with AI-based screen blur feedback with
explanation about the feedback mechanism. Also, 4) a baseline group representing learners’
preliminary perceptions about e-reading experiences before implementing measures have
taken place. Both treatment conditions, with or without explanation about the feedback
mechanism, showed fewer reports of distractions with a longer attention span than the con-
trol group, with statistical significance derived from ANOVA analysis. In knowledge gain,
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treatment conditions with feedback explainability performed better in both multiple-choice
and summarization tasks. Perceived interaction experience, measured by the AttrakD-
iff questionnaire, treatment conditions with feedback explainability has shown the best
evaluation on the overall AttrakDiff score, Hedonic-Identity, Hedonic-Stimulation, and
Attractiveness. At the same time, pragmatic quality was evaluated better in the baseline
group, representing the direction of future improvement. This chapter validated the effec-
tiveness of AI-based automatic feedback in decreasing learners’ distractions and assisting
more attentive e-reading, with insights into the importance of feedback explainability and
aesthetic attractiveness in learners’ perceptions and experiences.

9.5 General Discussion
As articulated in the scoping review on multimodal learning systems in Chapter 2, gen-
eralization and personalization of learning analytics and feedback design are significant
challenges in closing the feedback loop. That is because systems should be general enough
to accommodate the learning needs of general learners by adequately recognizing and
responding to the targeted actions. At the same time, specific personalization needs should
be effectively tackled without harming generalization. In this thesis, data-driven learner
segmentation approaches have been applied to address such issues so that feedback can
adapt to specific persona types that represent particular learners (Chapter 5). In the process,
combining the human experts’ insights and machine learning techniques was found critical
for complementing the limitations of machine reasoning. For instance, structuring the
learning data for the first round feature vector design and validating the clusters has been
essential for data-driven persona development, where human expertise and domain knowl-
edge can benefit the quality of the result. Also, the semantical explainability of models
(Chapter 4) and the design of AI-based feedback (Chapter 8) are still highly dependent on
human expertise regardless of the advancement of AI, emphasizing the complementary
relationship between human expertise and AI technologies.
Another point has been that general multimodal learning systems lack overarching frame-
works with higher-level learning objectives. Due to the domain-specific and context-
specific nature of the learning analytics and intervention design, most existing frameworks
need further support from the expanded models or frameworks. This dissertation defined
attention regulation behaviors as target behaviors that provide clues for feedback gen-
eration. It also specified behaviors in Chapter 3 that could successfully correlate with
various learning outcomes. Further developed machine learning models were combined
with diverse feedback interface with empathic and meta-cognitive prompts (Chapter 6)
with the refinement of feedback timing (Chapter 7). However, a more theoretical framework
for behavior analysis and content-level instructional design in e-reading would strengthen
a holistic understanding of feedback on learners’ behavioral, cognitive, and psychological
changes.
Lastly, closing the feedback loops in the context of Multimodal Learning Analytics (MMLA)
creates various challenges and opportunities. Though this dissertation successfully closed
the feedback loop based on attention regulation behavior recognition with the skeleton-
based framework and adaptive feedback strategies (Chapter 8), there is still room for
improvement. For instance, though an automatic AI-feedback system has brought longer
attention spans of learners and less frequent distractions regardless of the explainability of
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the feedback, the evaluation of learners’ perceptions varied significantly depending on the
explainability. It represents ”how” the feedback is explained, which critically affects the
perception of AI-based automatic feedback and their learning experiences. As revealed,
different feedback interfaces bring different perceptions and dynamics between learners
and the system even with the same content (Chapter 6). Thus, composing a feedback
ecosystem with other types of real-time feedback (e.g., VR/AR-based interface) could
change the whole learning dynamics and interaction between learners and the system.
Also, as represented inChapter 8, the system’s aesthetical quality affects the hedonic identity
and attractiveness, which highly affects the general perceptions of the system. Though only
the primary wireframes of the Graphic User Interface (GUI) have been suggested in this
dissertation, there is much to be explored and improved based on further enhancements
with considerations of various User Interface (UI) components.



9

157

Samenvatting
(Summary in Dutch)

9.6 Samenvatting
Met het wijdverbreide gebruik van digitale apparaten en platforms wordt e-lezen, in
dit proefschrift digitaal lezen op een computerscherm genoemd, steeds gewoner in het
formele en informele onderwijs. Vooral in het hoger onderwijs is de impact van e-lezen
groter, omdat van leerlingen wordt verwacht dat ze de kennis op basis van hun zelfs-
tandig lezen registreren, begrijpen, onthouden, reconstrueren en toepassen als onderdeel
van het reguliere onderwijs. Het heeft een rechtstreekse invloed op de leerresultaten,
de zelfredzaamheid van de leerlingen en hun leerprestaties. Traditioneel werd voor e-
learning gestreefd naar loggegevens van MOOCS voor post-hoc analyse en interventie,
terwijl Technology-Enhanced Learning (TEL) benaderingen, gebruikmakend van sensing
en machine learning technologieën, plaatsvonden voor real-time leeranalyse en leeronders-
teuning. Echter, ondanks het belang van e-lezen in het hoger onderwijs en technologische
vooruitgang die naadloze TEL-toepassing mogelijk maakt, lijken real-time interventieon-
twerp en -implementatie voor e-lezen schaars. In dit verband verkent dit proefschrift
de mogelijkheden van een real-time feedbacklus bij e-lezen, gebruikmakend van multi-
modale dataredenering en leeranalyse op basis van AI-technologieën. Al met al was de
belangrijkste onderzoeksvraag van het proefschrift “Hoe kan een multimodale feedbacklus,
geïnformeerd door automatische aandachtsherkenning, de e-leeservaring van studenten in
het hoger onderwijs verbeteren?”.
In dit proefschrift, Part I is ontworpen om de onderzoeksvraag te beantwoorden “Wat
zijn de state-of-the-art ontwikkelingen en uitdagingen in multimodale data aggregatie,
feedback ontwerp en implementaties in de context van TEL”. Eerder ontwikkelde multi-
modale leersystemen met multimodale data inputs en feedback outputs voor verschillende
leerdoelen zijn onderzocht om het ecosysteem van TEL te verkennen door middel van een
scoping review geïntroduceerd in Chapter 2.
De onderzoeksvraag, “Welke theoretische en technische benaderingen kunnen worden
gebruikt om de aandachtsregulatie van lerenden bij e-lezen voor het hoger onderwijs te
herkennen?”, is behandeld in Part II. Chapter 3 onderzocht verschillende waarneembare
gedragsindicatoren uit de cognitiewetenschappen, het onderwijs en affectieve informatica
die het aandachtsverlies van leerlingen aantonen, die in dit proefschrift worden gedefinieerd
als “aandachtsregulatiegedragingen”. Dergelijke gedragingen zijn gebruikt voor het trainen
van neurale netwerken op basis van afbeelding en video voorbeelden om nauwkeurig de
momenten van aandachtsverlies (Chapter 4) en cognitieve processen, zoals het gebruik van
hogere en lagere denkvaardigheden, tijdens het lezen te voorspellen bij leerlingen (Chapter
5).
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9.7 Algemene Discussie
Zoals verwoord in de scoping review over multimodale leersystemen in Chapter 2, zijn
generalisatie en personalisatie van learning analytics en feedbackontwerp belangrijke
uitdagingen bij het sluiten van de feedbacklus. Systemen moeten namelijk algemeen
genoeg zijn om tegemoet te komen aan de leerbehoeften van algemene leerlingen door
de gerichte acties adequaat te herkennen en erop te reageren. Tegelijkertijd moeten
specifieke personalisatiebehoeften effectief worden aangepakt zonder de generalisatie
te schaden. In dit proefschrift zijn gegevensgestuurde leerlingsegmentatiebenaderingen
toegepast om dergelijke problemen aan te pakken, zodat de feedback loop zich kan aan-
passen aan specifieke personatypes die bepaalde leerlingen vertegenwoordigen (Chapter
5). Tijdens het proces bleek dat het combineren van de inzichten van menselijke ex-
perts en machine-learningtechnieken cruciaal is voor het aanvullen van de beperkingen
van machine-reasoning. Het structureren van de leerdata voor de eerste ronde van het
featurevectorontwerp en het valideren van de clusters was bijvoorbeeld essentieel voor
datagestuurde persona-ontwikkeling, waarbij menselijke expertise en domeinkennis de
kwaliteit van het resultaat ten goede kunnen komen. Ook de semantische verklaarbaarheid
van modellen (Chapter 4) en het ontwerp van AI-gebaseerde feedback (Chapter 8) zijn nog
steeds sterk afhankelijk van menselijke expertise, ongeacht de vooruitgang van AI, wat de
complementaire relatie tussen menselijke expertise en AI-technologieën benadrukt.
Een ander punt is dat algemene multimodale leersystemen geen overkoepelende kaders
hebben met leerdoelen op een hoger niveau. Vanwege de domeinspecifieke en contextspec-
ifieke aard van de leeranalyse en het interventieontwerp, hebben de meeste bestaande
frameworks verdere ondersteuning nodig van de uitgebreide modellen of frameworks.
Dit proefschrift definieerde aandacht regulerend gedrag als doelgedrag dat aanwijzingen
geeft voor het genereren van feedback. Het specificeerde ook gedragingen in Chapter 3
die succesvol konden correleren met verschillende leerresultaten. Verder ontwikkelde
machine-learning modellen werden gecombineerd met diverse feedback interfaces met
empathischnadrukkelijke en meta-cognitieve prompts (Chapter 6) met de verfijning van
feedback timing (Chapter 7 ). Een meer theoretisch kader voor gedragsanalyse en instruc-
tieontwerp op inhoudsniveau bij e-lezen zou echter een meer holistisch begrip van feedback
op gedrags-, cognitieve en psychologische veranderingen bij leerlingen versterken.
Tot slot creëert het sluiten van de feedbacklussen in de context van Multimodal Learning
Analytics (MMLA) verschillende uitdagingen en kansen. Hoewel dit proefschrift met succes
de feedbacklus heeft gesloten op basis van aandachtsregulatie gedragsherkenning met het
skelet-gebaseerde framework en adaptieve feedbackstrategieën (Chapter 8), is er nog ruimte
voor verbetering. Hoewel een automatisch AI-feedbacksysteem bijvoorbeeld heeft geleid
tot een langere aandachtsspanne van lerenden en minder frequente afleiding ongeacht
de uitlegbaarheid van de feedback, varieerde de evaluatie van de perceptie van lerenden
aanzienlijk afhankelijk van de uitlegbaarheid. Het is ”hoe” de feedback wordt uitgelegd,
wat de perceptie van AI-gebaseerde automatische feedback en de leerervaringen kritisch
beïnvloedt. Zoals aangetoond, zorgen verschillende feedbackinterfaces voor verschillende
percepties en dynamieken tussen lerenden en het systeem, zelfs bij dezelfde inhoud (Chapter
6). Door een feedbackecosysteem samen te stellen met andere soorten realtime feedback
(bijvoorbeeld VR/AR-gebaseerde interfaces) kan de hele leerdynamiek en interactie tussen
lerenden en het systeem dus veranderen. Zoals weergegeven in Chapter 8, beïnvloedt
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de esthetische kwaliteit van het systeem de hedonische identiteit en aantrekkelijkheid,
wat de algemene perceptie van het systeem sterk beïnvloedt. Hoewel alleen de primaire
grafische gebruikersinterface (GUI) kaders zijn gebruikt in dit proefschrift, kan er nog veel
worden onderzocht en verbeterd op basis van verdere overwegingen van verschillende
gebruikersinterface (UI) componenten.
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학위논문 국문 초록

(Summary in Korean)

9.8 요약
디지털기기및플랫폼사용저변의확대에따라스크린기반읽기 (e-reading)가공식및비공식교육에서더욱

보편화되고 있다. 특히 e-reading의 영향력은 학습자의 독립적 읽기를 기반으로 한 지식 습득, 이해, 기억,

재구성 및 활용을 정규 교육과정의 일부로 포괄하는 고등 교육에서 더욱 두드러진다. 때문에 e-reading은

학습 결과, 학습자의 자기 효용감 및 학습 성공에 매우 중대한 영향을 끼친다. 전통적인 이러닝 학습 지원 (e-

learning support)은 1) MOOC의 로그데이터를활용한사후분석및피드백, 그리고 2) 센싱 및머신러닝을

활용한 기술 기반 학습 (Technology-Enhanced Learning; TEL)의 도입 및 실시간 학습 분석 (Learning

Analytics; LA)이라는 두 가지 큰 흐름으로 요약된다. 하지만 고등 교육에서의 e-reading의 중요성과 이를

둘러싼 실시간 기술 기반 학습 인프라의 비약적 발전에도 불구하고 e-reading을 중심으로 한 실시간 피드백

시스템의 디자인 및 기술적 구현은 이루어지지 않았다. 이러한 맥락에서 본 학위논문에서는 AI를 기반으로

한 멀티모달 추론 (Multimodal Reasoning) 및 학습 분석을 중심으로 e-reading을 위한 실시간 피드백

프레임워크를 제안한다. 본 학위논문을 관통하는 주요 연구 질문은 ‘AI 기반의 멀티모달 인터렉션 루프

(loop)가 고등 교육 학습자의 e-reading 내 주의력에 어떻게 도움을 줄 수 있는가?’ 이다.

Part I에서는 ‘기술기반학습환경에적용가능한멀티모달데이터활용, 피드팩디자인, 그리고시스템개발을

위한 선행 과제는 무엇인가?’ 라는 연구 질문에 대해 탐구하였다. 이를 위해 Chapter 2에서는 주제범위

문헌고찰 (Scoping Review) 방법을 통해 ‘기술 기반 학습에서 멀티모달 데이터 수집, 피드백 도입이 다양한

학습 목표를 성취하기 위해 어떻게 적용되었는가?’ 라는 연구 질문을 가지고 멀티모달 데이터 수집 및 융합,

피드백 디자인, 그리고 교육 환경 내 적용이라는 세가지 하위 주제에 접근하였다.

Part II에서는 ‘고등교육내 e-reading에서학습자의주의력을시스템기반으로인식하기위한이론적, 기술적

접근은무엇인가?’라는연구질문에답하고자하였다. 이에따라다양한인지과학 (Cognitive Science), 교육

(Education), 감성 컴퓨팅 (Affective Computing) 지표에 대한 탐구를 기반으로 학습자의 주의력 상실을

예측하기 위한 주요 지표를 도출하고, 이를 학습자들의 e-reading 시 나타나는 ‘주의력 조절 행동 (Atten-

tion Regulation Behaviors)’ 으로 정의하였다 (Chapter 3). 또한 해당 행동 지표들을 기반으로 이미지 및

비디오 기반 신경망 (Neural Network)을 학습하여 읽기 과제 수행 중 학습자의 주의력 상실 (Chapter 4) 및

고수준/저수준 사고 기술의 활용 (Higher-Order and Lower-Order Thinking Skills; HOTs and LOTs)과

같은 e-reading 내 학습자의 인지 수준(Chapter 5)을 예측하고자 하였다.

Part III에서는 ‘e-reading에서인공지능기반의실시간피드백이학습자의주의력관리및학습결과, 사용자

경험 및 시스템과의 인터렉션에 어떤 영향을 끼치는가?’ 라는 연구 질문에 관해 고찰하였다. 이를 위해 해당

연구에서는 Part II에서다루어진학습자들의주의력조절행동과다양한피드백구성요소 (Feedback Com-

ponents)들 간 상관관계에 집중하였다. Chapter 6에서는 다양한 피드백 인터페이스(예: GUI, 음성 대화

로봇(Speech-based Robot)), 메시지 (Content), 특성 (예: 메타인지적 (Meta-cognitive), 공감하는 (Em-

pathic)), 타이밍에대해고찰하였다. 이를기반으로다양한피드백구성요소가학습자의인식과학습결과(예:

지식 습득 (Knowledge Gain), 학습 경험 (Perceived Learning Experience), 인터페이스와의 상호 작용

(Perceived Interaction Experience))에 어떠한 영향을 끼치는지 탐구하였다. Chapter 7에서는 학습자가

e-reading에서보이는주의력상실지표표현의정상범위와비정상범위를정의하여피드백작동 (trigger)의

임계값을 제시하는 피드백 타이밍 프레임워크를 제안하였다. 마지막으로 Chapter 8에서는 스켈레톤 기반의

(Skeleton-based) 컴퓨터 비전 (Computer Vision) 신경망 모델 (Neural Networks)과 GUI 기반의 적응형
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(Adaptive) 피드백디자인을개발하여 AI 피드백이 e-reading 학습자의행동, 인지, 지각, 인터렉션에끼치는

영향력에 대해 고찰하였다

9.9 총론
Chapter 2의 멀티모달학습시스템을위한주제범위문헌고찰을통해분석된바와같이, 학습 분석및피드백

설계 시의 알고리듬 일반화 (Generalization) 및 개인화 (Personalization)는 피드백 루프를 완결하는 데

필수적으로 고려 되어야 하는 요소이다. 학습 분석 및 피드백 시스템의 도입 목적은 시스템이 목표로 하는

사용자의 행동을 정확히 감지하고, 이를 통해 보편적인 학습자의 학습 요구 (Learning Needs)에 대응할

수 있을 만큼 충분히 일반적이어야 하기 때문이다. 한편으로, 알고리듬은 일반화 요소를 저해하지 않는

수준에서 특정 학습자들의 개인적인 니즈 또한 효과적으로 해결 될 수 있도록 디자인 되어야 한다. 본 최종

학위논문에서는 이러한 문제를 해결하기 위해 비지도 학습 (Unsupervised Learning) 기법을 통한 데이터

기반학습자세분화 (Segmentation) 접근법을적용하여, 손쉽게특정학습자군을대표하는 ‘페르소나’ 유형을

도출하고, 이에 맞게 피드백을 제공할 수 있도록 했다 (Chapter 5). 이 과정에서 기계 추론 (Machine Rea-

soning)의 한계를 보완하기 위해 인간 전문가의 인사이트와 머신러닝 기술의 결합이 강조되었다. 예를 들어,

비지도 학습의 1차적 특징 벡터 (Feature Vector) 설계를 위해 학습 데이터를 구조화하고, 추후 도출 된

클러스터를검증하는작업은데이터기반페르소나개발 (Data-driven Persona Development)에 필수적인

과정으로, 이 과정에서 인간의 전문성 (Expertise)과 도메인 지식 (Domain Knowledge)은 클러스터링

품질에 큰 영향을 끼친다. 또한 기계학습 모델의 의미론적 (Sementic) 설명 가능성 (Interpretability)

(Chapter 4)과 AI 기반 피드백 도입에 (Chapter 8) 필수적인 인간의 지능 (Human Intelligence)은 인간과

AI 기술의 상호보완적 관계를 기반으로 한 융합 지능 (Hybrid Intelligence)의 중요성을 강조한다.

또한해당학위논문에서는일반적인멀티모달학습시스템개발을위한고수준 (High-level) 학습목표 (Learn-

ing Objectives)가 포함된 포괄적 (Overarching) 프레임워크가 부족하다는 점에 주목하였다. 도메인 별

(Domain-specific), 상황 별 (Context-specific) 특성으로 인해 대부분의 학습 분석 및 피드백 설계에서

기존 프레임워크는 모델 확장 또는 타 프레임워크의 추가적 연계를 필요로 한다. 본 학위논문에서는 주의력

조절 행동을 피드백 생성의 단서가 되는 목표 행동으로 정의하였으며 (Chapter 3), 또한 Chapter 4에서는

성공적 학습 결과와 긴밀하게 연관되는 학습 행동을 ‘설명가능한 인공지능 (Explainable AI)’ 프레임워크를

활용해연구하였다. 이를기반으로추후개발된머신러닝모델은피드백타이밍의세분화 (Chapter 8)와 함께

로봇 인터페이스를 기반으로 한 공감 및 메타인지 프롬프트 (Chapter 6)의 영향력을 주제로 한다. 넓은 연구

범위를 고려할 때, 행동 기반 분석 및 피드백 컨텐츠를 위한 총체적 프레임워크의 개발은 학습자의 행동적,

인지적, 심리학적 변화에 대한 보다 유기적이고 심층적 이해를 가능케 할 것으로 보인다.

마지막으로해당학위논문에서는멀티모달학습분석 (Multimodal Learning Analytics; MMLA)의맥락에서

피드백 루프를 완결 짓기 위해 해결되어야 할 어려움 및 향후 연구 방향성을 공유한다. 본 연구에서는

스켈레톤 기반 행동 감지 프레임워크와 적응형 피드백 전략 (Chapter 8)을 결합하는 방식으로 피드백 루프를

매듭지었지만, 여전히 개선점은존재한다. 예를 들어, 도입된 인공지능기반 (AI-based)의 자동 (Automatic)

피드백 시스템은 피드백의 설명 가능성 (Explainability)에 관계없이 학습자의 주의 집중 시간 (Attention

Span)을 길어지게 하는 한편 주의력 상실 (Distraction)의 빈도를 감소케 했지만, 학습자의 시스템에 대한

인지적 (Perceived) 평가는 피드백의 설명 가능성에 따라 크게 달라졌다. 이는 피드백이 학습자 주의 집중에

객관적도움을줌에도피드백이 ‘어떻게’설명되는지에따라AI기반자동피드백에대한학습자의인식및학습

경험이크게달라짐을의미한다. 앞서살펴본바와같이, 피드백인터페이스에따라같은콘텐츠를제공함에도

학습자의시스템에대한인식및인터페이스와의역학관계 (Dynamics)는크게달라졌다 (Chapter 6). 따라서

다양한 유형의 실시간 피드백 (예: VR/AR 기반 인터페이스)의 도입을 통한 시스템 생태계 (Ecosystem)의

다양화는 e-reading의 양상 뿐 아니라 학습자와 인터페이스 간 역학관계 및 상호 작용에 큰 변화를 불러올

것이다. 또한, Chapter 8에서 살펴본 바와 같이 시스템의 미적 품질 (Aesthetic Quality)은 시스템의

정체성과 관련된 쾌락적 특질 (Hedonic-Identity Quality)과 매력도 (Attractiveness)에 영향을 미치며,

이는 시스템에 대한 일반적인 인식에도 큰 영향을 선사한다는 점이 확인되었다. 이 학위논문에서는 그래픽
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사용자 인터페이스 (GUI)를 구성하는 기본적이고 기능적인 (Functional) 와이어 프레임 (wireframe)만이

제시되었지만, 다양한 사용자 인터페이스 (User Interface; UI) 및 구성 요소를 고려한 시스템의 추가적 미적

보완은 시스템에 대한 전반적 인식에 한층 더 긍정적인 변화를 가져올 것으로 전망한다.
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