19.11.2012 Views

software training courses 2010 corsi di addestramento ... - EnginSoft

software training courses 2010 corsi di addestramento ... - EnginSoft

software training courses 2010 corsi di addestramento ... - EnginSoft

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

The first commercial <strong>software</strong> to allow Multi-Objective<br />

Optimization applied to any engineering design area<br />

SHOW US<br />

YOUR GREEN SIDE<br />

International modeFRONTIER Users’ Meeting <strong>2010</strong> goes green...<br />

‘cause optimize means saving: time, resources, energy.<br />

And you? Are you ready to go green?<br />

27 th - 28 th May <strong>2010</strong> - Savoia Excelsior Palace - Trieste - Italy<br />

To stay competitive and gain market share, companies are forced to continuosly improve the<br />

quality of the products. While this has been a longtime-held belief for most managers, only in<br />

recent years has it become clear that achieving higher quality is not necessarily at odds with<br />

efforts to reduce cost and time-to-market.<br />

By atten<strong>di</strong>ng the conference you will get a chance to learn how modeFRONTIER, the lea<strong>di</strong>ng<br />

multi<strong>di</strong>sciplinary & multi-objective design optimization tool, is used globally by designers<br />

and managers in many industries to better understand their product development process, and<br />

achieve higher quality at reduced cost, allowing them to meet the challenge of producing better<br />

products faster.<br />

<strong>2010</strong><br />

Come and attend, we are waiting for you!<br />

online conference registration<br />

http://um10.esteco.com<br />

modeFRONTIER ® is a registered product of ESTECO Srl. International modeFRONTIER Users’ Meeting is an initiative of ESTECO Srl


<strong>EnginSoft</strong> Flash<br />

Sometimes challenging times in business<br />

can leverage, cultivate and grow our<br />

creativity and innovativeness. They<br />

remind us on how important networking<br />

really is to develop and realize new ideas<br />

and visions and to get inspiration from<br />

other people and their views.<br />

In early <strong>2010</strong>, we can see a new<br />

understan<strong>di</strong>ng and new beginnings in<br />

many areas. It is the engineering<br />

profession that has always created jobs<br />

and projects, engineers bring things<br />

forward, they bridge many gaps and<br />

realize technological advancements.<br />

Ing. Stefano Odorizzi<br />

<strong>EnginSoft</strong> CEO and President<br />

In the past year, <strong>EnginSoft</strong> has started several new<br />

initiatives and strengthened existing ties between our<br />

customers, partners, the academia, research and industry.<br />

To us, networking has never been more important. During<br />

my recent visit to Silicon Valley and the US, I have had<br />

the opportunity to meet with representatives of BAIA, the<br />

Business Association Italy America. BAIA is a political<br />

business network that facilitates the open exchange of<br />

knowledge and business opportunities. BAIA promotes a<br />

culture of innovation by fostering entrepreneurial spirit<br />

and principles, in the US and in Italy.<br />

This e<strong>di</strong>tion of the Newsletter includes a review of my<br />

encounters with BAIA, the University of California at<br />

Berkeley, University of Stanford, and the University of<br />

Santa Clara in October 2009.<br />

Our readers also hear about SimNumerica, the University<br />

Spin-Off <strong>EnginSoft</strong> has co-founded to support the<br />

development of Digital Mechatronics by using Co-<br />

Simulation. SimNumerica’s joint expertise is focused on<br />

environments for the virtual prototyping of mechatronics<br />

systems based on micro-controllers<br />

We present the modeFRONTIER 4.1.2 highlights and the<br />

successful application of the technology at Indesit<br />

Company that recently has received the 2009 Ecohitech<br />

Award for its state-of-the-art appliances. Volvo Car<br />

Newsletter <strong>EnginSoft</strong> Year 6 n°4 - 3<br />

Corporation tells us about robust design<br />

optimization of a bumper system with<br />

modeFRONTIER. The statistical capabilities of<br />

the <strong>software</strong>, this time, are applied to the<br />

modeling of the spread of a <strong>di</strong>sease like swine<br />

flu using relatively simple equations.<br />

For those who are looking for first insights into<br />

the field of optimization, we recommend the<br />

article by <strong>EnginSoft</strong> Germany on optimization<br />

in today’s product development.<br />

Further <strong>software</strong> news feature Magma 5 for<br />

Process Simulation and Forge 2009.<br />

Another highlight of this issue is the article on ANSYS<br />

simulation of carbon fiber and anisotropic materials in the<br />

ATLAS Experiment and the Large Hadron Collider at CERN.<br />

We also present R&D News, current research projects, the<br />

<strong>EnginSoft</strong> Event Calendar and latest advancements in HPC<br />

High Performance Computing, as well as our Japan Column<br />

which features CADdoctor for accelerating reverse<br />

engineering and an interview with Mr Sakae Morita and Mr<br />

Kentaro Fukuta of ELYSIUM Co., Ltd. Japan, both speak<br />

about their time at our International Conference in<br />

Bergamo this year.<br />

Akiko Kondoh, <strong>EnginSoft</strong>’s Consultant in Japan welcomes<br />

us to Shogatsu, the New Year, with Osechi-ryori and best<br />

wishes from the land of the rising sun and Monodukuri.<br />

We hope that you will enjoy rea<strong>di</strong>ng the many<br />

contributions of this e<strong>di</strong>tion and that some will inspire<br />

you for <strong>2010</strong>. As always, we welcome any feedback and<br />

ideas for future publications.<br />

<strong>EnginSoft</strong> and the e<strong>di</strong>torial team of the Newsletter would<br />

like to take this opportunity to wish you and your families<br />

a very Happy and Prosperous New Year!<br />

Stefano Odorizzi<br />

E<strong>di</strong>tor in chief


4 - Newsletter <strong>EnginSoft</strong> Year 6 n°4<br />

Sommario - Contents<br />

SOFTWARE UPDATE<br />

6 modeFRONTIER: release 4.1.2 highlights<br />

7 MAGMA 5: le nuove frontiere della Simulazione <strong>di</strong> processo<br />

10 FORGE 2009 Release notes - <strong>di</strong>cembre 2009<br />

14 Elysium’s CADdoctor accelerating Reverse Engineering<br />

CASE STUDIES<br />

17 Parametric FEM model optimization for a pyrolitic Indesit oven<br />

21 Robust Design Optimization of a Bumper System at Volvo Cars using modeFRONTIER<br />

25 Optimization in product development - An efficient approach to integrate single CAE Technologies up to the<br />

entire design chain<br />

29 ANSYS simulation of carbon fiber and anisotropic materials<br />

32 Aeronautical engines: reduction of emissions and consumptions with a process simulation study<br />

IN DEPTH STUDIES<br />

35 Healing the swine flu with modeFRONTIER<br />

39 New trends in High Performance Computing<br />

CORPORATE NEWS<br />

43 Development of Digital Mechatronic Applications using Co-Simulation<br />

45 About SimNumerica and <strong>EnginSoft</strong><br />

46 Innovation and <strong>EnginSoft</strong> in the USA<br />

RESEARCH AND TECHNOLOGY TRANSFER<br />

48 BENIMPACT Buil<strong>di</strong>ng’s ENvironmental IMPACT evaluator & optimizer<br />

TRAINING<br />

50 Continuing Higher Education on CAE: The TCN Consortium<br />

51 Analizzare cinematica e <strong>di</strong>namica dei meccanismi con le tecniche multibody: terminologia, ambiti <strong>di</strong><br />

applicazione ed opportunità<br />

The <strong>EnginSoft</strong> Newsletter e<strong>di</strong>tions contain references to the following<br />

products which are trademarks or registered trademarks of their respective<br />

owners:<br />

ANSYS, ANSYS Workbench, AUTODYN, CFX, FLUENT and any and all<br />

ANSYS, Inc. brand, product, service and feature names, logos and slogans are<br />

registered trademarks or trademarks of ANSYS, Inc. or its subsi<strong>di</strong>aries in the<br />

United States or other countries. [ICEM CFD is a trademark used by ANSYS,<br />

Inc. under license]. (www.ANSYS.com)<br />

modeFRONTIER is a trademark of ESTECO <strong>EnginSoft</strong> Tecnologie per<br />

l’Ottimizzazione srl. (www.esteco.com)<br />

Flowmaster is a registered trademark of The Flowmaster Group BV in the<br />

USA and Korea. (www.flowmaster.com)<br />

MAGMASOFT is a trademark of MAGMA GmbH. (www.magmasoft.com)<br />

ESAComp is a trademark of Componeering Inc.<br />

(www.componeering.com)<br />

Forge and Coldform are trademarks of Transvalor S.A.<br />

(www.transvalor.com)<br />

AdvantEdge is a trademark of Third Wave Systems .<br />

(www.thirdwavesys.com)<br />

LS-DYNA is a trademark of Livermore Software Technology Corporation.<br />

(www.lstc.com)<br />

SCULPTOR is a trademark of Optimal Solutions Software, LLC<br />

(www.optimalsolutions.us)<br />

The Diffpack Product Line is developed and marketed by inuTech GmbH<br />

(www.<strong>di</strong>ffpack.com)<br />

LINFLOW is entirely a development of ANKER – ZEMER Engineering AB in<br />

Karlskoga, Sweden. (www.linflow.com)<br />

The AnyBody Modeling System is developed by AnyBody Technology A/S<br />

(www.anybodytech.com)<br />

WAON is a trademark of Cybernet Systems Co.,Ltd Japan<br />

(www.cybernet.co.jp)<br />

CADdoctor is a trademark of Elysium Co., Ltd. Japan<br />

(http://www.elysiuminc.com)<br />

For more information, please contact the E<strong>di</strong>torial Team


JAPAN CAE COLUMN<br />

52 Interview with Mr Sakae Morita, General Manager,<br />

Marketing and Mr Kentaro Fukuta of ELYSIUM Co., Ltd.<br />

Japan<br />

53 New Year Greetings from Japan<br />

EVENTS<br />

54 Il mondo della forgiatura a stampi aperti, della<br />

laminazione piana e circolare, si è dato appuntamento a<br />

Padova per fare il punto sulle tecniche più avanzate <strong>di</strong><br />

ottimizzazione <strong>di</strong> processo/prodotto.<br />

56 Il mondo dello stampaggio a freddo <strong>di</strong> viterie e minuterie<br />

metalliche, si è dato appuntamento a Bergamo per fare il<br />

punto sulle tecniche più avanzate <strong>di</strong> ottimizzazione <strong>di</strong><br />

processo/prodotto.<br />

57 Bilancio del Ciclo <strong>di</strong> Workshop de<strong>di</strong>cati alla Simulazione<br />

dei Processi <strong>di</strong> Deformazione dei Metalli<br />

58 <strong>EnginSoft</strong> Event Calendar<br />

59 <strong>EnginSoft</strong> <strong>2010</strong> CAE Webinars<br />

GAMES<br />

59 Optimization Crossword Puzzle<br />

PAGE 17 PARAMETRIC<br />

FEM MODEL OPTIMIZATION FOR<br />

A PYROLITIC INDESIT OVEN<br />

PAGE 21 OPTIMIZATION<br />

OF A BUMPER<br />

SYSTEM AT VOLVO CARS<br />

PAGE 32 AERONAUTICAL<br />

ENGINES: REDUCTION<br />

OF EMISSIONS AND<br />

CONSUMPTIONS WITH<br />

A PROCESS SIMULATION<br />

STUDY<br />

Newsletter <strong>EnginSoft</strong><br />

Year 6 n°4 - Winter 2009<br />

If you want to receive a free copy of the next Enginsoft<br />

Newsletters, please contact our Marketing office at:<br />

newsletter@enginsoft.it<br />

All pictures are protected by copyright. Any reproduction<br />

of these pictures in any me<strong>di</strong>a and by any means is forbidden<br />

unless written authorization by Enginsoft.<br />

©Copyright <strong>EnginSoft</strong> Newsletter.<br />

Advertisement<br />

If you want to purchase advertising spaces within our<br />

newsletter, please contact the Marketing office at: Luisa<br />

Cunico - newsletter@enginsoft.it<br />

<strong>EnginSoft</strong> S.p.A.<br />

24124 BERGAMO Via Galimberti, 8/D<br />

Tel. +39 035 368711 • Fax +39 0461 979215<br />

50127 FIRENZE Via Panciatichi, 40<br />

Tel. +39 055 4376113 • Fax +39 055 4223544<br />

35129 PADOVA Via Giambellino, 7<br />

Tel. +39 49 7705311 • Fax 39 049 7705333<br />

72023 MESAGNE (BRINDISI) Via A. Murri, 2 - Z.I.<br />

Tel. +39 0831 730194 • Fax +39 0831 730194<br />

38123 TRENTO fraz. Mattarello - via della Stazione, 27<br />

Tel. +39 0461 915391 • Fax +39 0461 979201<br />

www.enginsoft.it - www.enginsoft.com<br />

e-mail: info@enginsoft.it<br />

COMPANY INTERESTS<br />

ESTECO <strong>EnginSoft</strong> Tecnologie per l’Ottimizzazione<br />

34016 TRIESTE Area Science Park • Padriciano 99<br />

Tel. +39 040 3755548 • Fax +39 040 3755549<br />

www.esteco.com<br />

CONSORZIO TCN<br />

38123 TRENTO Via della Stazione, 27 - fraz. Mattarello<br />

Tel. +39 0461 915391 • Fax +39 0461 979201<br />

www.consorziotcn.it<br />

<strong>EnginSoft</strong> GmbH - Germany<br />

<strong>EnginSoft</strong> UK - United Kingdom<br />

<strong>EnginSoft</strong> France - France<br />

<strong>EnginSoft</strong> Nor<strong>di</strong>c - Sweden<br />

Aperio Tecnologia en Ingenieria - Spain<br />

www.enginsoft.com<br />

ASSOCIATION INTERESTS<br />

NAFEMS International<br />

www.nafems.it<br />

www.nafems.org<br />

TechNet Alliance<br />

www.technet-alliance.com<br />

RESPONSIBLE DIRECTOR<br />

Stefano Odorizzi - newsletter@enginsoft.it<br />

ART DIRECTOR<br />

Luisa Cunico - newsletter@enginsoft.it<br />

PRINTING<br />

Grafiche Dal Piaz - Trento<br />

Newsletter <strong>EnginSoft</strong> Year 6 n°4 - 5<br />

The <strong>EnginSoft</strong> NEWSLETTER is a quarterly<br />

magazine published by <strong>EnginSoft</strong> SpA<br />

Autorizzazione del Tribunale <strong>di</strong> Trento n° 1353 RS <strong>di</strong> data 2/4/2008


6 - Newsletter <strong>EnginSoft</strong> Year 6 n°4<br />

modeFRONTIER:<br />

release 4.1.2 highlights<br />

ESTECO is proud to announce the release of v4.1 of the<br />

multi-objective optimization and design environment<br />

<strong>software</strong>, modeFRONTIER. This state of-the-art PIDO tool,<br />

written to allow easy coupling to almost any Computer-<br />

Aided-Engineering (CAE) tool, is now even more powerful<br />

and user-friendly than previous versions.<br />

DOE Algorithms<br />

New features have been added to the list of available<br />

algorithms in the DOE Sequence:<br />

Incremental Space Filler<br />

Inscribed Composite Design<br />

Uniform Reducer<br />

Dataset Reducer<br />

Schedulers and Optimizers<br />

New features have been added to the list of algorithms<br />

available in the Scheduler and Optimizers:<br />

Polynomial Chaos<br />

Evolution Strategy<br />

Lipschitz Sampling<br />

Mixed Integer Programming Sequential Quadratic<br />

Programming<br />

Response Surface Algorithms<br />

Evolutionary Design is now available, which implements a<br />

symbolic regression technique based on GP (Genetic<br />

Programming). The algorithm searches for the analytical<br />

expressions that are able to approximate the <strong>training</strong> data<br />

set. The users select the operators to be used among the<br />

basic mathematical functions (+,-,*,/,cos(),sin(),tg(),exp(),<br />

etc.) and the program evaluates the analytical expression.<br />

Data Mining<br />

New functions have been added to the Tools and Charts<br />

available in order to make life easier for users when exploring<br />

and assessing the data available in the Design Space tables:<br />

Auto-Report<br />

publishing results is just a few clicks away, thus the users can<br />

create automatic/custom report accor<strong>di</strong>ng to their needs.<br />

Principal Component Analysis and Multi-Dimensional<br />

Scaling<br />

Principal Component Analysis, designed to extract the<br />

significant latent variables out of a multi-<strong>di</strong>mension set of<br />

data and Multi-Dimensional Scaling, a powerful tool for<br />

exploring and analyzing sets of data have been added to the<br />

Multi-Variate Analysis Tool.<br />

Distribution Fitting<br />

Distribution Fitting chart has been designed for fitting<br />

univariate <strong>di</strong>stributions to sets of existing data<br />

Multi-Vector<br />

Multi-Vector chart lets the users <strong>di</strong>splay vector data in a<br />

single plot<br />

The Workflow<br />

New features have been added to the list of CAD/CAE Nodes<br />

available in the Workflow library<br />

Flowmaster V7<br />

LMS Virtual.Lab<br />

ANSA<br />

Design Target Node<br />

It is now possible to easily assign an external vector as<br />

target function, by importing from an external text file or<br />

pasting the data values from the clipboard. This feature,<br />

coupled with the Levenberg-Marquardt algorithm is ideally<br />

suited for most of the common curve-fitting design problems.<br />

For further information:<br />

Ing. Francesco Franchini - info@enginsoft.it<br />

Moldflow MPI<br />

GT-SUITE<br />

MSC Adams/View


Newsletter <strong>EnginSoft</strong> Year 6 n°4 - 7<br />

MAGMA 5: le nuove frontiere della<br />

simulazione <strong>di</strong> processo<br />

Con il mese <strong>di</strong> Novembre 2009 è iniziata la consegna della<br />

versione 5.0 <strong>di</strong> MAGMASOFT, denominata MAGMA5, che copre<br />

i principali aspetti dei processi <strong>di</strong> colata in SABBIA per<br />

leghe ferrose e non ferrose.<br />

MAGMA5 è molto più <strong>di</strong> una semplice nuova release: è un<br />

ambiente totalmente nuovo, basato sulle più recenti tecnologie<br />

<strong>software</strong>, che rivoluzionerà l'utilizzo della simulazione.<br />

Con questo nuovo strumento <strong>di</strong>venta molto più semplice<br />

creare e gestire i modelli, impostare la simulazione e visualizzare<br />

in maniera efficiente i risultati.<br />

Fig.1: Esempi delle <strong>di</strong>verse modalità <strong>di</strong> visualizzazione dell’ambiente CAD<br />

Il nuovo ambiente CAD per la modellazione solida si interfaccia<br />

con gli altri CAD commerciali, offrendo la possibilità<br />

<strong>di</strong> importare ed esportare file geometrici <strong>di</strong> vari formati: all’interfaccia<br />

STL si potrà affiancare il formato STEP per un<br />

periodo <strong>di</strong> prova <strong>di</strong> un anno senza costi aggiuntivi, mentre<br />

<strong>di</strong>ventano <strong>di</strong>sponibili come opzioni attivabili anche le interfacce<br />

CATIA V5 (solo per le piattaforme Windows) e Pro/E.<br />

La manipolazione e la visualizzazione dei modelli geometrici<br />

cambia ra<strong>di</strong>calmente: l’utente può scegliere <strong>di</strong><br />

lavorare con più quadranti attivi fino ad un massimo <strong>di</strong><br />

9; i quattro classici quadranti del preprocessore <strong>di</strong><br />

MAGMASOFT rimangono come una delle possibili soluzioni<br />

predefinite, anche se l’utilizzatore troverà molto<br />

comodo e intuitivo <strong>di</strong>segnare visualizzando il modello<br />

in un’unica finestra, dove i coman<strong>di</strong> <strong>di</strong> rotazione, traslazione,<br />

zoom e clipping sono utilizzabili in modo <strong>di</strong>namico<br />

e interattivo come nell’attuale post-processore<br />

(fig1).<br />

L’albero delle geometrie, <strong>di</strong>sponibile a sinistra dell’ambiente<br />

CAD, restituisce con imme<strong>di</strong>atezza la visualizzazione<br />

dei volumi creati o importati. Operazioni quali la<br />

mo<strong>di</strong>fica delle grandezze geometriche o dell’or<strong>di</strong>ne dei<br />

volumi, la selezione, il copia e incolla <strong>di</strong> geometrie esistenti<br />

sono rese semplici e veloci attraverso l’utilizzo del solo<br />

mouse.<br />

Il nuovo comando “copy with reference” <strong>di</strong> volumi creati all’interno<br />

<strong>di</strong> MAGMA5 lega le copie al volume originario, in<br />

modo che ogni mo<strong>di</strong>fica effettuata su quest’ultimo sia automaticamente<br />

applicata a tutte.<br />

Nuove funzioni CAD sono state implementate per offrire la<br />

possibilità <strong>di</strong> modellare più velocemente e in modo flessibile<br />

modelli complessi: geometrie estruse con sezione termi-<br />

nale <strong>di</strong> forma <strong>di</strong>fferente rispetto a quella iniziale sono facilmente<br />

ottenibili con il nuovo comando skin (fig2).<br />

Inoltre, tutti i soli<strong>di</strong> possono essere dotati <strong>di</strong> raggi <strong>di</strong> raccordo<br />

semplicemente prevedendoli nel momento in cui si <strong>di</strong>segna<br />

la sezione. Per esempio, attraverso la finestra <strong>di</strong> controllo,<br />

è possibile impostare le grandezze caratteristiche <strong>di</strong><br />

una sezione trapezoidale: altezza, <strong>di</strong>mensione della base<br />

Fig.2: Il comando skin permette <strong>di</strong> estrudere volumi con sezione finale <strong>di</strong> forma<br />

<strong>di</strong>versa da quella iniziale


8 - Newsletter <strong>EnginSoft</strong> Year 6 n°4<br />

Fig.3: Esempio <strong>di</strong> impostazione <strong>di</strong> un raggio <strong>di</strong> raccordo<br />

Fig.4: Generazione <strong>di</strong> anime attraverso l’utilizzo <strong>di</strong> operazioni booleane<br />

(maggiore e/o minore) e angolo <strong>di</strong> sformo sono completati<br />

dall’opzione del raggio <strong>di</strong> raccordo (fig.3).<br />

Operazioni booleane sono permesse tra modelli importati da<br />

CAD esterni e geometrie create all’interno <strong>di</strong> MAGMA5. Un<br />

esempio classico è costituito dalla generazione <strong>di</strong> anime <strong>di</strong><br />

forma complessa con le relative portate (fig.4).<br />

Al termine della progettazione, il modello CAD deve essere<br />

tradotto attraverso l’utilizzo della mesh in modello matematico.<br />

Dalla qualità della mesh <strong>di</strong>pende l’accuratezza dei risultati<br />

e il corrispondente tempo <strong>di</strong> calcolo. MAGMA5 offre<br />

la possibilità <strong>di</strong> caratterizzare i volumi necessari<br />

alla simulazione, attraverso la generazione<br />

del modello <strong>di</strong>scretizzato, in un numero <strong>di</strong><br />

livelli <strong>di</strong> affinazione scelto dall’utente<br />

(fig.5), con il vantaggio <strong>di</strong> non rinunciare alla<br />

qualità (visualizzandola istantaneamente<br />

al termine della generazione) e <strong>di</strong> minimizzare<br />

i tempi <strong>di</strong> calcolo.<br />

Sui domini riconosciuti dalla mesh vengono<br />

risolte le equazioni relative alla fluido<strong>di</strong>namica,<br />

alla termica e alle tensioni residue. I corrispettivi<br />

solutori <strong>di</strong> calcolo sono arricchiti <strong>di</strong><br />

ulteriori modelli computazionali, come per<br />

esempio un nuovo modello <strong>di</strong> turbolenza per<br />

la simulazione del riempimento della cavità<br />

che considera l’effetto della tensione superfi-<br />

Fig.5: Pannello <strong>di</strong> generazione della mesh<br />

ciale, mentre un nuovo modello <strong>di</strong> plasticità viene<br />

implementato per un calcolo delle tensioni residue<br />

più accurato, con la possibilità <strong>di</strong> includere<br />

l’effetto del contatto del pezzo con le pareti<br />

della forma <strong>di</strong> sabbia o anima.<br />

A completamento della previsione della qualità<br />

del getto, è possibile simulare qualsiasi trattamento<br />

termico. Per esempio, considerando il<br />

classico trattamento T6, il modello <strong>di</strong> calcolo degli<br />

stress residui valuterà il rilassamento delle<br />

tensioni dopo colata durante la fase <strong>di</strong> solubilizzazione,<br />

l’insorgere <strong>di</strong> nuove eventuali tensioni<br />

residue durante la fase <strong>di</strong> tempra e il successivo<br />

stato <strong>di</strong> tensione generato dalla fase <strong>di</strong> invecchiamento.<br />

Dal momento che le operazioni meccaniche<br />

(come per es. la smaterozzatura) mutano<br />

ulteriormente la <strong>di</strong>stribuzione delle tensioni residue<br />

presenti a seguito della colata, MAGMA5 of-<br />

fre la possibilità <strong>di</strong> includerle nell’analisi <strong>di</strong> stress. La conoscenza<br />

delle tensioni residue permette al progettista <strong>di</strong> valutare<br />

più accuratamente la resistenza in esercizio <strong>di</strong> un<br />

componente e qualora fosse <strong>di</strong> interesse, attraverso l’utilizzo<br />

<strong>di</strong> MAGMAlink, <strong>di</strong> utilizzare la loro <strong>di</strong>stribuzione come<br />

stato iniziale in una simulazione strutturale.<br />

L'impostazione del processo <strong>di</strong> simulazione può ora essere<br />

elaborato in finestre parallele agli ambiente CAD, mesh e<br />

postprocessore. Nella finestra principale coesistono, infatti,<br />

<strong>di</strong>versi menù a ten<strong>di</strong>na nei quali è possibile entrare con un<br />

semplice “clic” per poter creare la geometria (fig.6a), visua-


Fig.6: Pannello <strong>di</strong> gestione: a) ambiente CAD,b) visualizzatore della mesh,c) settaggio della simulazione.<br />

Fig.7: Previsione della qualità del getto attraverso la visualizzazione <strong>di</strong><br />

<strong>di</strong>fferenti risultati contemporaneamente.<br />

lizzare la mesh, definire i parametri <strong>di</strong> processo (fig.6b) e<br />

analizzare i risultati (fig.7.). Il veloce passaggio da una finestra<br />

all’altra comporta un notevole miglioramento nei<br />

tempi <strong>di</strong> impostazione della simulazione.<br />

L’analisi dei risultati viene agevolata dalla visualizzazione <strong>di</strong><br />

più finestre contemporaneamente, in ognuna delle quali è<br />

possibile analizzare un risultato <strong>di</strong>verso e usufruire dei classici<br />

coman<strong>di</strong> <strong>di</strong> rotazione <strong>di</strong>namica, traslazione, sezione e<br />

animazione (fig.7).<br />

L’innovativo comando “picking” permette <strong>di</strong> rilevare il valore<br />

puntuale <strong>di</strong> qualsiasi risultato con un semplice “clic” nella<br />

zona <strong>di</strong> interesse. Una finestra informativa restituisce le<br />

coor<strong>di</strong>nate del punto selezionato e<br />

il corrispondente valore. Inoltre è<br />

possibile salvare in formato grafico<br />

l’evoluzione dei valori dei risultati<br />

fluido<strong>di</strong>namici e termici dei punti<br />

selezionati per l’intero arco <strong>di</strong> tempo<br />

simulato (fig.8).<br />

I settaggi, pre<strong>di</strong>sposti dall’utente<br />

(viste, sezioni, scale e risultati), per<br />

il salvataggio delle immagini dei risultati<br />

vengono memorizzati nel file<br />

MAGMASOFT.pdb che consente <strong>di</strong> richiamare<br />

le stesse impostazioni anche<br />

per le versioni successive, agevolando<br />

l’analisi <strong>di</strong> confronto <strong>di</strong> <strong>di</strong>-<br />

Newsletter <strong>EnginSoft</strong> Year 6 n°4 - 9<br />

verse simulazioni e <strong>di</strong> salvare le<br />

immagini in background.<br />

La nuova modalità <strong>di</strong> visualizzazione<br />

e i nuovi criteri (microporosità<br />

e proprietà meccaniche) del<br />

modulo opzionale Non-ferrous<br />

permettono meto<strong>di</strong> <strong>di</strong> verifica<br />

delle prestazioni del getto più efficienti<br />

e imme<strong>di</strong>ati.<br />

Tale modulo restituisce, per le leghe<br />

<strong>di</strong> alluminio, la previsione<br />

della microstruttura e delle proprietà<br />

meccaniche allo stato “as<br />

cast”, calcolate sulla base della composizione chimica della<br />

lega, della velocità <strong>di</strong> raffreddamento del sistema e dei trattamenti<br />

della lega eseguiti prima della colata (es degasaggio).<br />

I moduli MAGMAhpdc, MAGMAlpdc e MAGMAPermanent<br />

mold, oltre MAGMAlink e MAGMA<strong>di</strong>sa, sono in fase <strong>di</strong> completamento<br />

e verranno rilasciati con la versione 5.1, mentre<br />

MAGMAfrontier con la successiva 5.2.<br />

Nel periodo <strong>di</strong> transizione, MAGMA4.4. e MAGMA5 potranno<br />

coesistere sullo stesso hardware, a con<strong>di</strong>zione che il sistema<br />

operativo sia supportato per entrambe le versioni.<br />

MAGMA5 è stato sviluppato in linguaggio JAVA per sfruttare<br />

al meglio le potenzialità <strong>di</strong> Windows 64 bit, mentre rimangono<br />

supportate le piattaforme LINUX RedHat5 e SU-<br />

SE11 a 64 bit.<br />

Per prendere visione degli hardware suggeriti e delle piattaforme<br />

supportate dal nuovo <strong>software</strong> visitate la pagina:<br />

http://www.enginsoft.it/<strong>software</strong>/magmasoft/news/<br />

magma5.html<br />

Le date dei <strong>corsi</strong> <strong>di</strong> formazione sono come <strong>di</strong> consueto pubblicate<br />

alla pagina:<br />

http://www.enginsoft.it/formazione/<strong>corsi</strong><strong>2010</strong>/<br />

processo/proc14.html<br />

Per maggiori informazioni:<br />

Ing. Nicola Gramegna - info@enginsoft.it<br />

Fig.8: Visualizzazione <strong>di</strong> valori puntuali e della corrispondente curva temperatura-tempo


10 - Newsletter <strong>EnginSoft</strong> Year 6 n°4<br />

FORGE 2009<br />

Release notes - <strong>di</strong>cembre 2009<br />

Nel mese <strong>di</strong> <strong>di</strong>cembre 2009 è stato rilasciato da Transvalor il<br />

nuovo pacchetto <strong>di</strong> simulazione Forge 2009®, lo strumento<br />

ideale per la simulazione dell’intero processo <strong>di</strong> stampaggio<br />

a caldo o a freddo dei più svariati componenti (alberi, giunti,<br />

ingranaggi, flange, raccor<strong>di</strong>, cuscinetti, bulloni, viti, fasteners,<br />

…). È possibile simulare la sequenza completa <strong>di</strong> un<br />

processo <strong>di</strong> forgiatura multista<strong>di</strong>o con una cinematica degli<br />

stampi anche molto complessa (stampi flottanti o pre-caricati),<br />

seguita da raffreddamenti, tranciatura bave e/o trattamenti<br />

termici.<br />

Forge 2009® è la logica evoluzione <strong>di</strong> Forge2008® ed è un<br />

<strong>software</strong> <strong>di</strong> simulazione FEM de<strong>di</strong>cato alla simulazione <strong>di</strong> processi<br />

assialsimmetrici (2D) e <strong>di</strong> qualsivoglia geometria (3D),<br />

che è stato sviluppato seguendo le in<strong>di</strong>cazioni degli utilizzatori.<br />

Forge 2009 – ottimizzazione dei processi <strong>di</strong> forgiatura<br />

La principale novità introdotta nella nuova release è la possibilità<br />

<strong>di</strong> effettuare una procedura automatica <strong>di</strong> ottimizzazione<br />

per un determinato progetto in una o più operazioni.<br />

Già nelle versioni precedenti era stato introdotto il concetto<br />

<strong>di</strong> “chaining”, che<br />

consentiva <strong>di</strong> impostare<br />

una intera sequenza<br />

<strong>di</strong> stampaggio<br />

e concatenare le singole<br />

operazioni in un<br />

unico calcolo, trasferendo<br />

in automatico i<br />

risultati tra le stazioni.<br />

Oggi è possibile<br />

definire delle variabili<br />

in ingresso sulla prima<br />

operazione, come<br />

ad esempio le <strong>di</strong>mensioni<br />

caratteristiche<br />

della billetta o altri<br />

parametri quali per esempio la corsa della pressa, chiedendo<br />

al <strong>software</strong> <strong>di</strong> ricavare i migliori risultati per degli obiettivi<br />

definiti dall’utente, come per esempio il migliore riempimento<br />

delle impronte nell’ultima operazione o la richiesta<br />

<strong>di</strong> un pezzo privo <strong>di</strong> ripieghe o ancora la<br />

minimizzazione del carico pressa. Il modulo <strong>di</strong> ottimizzazione<br />

effettua una serie <strong>di</strong> “run”, valutandone<br />

i risultati e mo<strong>di</strong>ficando le variabili in ingresso,<br />

in modo da ottenere i migliori risultati<br />

possibili. Le varie configurazioni sono classificate<br />

in funzione della combinazione <strong>di</strong> obiettivi raggiunti,<br />

consentendo <strong>di</strong> in<strong>di</strong>viduare le configurazioni<br />

migliori.<br />

Interfaccia <strong>di</strong> ottimizzazione<br />

Il progettista, che in precedenza testava con Forge solo un<br />

numero limitato <strong>di</strong> ipotesi, può limitarsi ora a definire, me<strong>di</strong>ante<br />

una interfaccia user-friendly, le variabili, i vincoli del<br />

processo e gli obiettivi da raggiungere, lasciando a Forge il<br />

compito <strong>di</strong> esplorare un numero decisamente maggiore <strong>di</strong><br />

configurazioni: le migliori possono essere magari ipotesi che<br />

il progettista non avrebbe considerato. Grazie all’esperienza<br />

maturata utilizzando questo strumento, Transvalor, l’azienda<br />

che sviluppa il <strong>software</strong>,<br />

intende aggiungere<br />

altre variabili ed obiettivi<br />

che possono essere<br />

gestiti dall’utente nelle versioni successive.<br />

In caso fosse necessario utilizzare uno strumento più flessibile<br />

ed in grado <strong>di</strong> consentire un’analisi più accurata dei risultati,<br />

è possibile interfacciare il <strong>software</strong> con il <strong>software</strong><br />

modeFRONTIER prodotto da ESTECO e <strong>di</strong>stribuito da<br />

<strong>EnginSoft</strong>; è possibile in questo caso sfruttare i no<strong>di</strong> <strong>di</strong>retti<br />

verso i principali CAD e mo<strong>di</strong>ficare le geometrie <strong>di</strong> pezzo o<br />

stampi, importandole quin<strong>di</strong> in Forge, per lanciare poi il calcolo<br />

ed utilizzare gli strumenti avanzati del programma per<br />

l’analisi degli obiettivi.<br />

Il processo <strong>di</strong> laminazione circolare – ring rolling<br />

L’esperienza accumulata grazie ai <strong>di</strong>versi utilizzatori del <strong>software</strong><br />

per il processo <strong>di</strong> ring-rolling ha consentito a Transvalor<br />

<strong>di</strong> introdurre una serie <strong>di</strong> migliorie al modello utilizzato, che<br />

hanno portato ad un deciso miglioramento della qualità dei<br />

risultati, con una riduzione dei tempi <strong>di</strong> calcolo nell’or<strong>di</strong>ne<br />

del 30% rispetto alla versione precedente. Tra le novità più<br />

significative, la possibilità <strong>di</strong> inserire la curva <strong>di</strong> laminazione<br />

che normalmente viene impostata dall’operatore del laminatoio,<br />

ed ottenere in automatico le curve <strong>di</strong> movimento <strong>di</strong> coni<br />

e mandrino per Forge. Per il mandrino, la velocità può anche<br />

essere modulata in funzione della crescita del <strong>di</strong>ametro<br />

esterno dell’anello. Il nuovo modello consente ora anche <strong>di</strong><br />

rilevare la velocità <strong>di</strong> rotazione del mandrino folle per effetto<br />

del contatto con il pezzo.<br />

Molto lavoro è stato de<strong>di</strong>cato al miglioramento delle routine<br />

<strong>di</strong> calcolo: i nuovi algoritmi PETSC consentono <strong>di</strong> risolvere<br />

profili anche molto complessi in tempi<br />

molto inferiori ai precedenti, con una<br />

precisione <strong>di</strong> risultati decisamente<br />

maggiore grazie all’introduzione <strong>di</strong> nuove<br />

funzioni <strong>di</strong> contatto.<br />

Simulazione processo <strong>di</strong> Ring-rolling<br />

Il processo <strong>di</strong> fucinatura –<br />

nuovi strumenti <strong>di</strong>sponibili<br />

Il processo <strong>di</strong> forgiatura/fucinatura è<br />

caratterizzato da un numero molto ele-


vato <strong>di</strong> passate, ognuna con <strong>di</strong>versi colpi ed una movimentazione<br />

del pezzo anche complessa con dei tempi <strong>di</strong> attesa tra<br />

ogni colpo/passata. Il modello precedente, presente in<br />

Forge2008, è stato ulteriormente arricchito <strong>di</strong> funzioni, tra le<br />

quali i tempi morti tra due colpi consecutivi, nel quali viene<br />

calcolato il raffreddamento del pezzo, l’arresto del calcolo<br />

una volta che il pezzo è uscito dagli stampi, una migliore gestione<br />

degli scorrimenti del pezzo rispetto agli stampi grazie<br />

all’uso <strong>di</strong> manipolatori. Dal punto <strong>di</strong> vista operativo, la miglioria<br />

principale è una mo<strong>di</strong>fica e semplificazione delle modalità<br />

<strong>di</strong> definizione delle passate, attraverso un nuovo formato<br />

<strong>di</strong> file generato in automatico dal programma.<br />

Le lavorazioni <strong>di</strong> fucinatura hanno l’obiettivo <strong>di</strong> chiudere le<br />

porosità, che sono causate dal processo <strong>di</strong> colata del lingotto<br />

e che hanno una notevole influenza sulla qualità del pezzo<br />

finito. Transvalor ha de<strong>di</strong>cato molte energie per implementare<br />

questo aspetto in Forge: è stata aggiunta la possibilità<br />

<strong>di</strong> definire sul lingotto una <strong>di</strong>stribuzione iniziale <strong>di</strong> porosità<br />

e tra i risultati la possibilità <strong>di</strong> visualizzare la chiusura<br />

<strong>di</strong> tali porosità. La <strong>di</strong>stribuzione iniziale <strong>di</strong> porosità può<br />

essere ottenuta anche me<strong>di</strong>ante l’uso <strong>di</strong> un altro <strong>software</strong> <strong>di</strong><br />

Transvalor, Thercast, de<strong>di</strong>cato alla simulazione del processo<br />

<strong>di</strong> colata e raffreddamento in lingottiera ed in grado <strong>di</strong> calcolare<br />

la formazione <strong>di</strong> porosità con il criterio <strong>di</strong> Yamanaka.<br />

I risultati calcolati da Thercast possono essere trasferiti <strong>di</strong>rettamente<br />

in Forge, per ottenere una <strong>di</strong>stribuzione molto<br />

realistica delle porosità nel lingotto iniziale.<br />

Calcolo delle porosità in Thercast e trasferimento in Forge<br />

Altro aspetto fondamentale in questo tipo <strong>di</strong> processi è l’evoluzione<br />

del grano cristallino funzione della ricristallizzazione.<br />

Forge da questa versione è in grado <strong>di</strong> seguire l’evoluzione<br />

del grano cristallino per effetto della ricristallizzazione statica<br />

e <strong>di</strong>namica, basandosi sulle definizioni dei materiali provenienti<br />

da prove sperimentali e dal <strong>software</strong> JmatPro: sono<br />

<strong>di</strong>sponibili i dati <strong>di</strong> alcune leghe molto particolari e critiche<br />

per questi aspetti, quali: acciaio AISI316L, Inconel 718,<br />

Waspalloy ed alcuni acciai al manganese.<br />

Stampaggio lamiere - anisotropia<br />

Nel campo dello stampaggio ed imbutitura delle lamiere gli<br />

effetti legati all’anisotropia del materiale sono rilevanti.<br />

Newsletter <strong>EnginSoft</strong> Year 6 n°4 - 11<br />

Nella nuova versione <strong>di</strong> Forge è stato introdotto un nuovo<br />

modello <strong>di</strong> materiale nel quale è possibile specificare i parametri<br />

<strong>di</strong> anisotropia secondo il modello <strong>di</strong> Hill. Il solutore è<br />

stato quin<strong>di</strong> adeguato per tener conto <strong>di</strong> questa nuova definizione<br />

e nel post-processore sono stati aggiunti dei risultati<br />

in grado <strong>di</strong> consentire una migliore comprensione <strong>di</strong> questi<br />

effetti<br />

Contatto materiale-materiale e ripieghe<br />

Grazie alle esperienze provenienti dagli utilizzatori, soprattutto<br />

nel campo dello stampaggio dei materiali non ferrosi<br />

(ottone ed alluminio), si è evidenziata la necessità <strong>di</strong> ripensare<br />

il modo nel quale il <strong>software</strong> evidenzia la formazione e<br />

l’evoluzione delle ripieghe. Sono state quin<strong>di</strong> messe a punto<br />

delle nuove funzioni <strong>di</strong> contatto in grado <strong>di</strong> gestire in maniera<br />

più efficiente le situazioni, ove il materiale ripiega su se<br />

stesso. Contemporaneamente è stato sviluppato un nuovo<br />

approccio per la visualizzazione dei <strong>di</strong>fetti nel post-processore:<br />

quando due lembi <strong>di</strong> materiale vengono in contatto tra loro,<br />

si genera un tracciante, il cui movimento nel resto della<br />

corsa <strong>di</strong> stampaggio consente <strong>di</strong> valutare con una notevole<br />

precisione forma e <strong>di</strong>mensioni delle ripieghe. Oltre alla localizzazione<br />

delle ripieghe, che era già presente nella precedente<br />

versione, il progettista è in grado <strong>di</strong> comprendere se, effettivamente,<br />

il <strong>di</strong>fetto interessa<br />

il pezzo e per che spessore<br />

o se esce verso le bave e<br />

quin<strong>di</strong> non è critico per la qualità<br />

del pezzo. Effetti indotti<br />

<strong>di</strong> questi miglioramenti al motore<br />

<strong>di</strong> calcolo sono stati una<br />

riduzione dei tempi <strong>di</strong> calcolo<br />

stimabile me<strong>di</strong>amente dal 20%<br />

al 30% a seconda del numero<br />

<strong>di</strong> no<strong>di</strong> utilizzato e del tipo <strong>di</strong><br />

calcolo impostati, miglioramento<br />

riscontrato sia sulle configurazioni singolo processore,<br />

che sulle più potenti piattaforme cluster.<br />

Tracciatura delle ripieghe<br />

Un nuovo “wizard” per lo stampaggio a freddo<br />

Nella versione 2008 è stato introdotto il concetto <strong>di</strong> “wizard”,<br />

uno strumento in grado <strong>di</strong> guidare passo-passo l’utente<br />

nella creazione della singola operazione, utile soprattutto<br />

per i neofiti, che possono creare con pochi parametri un progetto<br />

pronto per essere risolto. Nella versione 2009 è stato<br />

aggiunto un wizard per lo stampaggio a freddo.<br />

Molte le migliorie introdotte nel pre- e nel<br />

post-processing<br />

Per Transvalor le linee <strong>di</strong> sviluppo del <strong>software</strong> sono sempre<br />

guidate dai suggerimenti degli utenti. Nella nuova versione<br />

<strong>di</strong>verse sono le migliorie apportate, che riassumiamo <strong>di</strong> seguito.<br />

1. Pre-processore e template <strong>di</strong> processo<br />

Diverse migliorie minori molto utili sono state introdotte nelle<br />

finestre <strong>di</strong> impostazione dei progetti. Nel pre-processore


12 - Newsletter <strong>EnginSoft</strong> Year 6 n°4<br />

l’attenzione si è concentrata, in particolar modo, sul miglioramento<br />

<strong>di</strong> alcuni template <strong>di</strong> processo, i modelli che servono<br />

da base per l’impostazione <strong>di</strong> tipologie particolari <strong>di</strong> calcolo.<br />

Per quanto riguarda il modello delle presse ad energia, pressa<br />

a vite e maglio, è stato riformulato invece il modello in<br />

grado <strong>di</strong> tener conto dell’efficienza della macchina al procedere<br />

dei numero <strong>di</strong> colpi ed è stata aggiunta la possibilità <strong>di</strong><br />

inserire un tempo <strong>di</strong> pausa prima dell’inizio dello stampaggio,<br />

con il risultato che ora le temperature del pezzo all’inizio<br />

del processo sono molto più precise.<br />

Per quanto riguarda lo stampaggio <strong>di</strong> ottone, nelle configurazioni<br />

<strong>di</strong> stampaggio a forare, ora è possibile introdurre carrelli<br />

inclinati, seguire lo stampaggio <strong>di</strong> più particolari (multi<br />

impronta), valutare con precisione i carichi su ogni punzone<br />

in funzione della resistenza del cuscino. Sono in corso mo<strong>di</strong>fiche<br />

ancora più rilevanti per questo modello, con la possibilità<br />

<strong>di</strong> gestire configurazioni a forare più complesse o a cam-<br />

Stampaggio ottone con carrelli inclinati Bigorniatura anello in acciaio<br />

pana. Sempre in tema <strong>di</strong> cinematiche molto complesse, sono<br />

stati messi a punto nuovi modelli <strong>di</strong> stampi flottanti in traslazione<br />

e rotazione, ma anche <strong>di</strong> stampi “slave” sia in traslazione,<br />

che in rotazione, collegabili al movimento <strong>di</strong> altri<br />

stampi “master”.<br />

Per quanto riguarda la laminazione, sono stati sviluppati nuovi<br />

strumenti in grado <strong>di</strong> creare, per rivoluzione, il profilo dei<br />

rulli a partire da un profilo 2D, la cui forma può essere mo<strong>di</strong>ficata<br />

<strong>di</strong>rettamente nel pre-processor, muovendo o trascinando<br />

in no<strong>di</strong> del profilo.<br />

Parlando poi delle funzioni comuni a tutti i progetti, è proseguito<br />

il miglioramento delle funzioni <strong>di</strong> meshatura da geometrie<br />

STL, con una qualità decisamente superiore rispetto<br />

alle versioni precedenti.<br />

2. Solutore<br />

L’evoluzione della parte del <strong>software</strong> relativa al calcolo ha seguito<br />

due filoni principali. Le routine <strong>di</strong> calcolo sono state<br />

sensibilmente migliorate, ottenendo una migliore qualità della<br />

mesh, in grado <strong>di</strong> rispettare meglio la forma degli stampi,<br />

una maggiore stabilità del solutore soprattutto per configurazioni<br />

multi-processore e/o multi-core e, <strong>di</strong> conseguenza,<br />

tempi <strong>di</strong> calcolo significativamente minori (-20-30% a seconda<br />

dei casi) rispetto alla versione precedente. Il solutore è<br />

stato inoltre mo<strong>di</strong>ficato per tener conto degli effetti <strong>di</strong> ani-<br />

sotropia del materiale e tutta una serie <strong>di</strong> nuove opzioni impostabili<br />

nei modelli de<strong>di</strong>cati ai singoli campi <strong>di</strong> applicazione:<br />

per esempio i raffreddamenti prima dello stampaggio nel<br />

modello della pressa a vite, nuove funzioni PETSC per la laminazione<br />

circolare, nuove funzioni per il tracciamento delle<br />

ripieghe. Per quanto riguarda il secondo aspetto, l’interfaccia<br />

per il lancio dei calcoli è stata ulteriormente evoluta e si presenta<br />

ora con delle nuove funzioni e scorciatoie per le operazioni<br />

più comuni.<br />

3. Post-processore<br />

Lo sviluppo del post-processore, funzione delle richieste degli<br />

utilizzatori, ha riguardato <strong>di</strong>versi aspetti. Tra i più utili in<br />

evidenza la creazione <strong>di</strong> un cubo <strong>di</strong> navigazione, che rende<br />

imme<strong>di</strong>ata la rotazione del modello nelle viste ortogonali agli<br />

assi principali. Sempre nella <strong>di</strong>rezione <strong>di</strong> una migliore gestione<br />

del punto <strong>di</strong> vista scelto, è stata implementata la possibilità<br />

<strong>di</strong> salvare il “workspace”: l’utente carica i risultati <strong>di</strong><br />

interesse (scalari, vettoriali, plot) anche<br />

per più progetti da confrontare,<br />

sceglie il punto <strong>di</strong> vista e le opzioni<br />

grafiche, carica eventuali animazioni e<br />

salva il “workspace”. Caricando questo<br />

file, vengono quin<strong>di</strong> ripristinate tutte<br />

le scelte dell’utente, opzione che consente<br />

un notevole risparmio <strong>di</strong> tempo<br />

nella fase <strong>di</strong> analisi dei risultati.<br />

La vista dei soli risultati in superficie<br />

non consente una valutazione <strong>di</strong> quanto<br />

realmente succede all’interno del<br />

pezzo: per questo scopo si utilizzano<br />

dei piani <strong>di</strong> sezione. Tra le nuove funzionalità<br />

introdotte per questo strumento, le più significative<br />

sono la possibilità <strong>di</strong> muovere il piano attorno ad un asse,<br />

la possibilità <strong>di</strong> selezionare dei punti sul piano, rilevandone<br />

i valori calcolati, e la possibilità <strong>di</strong> ottenere un grafico<br />

dell’area del piano in funzione della corsa impostata. Sempre<br />

per questo strumento risulta utile la possibilità <strong>di</strong> esportare<br />

il profilo del piano in formato dxf ed in coor<strong>di</strong>nate XY, che<br />

può quin<strong>di</strong> essere utilizzato in qualsiasi CAD, ma anche la<br />

possibilità <strong>di</strong> salvare, in un determinato istante della corsa,<br />

una animazione che mostri il piano <strong>di</strong> taglio che scorre attraverso<br />

il pezzo in una determinata <strong>di</strong>rezione, o secondo una<br />

rotazione attorno ad un asse. È così possibile valutare in una<br />

unica animazione cosa accade nelle varie sezioni del pezzo.<br />

Sempre in termini <strong>di</strong> strumenti <strong>di</strong> interfaccia con strumenti<br />

CAD o FEM, da ricordare<br />

la possibilità<br />

<strong>di</strong> esportare in<br />

formato .STL, scegliendo<br />

quali oggetti<br />

esportare e la<br />

possibilità <strong>di</strong> generare<br />

un file .UNV (Ideas<br />

universal file),<br />

che contiene sia la<br />

forma, ma anche<br />

Albero - Calcolo accoppiato tensione sugli stampi


tutti i risultati calcolati: è possibile quin<strong>di</strong> trasferire ad un<br />

altro strumento FEM quanto calcolato in Forge, per effettuare<br />

altri tipi <strong>di</strong> analisi, ad esempio del pezzo nelle con<strong>di</strong>zioni<br />

<strong>di</strong> carico corrispondenti alla sua messa in opera.<br />

Degno <strong>di</strong> nota è inoltre il miglioramento dell’interfaccia <strong>di</strong><br />

esportazione .vtf, che consente <strong>di</strong> esportare l’animazione <strong>di</strong><br />

un risultato in una forma ove l’utente ha la possibilità <strong>di</strong><br />

cambiare il punto <strong>di</strong> vista e/o lo zoom. Con il nuovo visualizzatore<br />

GlView Express, scaricabile gratuitamente, è ora<br />

possibile visualizzare nello stesso file più risultati, rendendo<br />

decisamente più agevole la comunicazione delle informazioni<br />

tra colleghi o verso l’esterno.<br />

Miglioramento continuo del database dei materiali<br />

Il database dei materiali è sempre stato uno dei punti car<strong>di</strong>ne<br />

<strong>di</strong> Forge, con le curve <strong>di</strong> deformazione a caldo ed a freddo,<br />

le caratteristiche elastiche e le proprietà termiche <strong>di</strong> oltre<br />

800 leghe ferrose e non ferrose. In questa versione sono<br />

stati aggiunti una serie<br />

<strong>di</strong> materiali provenienti<br />

dal programma<br />

JmatPro, quali acciai<br />

al Boro, micro legati,<br />

acciai inox, superleghe<br />

(inconel718, nimonic,<br />

waspalloy),<br />

leghe <strong>di</strong> Titanio, per i<br />

quali sono state calcolate<br />

le curve reologiche<br />

e le caratteristiche<br />

fisiche da temperatura<br />

ambiente alle<br />

temperature <strong>di</strong><br />

stampaggio a caldo.<br />

Da evidenziare come<br />

siano stati introdotti<br />

anche dei materiali<br />

che tengono conto<br />

dell’evoluzione del grano cristallino causato dalla ricristallizzazione<br />

e del kinematic hardening.<br />

Simulazione stampaggio a caldo fuso a snodo<br />

Simulazione laminazione <strong>di</strong> prodotti lunghi<br />

Installazione – versioni <strong>di</strong>sponibili<br />

Già nella versione precedente era possibile impostare una architettura<br />

client-server, concentrando le operazioni <strong>di</strong> calcolo<br />

sulla macchina più potente e demandando alle macchine<br />

client la preparazione dei calcoli e l’analisi dei risultati. Il sistema<br />

è stato ulteriormente evoluto, aggiungendo la possibilità<br />

<strong>di</strong> una licenza “floating”, che può essere attivata a turno<br />

su <strong>di</strong>verse macchine, aumentando la flessibilità <strong>di</strong> utilizzo<br />

in ambiente multiutente.La gamma <strong>di</strong> possibili installazioni<br />

<strong>di</strong> Forge è stata ampliata rispetto alla versione precedente.<br />

Oggi è possibile installare il <strong>software</strong> sia in sistema operativo<br />

a 32 o 64 bit Windows XP, Server® 2003, Server® 2008,<br />

VISTA business, Linux Red Hat Enterprise o SLES 10 64bits. In<br />

termini <strong>di</strong> piattaforme hardware, Forge sfrutta appieno la parallelizzazione<br />

del calcolo, quin<strong>di</strong> è possibile utilizzare una<br />

macchina con singolo processore 1-4core, con più processori<br />

Newsletter <strong>EnginSoft</strong> Year 6 n°4 - 13<br />

o sistemi cluster fino a 32 core, le cui code possono essere<br />

gestite anche me<strong>di</strong>ante i <strong>software</strong> pbs v5, pbs v9, lsf e sge.<br />

Gli ultimi benchmark effettuati su piattaforme equipaggiate<br />

con i nuovi processori Nehalem i7 (serie XEON 55**), con due<br />

processori 4core, hanno mostrato una notevole efficienza,<br />

con tempi <strong>di</strong> calcolo paragonabili a quelli prima ottenibili solo<br />

con un cluster, con una semplicità <strong>di</strong> gestione decisamente<br />

maggiore. Questo rende ora possibile lanciare anche su<br />

queste piattaforme analisi molto pesanti quali la laminazione<br />

<strong>di</strong> anelli, mesh molto fini o analisi con molti incrementi.<br />

Conclusioni<br />

Si può quin<strong>di</strong> affermare che Forge 2009® è un programma<br />

sempre in costante miglioramento, che ha raggiunto una notevole<br />

semplicità d’uso grazie all’esperienza<br />

accumulata con le versioni<br />

precedenti e i suggerimenti<br />

provenienti dagli utenti. Molte delle<br />

novità introdotte portano la versio-<br />

Stampaggio a freddo<br />

ne 2009 ad un livello <strong>di</strong><br />

precisione ed accuratezza<br />

decisamente superiore alla<br />

versione precedente.<br />

Dall’altra parte, la maturità<br />

raggiunta dal prodotto<br />

consente sempre un<br />

facile e rapido inserimento in qualsiasi ambiente tecnico, per<br />

la progettazione <strong>di</strong> prodotti ottenuti per stampaggio e l’ottimizzazione<br />

dei relativi processi produttivi. Con Forge 2009 è<br />

quin<strong>di</strong> possibile migliorare rapidamente la qualità dei pezzi,<br />

ridurre gli sprechi <strong>di</strong> materiale e aumentare la durata degli<br />

stampi e delle macchine <strong>di</strong> stampaggio. È possibile inoltre<br />

valutare in modo anticipato senza sorprese la stampabilità <strong>di</strong><br />

nuove forme o <strong>di</strong> materiali poco conosciuti.<br />

<strong>EnginSoft</strong>, <strong>di</strong>stributore in Italia del <strong>software</strong> Forge, grazie a<br />

tecnici specializzati con oltre 10 anni <strong>di</strong> esperienza, offre alle<br />

aziende del settore, formazione del personale ed avviamento<br />

all’uso oltre al supporto nell’installazione, nonché attività<br />

<strong>di</strong> simulazione su commessa, con impostazione del caso, analisi<br />

dei risultati e consulenza sull’ottimizzazione del processo.<br />

Rollatura del filetto<br />

Calcolo accoppiato vite,<br />

bullone e lamiera<br />

Per maggiori informazioni:<br />

Ing. Marcello Gabrielli - Responsabile <strong>di</strong> prodotto FORGE<br />

info@enginsoft.it


14 - Newsletter <strong>EnginSoft</strong> Year 6 n°4<br />

Elysium’s CADdoctor accelerating<br />

Reverse Engineering<br />

1. 3D data utilization in Reverse Engineering<br />

As the noncontact 3D measuring machine has become so<br />

popular, the <strong>di</strong>gitalization of physical models is needed more<br />

than ever. Tra<strong>di</strong>tionally, the main purpose of measuring physical<br />

models was ”Inspection” to determine if the products were<br />

manufactured following the original design by comparing CAD<br />

data and point cloud data measured by the contact measuring<br />

machine. However applications in “Reverse Engineering” have<br />

recently attracted a lot of attention. Typically, what we mean<br />

here is the way how to use CAD data produced from the huge<br />

Figure1: Deformation to the nearest point (solid arrow) and the ideal deformation orientation<br />

considering feature line (dashed arrow)<br />

number of point cloud and polygon data measured by the<br />

noncontact measuring machine. The objective of creating a CAD<br />

model from the point cloud and polygon data is either related to<br />

design purposes or to simulation purposes.<br />

Design purposes<br />

Design: Creating CAD models from clay models and using<br />

them for the design<br />

Digitalization of CAD models from own products: Creating<br />

CAD models only from physical models and using<br />

them for the design<br />

Mold buil<strong>di</strong>ng: Measuring existing <strong>di</strong>e to produce<br />

the second <strong>di</strong>e<br />

Simulation purposes<br />

Benchmark: Simulation of own products and<br />

products developed by other companies<br />

Simulation: e.g. Creating a CAD model of a golf<br />

bag for the design of the luggage space<br />

The key factor for effective Reverse Engineering is<br />

the creation of a CAD model from measured point cloud and<br />

polygon data. Generally, when a CAD model has been created for<br />

reverse engineering, the measured polygon data has been<br />

<strong>di</strong>vided into areas and a Brep surface was created for each area.<br />

In this process, it is important to translate the right CAD model<br />

for the purposes as the required CAD quality depends on the<br />

application of the translated CAD model. For example, if the<br />

purpose is design, high quality CAD data of class A representing<br />

exact feature lines and curved surfaces are required as they will<br />

be used for design and manufacturing later. However if the<br />

purpose is simulation, the required quality is <strong>di</strong>fferent. Indeed,<br />

very often, it is not necessary to have the same quality as for<br />

design. The created CAD model is meshed by using CAE and in<br />

many cases, moderate quality is sufficient. (*)<br />

(*) When we consider CAE simulation, there is a tendency to<br />

think that measured polygon data can be <strong>di</strong>rectly used for<br />

meshing and there is no need to create a CAD model. However,<br />

such polygon data is not sufficient for meshing and often leads<br />

to low accuracy simulation results because of the noise involved.<br />

It is also a problem to increase the number of mesh elements.<br />

Hence the translated CAD model is usually used for<br />

meshing before CAE simulation instead of using the<br />

measured polygon data <strong>di</strong>rectly.<br />

Reverse Engineering performances have improved<br />

through the years, but the huge amount of manhours<br />

to create CAD models is still a relevant matter,<br />

in both areas of design and simulation. In fact, there<br />

is no solution to create high quality CAD data<br />

automatically and efficiently enough for design<br />

purposes. In recent years, another approach has<br />

evolved, which consists in using original CAD data and<br />

transforming it to fit with the polygon data, in order to produce<br />

the final CAD data of measured polygon data. However, this is<br />

certainly not the best solution. When considering this approach,<br />

it would be better to transform the model by fitting the feature<br />

lines of the original CAD data to feature the lines of the polygon<br />

data. However, the current process is to use commercial <strong>software</strong><br />

which only transforms by fitting the original shape to the<br />

nearest polygon. (See Figure 1).<br />

Figure 2: Measured polygon data (left) and CAD data from polygon (right)<br />

The complicated surface inclu<strong>di</strong>ng the internal opening section can be created automatically.<br />

For simulation purposes, usually the required CAD quality is not<br />

as high as for design purposes. Though, it would be much<br />

appreciated to represent the position of the feature line to<br />

define the right boundary con<strong>di</strong>tion. The reduction of the<br />

number of surfaces of the CAD model is also important for the<br />

effective mesh generation, although it is not easy because the<br />

CAD model has lots of square surfaces created from polygon<br />

data. Besides, it is also important that the translated CAD model<br />

can be used in CAE. To solve these problems, the latest version<br />

of CADdoctor has the fully-automated capability to create CAD


model data from polygon data by reproducing the feature line<br />

position, which had to be done manually before and it was very<br />

time-consuming. Using this capability, CADdoctor represents an<br />

extremely complex surface inclu<strong>di</strong>ng an internal opening section<br />

as a face. Hence it also has the ability to produce the best model<br />

for the simulation. (See Figure 2)<br />

2. Reverse Engineering capability in CADdoctor<br />

2-1 Automatic CAD data generation from point cloud and<br />

polygon mesh<br />

Point cloud data and polygon data measured by a 3D measuring<br />

machine representing physical products (prototype or<br />

commercial product) can be translated into 3D CAD data<br />

generating NURBS surfaces automatically. Prior to creating CAD<br />

data from polygon data, the surface is segmented. For the<br />

segmentation, the geometry of the polygon data is captured,<br />

Figure 3: The original CAD data is copied to polygon (left); copied parting line (right)<br />

fillets are automatically detected, and the range of each<br />

segment is determined automatically to approximate the surface<br />

composed in the CAD model. Planar, cylindrical, and conic<br />

surfaces for analysis representation are recognized automatically<br />

allowing a segmentation based on the surface type. If<br />

prototyping in-house design and original CAD data are at hand,<br />

the edge from the original CAD data can be copied to polygon<br />

and used as parting line for segmentation. (See Figure 3)<br />

Segmentation is automatic, but there are cases where the<br />

segmentation may not be adequate due to unevenness occurring<br />

from noise. Such areas can be e<strong>di</strong>ted to adequate segmentation<br />

by using the e<strong>di</strong>ting commands, such as part, merge and extend.<br />

Once the segmentation is complete, by clicking a button, NURBS<br />

surfacing will complete on each segment and complete CAD data<br />

is automatically created. With CADdoctor, surfacing is also<br />

possible on a trim surface surrounded with complex edges,<br />

allowing creation of effective CAD data with a simple surface<br />

based on segmentation. Moreover, after the batch surface<br />

generation, minor amendments, if required, can be<br />

made without re-executing the process, since partial<br />

segments can be repaired or surface types can be<br />

switched. Time spent on repair is reduced.<br />

The advantage of the CADdoctor Reverse Engineering<br />

capability is that manual operation and data healing<br />

are at minimum and creating 3D data can be done<br />

nearly fully automatically. From Elysium’s<br />

independent study, CADdoctor creates 3D CAD data<br />

from polygon data in 1/10 to 1/30 of the time<br />

needed for using other translation products.<br />

Newsletter <strong>EnginSoft</strong> Year 6 n°4 - 15<br />

2-2 Fitting original CAD data to polygon data<br />

The product design in 3D CAD data can be transformed to be<br />

consistent with the polygon data taken from an actual product<br />

using a 3D measuring machine. This is the powerful advantage<br />

of CADdoctor. This capability can be applied not only to the<br />

polygon data, but also to the polygon from CAE. (See Figure 4)<br />

When deforming actual CAD data, the <strong>di</strong>stance between the CAD<br />

data and the polygon data is recognized, however, polygon data<br />

from a measuring machine has a subtle <strong>di</strong>fference from the<br />

actual geometry due to noises. By setting tolerances for the<br />

<strong>di</strong>fferences to avoid this impact, the target for deformation will<br />

be faced larger than the tolerance, and faces smaller than the<br />

tolerance will be excluded from target.<br />

The target face for deformation is consistently deformed with<br />

the polygon. However, if the face is deformed simply to the<br />

nearest point of the polygon data, the area of the<br />

feature may be out of alignment, creating <strong>di</strong>stortion<br />

on the surface after deformation and the fillet's<br />

boundary line may be <strong>di</strong>srupted, affecting the<br />

adjacent planar surface. The Fit feature in CADdoctor<br />

determines the transformation orientation with<br />

respect to curvature change of both the CAD and<br />

polygon data and maintains the correct position of<br />

the boundary line between the fillet and adjacent<br />

surface, thus ensuring continuity between faces that<br />

are maintained when deforming.<br />

For the specific area where the fitting is very<br />

<strong>di</strong>fficult due to the large <strong>di</strong>fference, the Reverse Engineering<br />

capability can only be used to create CAD data from polygon<br />

data. In summary, the fitting is completed for the polygon data<br />

and CAD data inclu<strong>di</strong>ng the large <strong>di</strong>fference area, by combining<br />

these methods.<br />

For more information, please visit the ELYSIUM website:<br />

http://www.elysiuminc.com<br />

For further information on CADdoctor in Italy, please contact:<br />

info@enginsoft.it<br />

This article was written in collaboration with ELYSIUM Co,Ltd.<br />

Akiko Kondoh<br />

Consultant for <strong>EnginSoft</strong> in Japan<br />

<strong>EnginSoft</strong> partners with ELYSIUM Co.Ltd. Japan<br />

to promote CADdoctor in Italy<br />

Figure 4: Distance between the original CAD data and the measured polygon data (left);<br />

<strong>di</strong>stance after fitting (right)


������������ ������ ��� ��������<br />

�� �������� ����������� �� ������� ���� ���<br />

������� �������� �� ���������� ����������������� ��<br />

��������� �������� �� ������� �� ���� �����������<br />

������ ��������� �� �� �� ���� �� ��������� ����� ��<br />

��������� ����������� ��������� ������� �������� ����<br />

���� �� ������� ������� ������� �� ����� �� ������<br />

����������� ����� ���������� �� ���� ���� �������� ���<br />

������� � ������� ������� �������� ��������� ���<br />

������� ��������� ��������� �� ���������� ��� �����<br />

���������� �� ������� ����� ������������<br />

��������������<br />

���������� ������������<br />

������ ��� �������<br />

�� �������� ����������� ������ �� �����������<br />

��������� ��� ��� ���� ����������� ���������<br />

������ ���� ����� �������� � ����� ��������� ��<br />

��������� ���� �������� �������� ������������� ��<br />

������� �������� ���� �� �� �������� ������ �����<br />

������� �������� ���� ��� �� ���� ��������<br />

��������� ��� �������� ������������ ��� ������<br />

��������� �� ������ ����������� �� ����� �� �������<br />

�������� ��������� ����� ��� �������� ���� �� ����<br />

���� �� ��� ��������� � ���������� ������ ��<br />

�������� ������������<br />

�� �������� ����������� ������ � ��� ������� ����� �������� �� � ����� ��������� � ������ ������ � ������<br />

���� ��� ��� �� �� �� � ��� ��� ��� �� �� �� � ����������������� � ������� ������������������


Newsletter <strong>EnginSoft</strong> Year 6 n°4 - 17<br />

Parametric FEM model optimization for<br />

a pyrolitic Indesit oven<br />

2009 Ecohitech Award:<br />

Recently, Indesit Company<br />

has won the prestigious<br />

Ecohitech Award and thus<br />

earned itself an “eco-virtuous<br />

enterprise" status.<br />

By examining only the internal<br />

glass of the pyrolitic oven<br />

which consists of visco-elastic<br />

material, the optimization<br />

process obtained the minimum<br />

stress <strong>di</strong>stribution and stress<br />

gra<strong>di</strong>ent.<br />

To successfully finalize the work<br />

and to deliver the best possible<br />

technical results insuring<br />

highest quality standards are<br />

met, the following analyses<br />

have been performed by Indesit<br />

and <strong>EnginSoft</strong>:<br />

1) Parametric FEM model creation with ANSYS<br />

2) Creation of workflow in modeFRONTIER and ANSYS<br />

integration into Frontier’s loop<br />

3) Optimization of the clamping system by<br />

an automated routine defined within<br />

modeFRONTIER<br />

4) Results analysis and optimum design<br />

extraction accor<strong>di</strong>ng to the given<br />

objectives<br />

The present device belongs to a new type<br />

of the Indesit domestic oven range, called<br />

Pyrolitics.<br />

Indesit’s new technology allows a fast<br />

cleaning of oven cavity, by means of a<br />

pyrolysis process that burns encrustation<br />

Picture 2.2.1 – Temperature measuring<br />

point on internal glass<br />

caused by cooking. The Pyrolysis process starts at<br />

temperatures close to 500°C which are extremely high for a<br />

tra<strong>di</strong>tional device considering an external temperature of<br />

20°C. This environment produces an high thermal gra<strong>di</strong>ent<br />

which considerably deforms the glass.<br />

The door structure of the oven is made of a triple-glass<br />

system, whereas each is separated by an air wall to guarantee<br />

rapid heat <strong>di</strong>ssipation and to respect the safety regulations<br />

which limit the allowed external glass temperature to 60°C.<br />

Glass stresses are derived from the thermal gra<strong>di</strong>ent,<br />

established between its surfaces, and produce a consequent<br />

deformation; an inappropriate glass clamping system would<br />

probably increase internal stresses and cause rupture.<br />

From experimental tests, we have learned that the internal<br />

glass is exposed to the highest stresses; in fact, this is the<br />

component with higher thermal gra<strong>di</strong>ents between its faces.<br />

The aim of this work was to develop a methodology that allows<br />

to simulate the real working con<strong>di</strong>tions of the glass and to<br />

find an optimal glass clamping solution that minimizes the<br />

stresses.<br />

2 Structure of the model<br />

2.1 Solid model<br />

The model provided by Indesit has been made of a 3D door<br />

model of the oven with the actual glass clamping system. The<br />

door is composed of a 3 glass system, mounted on a specific<br />

structure that keeps them parallel and separated in order to<br />

allow the passage of the air cooling flow. This model has been<br />

simplified in order to obtain a complete glass clamp system to<br />

reproduce the real door-clamping solution.<br />

The provided material included some<br />

elements, such as, chamfer and a nonfunctional<br />

fillet that have been deleted in<br />

order to create a simplified model far<br />

easier to analyze. Constraints<br />

characteristics and glass geometry have<br />

been maintained in order to produce a<br />

suitable approximated model.<br />

2.2 Experimental measures<br />

After some experimental measures, a series<br />

of grid-organized values of temperatures<br />

on the internal glass of the oven, was provided by the user.<br />

These glass temperatures were obtained by some<br />

thermocouple probes on the point highlighted in picture<br />

2.2.1.<br />

Many repeated tests were performed in order to minimize the<br />

error of measure, and an average value of each measuring<br />

point was taken into account.<br />

In this verification, we have considered the maximum<br />

measured values to reproduce the worst working con<strong>di</strong>tion.<br />

3 Glass modeling<br />

3.1 Thermal modeling of the glass<br />

In order to perform a FEM analysis, it was necessary to assign<br />

to each node its temperature, but we had only eight measured<br />

points, that is why, the available value was modeled by using<br />

a RSM application. In fact, we used the eight measuring points<br />

to build an opportune RSM that reproduces the glasstemperature<br />

<strong>di</strong>stribution with a good approximation.


18 - Newsletter <strong>EnginSoft</strong> Year 6 n°4<br />

Picture 3.1.1 – Approximating function and error graph (relative and absolute errors respectively)<br />

A Response Surface, also called meta-model, is a postprocessing<br />

tool of modeFRONTIER; in this application an<br />

approximate RSM was chosen, because all measuring points<br />

may be affected by a measuring error, due to uncontrollable<br />

thermal effects (e.g.: ra<strong>di</strong>ation and convection).<br />

In picture 3.1.1, an approximate function and relative<br />

approximation error graph are shown.<br />

Apart from obtaining a continuous tool able to estimate<br />

temperatures of all values inclu<strong>di</strong>ng a variable space<br />

definition, using modeFRONTIER allows to obtain an analytical<br />

form of this surface.This expression will be used in the FEM<br />

modeler (ANSYS) to assign temp value on each node.<br />

Picture 3.1.2 – Constraint system of the glass<br />

The next step is the application of the analytical expression to<br />

the FEM model. In picture 3.1.2 we observe the glass with the<br />

applied temperature.<br />

3.2 FEM Model<br />

During the FEM modeling process, free glass deformation was<br />

evaluated firstly, or the maximum deformation reached<br />

without any constraint.<br />

During the next step, a series of constraints was applied on<br />

the glass, in order to compare the real glass deformation with<br />

the simulation and to estimate the model reliability.<br />

3.2.1 Free glass deformation<br />

By using ANSYS Multiphysics as finite element solver, only a<br />

corner was bonded and thermal field was applied in order to<br />

allow any deformation due to the thermal gra<strong>di</strong>ent.<br />

The thermal gra<strong>di</strong>ent originates from a <strong>di</strong>fference in<br />

temperatures between contiguous areas; to perform the<br />

analysis we should know the values on<br />

both glass sides.<br />

The door of the oven is composed of<br />

three glass sheets spaced by few<br />

millimeters to allow an air cooling<br />

passage, this eliminates the installation<br />

of probes on the internal sides of the<br />

glass.<br />

To obtain all necessary temperature<br />

values and to perform our analysis, we<br />

had to model the whole multiple glass<br />

system, considering convecting effects;<br />

the known temperatures were from the<br />

measured set on the first internal glass<br />

face and a reference temperature of 60°C<br />

was established.<br />

Once the estimated necessary temperature values were<br />

defined, we have modeled a single bond on an edge of the<br />

glass. We knew that this was an unfeasible solution but it was<br />

necessary to understand the entity of the maximum glass<br />

deformation with this temperature field.<br />

By applying the calculated temperature function on the first<br />

glass, simulating heat transfer from the oven cavity to the<br />

room and calculating the thermal gra<strong>di</strong>ent on the component,<br />

we were able to obtain the maximum deformation of the glass<br />

in free con<strong>di</strong>tions.<br />

The results show that the maximum deformation is<br />

concentrated in the center of the glass, as expected. The value<br />

of this deformation is aligned to the experimental results.<br />

3.2.2 Constrained glass deformation<br />

The initial complete model has been simplified in order to<br />

speed up the simulation, as detailed in par. 2.1.<br />

The constraints applied to the internal glass for the simulation<br />

of the real con<strong>di</strong>tion are:<br />

Picture 3.1.2 – Glass surface with the applied node-temperature<br />

Upper support<br />

Side support<br />

Back support<br />

Lower support<br />

Picture 3.1.2 illustrates the constraint system with and<br />

without glass. The upper support block YZ glass <strong>di</strong>splacement,<br />

the side support block XZ <strong>di</strong>splacement and the lower support


Pict. 4.1.1 – modeFRONTIER’s workflow<br />

Picture 4.2.1 – History chart SX<br />

block XY <strong>di</strong>splacement. The constraint con<strong>di</strong>tions have to be<br />

understood with a little tolerance in <strong>di</strong>splacement. In fact,<br />

every constraint allows a clearance to avoid stress<br />

concentration due to an over- constrained con<strong>di</strong>tion.<br />

Applying the temperature field to the modeled system as<br />

described before, we continue with the structural simulation<br />

to calculate the stress on and the deformation of the examined<br />

component.<br />

In order to avoid value <strong>di</strong>stortion, due to mesh problems,<br />

instead of considering maximum and minimum values, we<br />

have taken into account a mean value of this quantity close<br />

to the glass constraints.<br />

4 Optimization of the glass support<br />

The initial model described previously has been parametrized<br />

to allow the management by modeFRONTIER; the described<br />

parameters refer to the <strong>di</strong>mensions of the upper and lower<br />

glass constraints. While we focused on these constraints, the<br />

<strong>di</strong>stances from the left and right glass edges and their width<br />

were parametrized.<br />

The aim of this step was to define an optimum set-up of the<br />

constraint system that minimizes the glass deformations in<br />

pyrolysis con<strong>di</strong>tions.<br />

Newsletter <strong>EnginSoft</strong> Year 6 n°4 - 19<br />

4.1 Project set-up in modeFRONTIER<br />

Variables used in this first optimization sub-step are therefore<br />

four and each couple refers to the <strong>di</strong>mension of a constraint.<br />

The constraints on the glass are four, symmetrical, and hence<br />

it is sufficient to mo<strong>di</strong>fy the <strong>di</strong>mensions of only one to mo<strong>di</strong>fy<br />

the couple: these will be the variables of the optimization.<br />

Lower and upper bounds of all the variables were set accor<strong>di</strong>ng<br />

to the customer’s requirements.<br />

By using modeFRONTIER, we want to manage the entire FEM<br />

(ANSYS) process automatically, to obtain the desired results.<br />

To interface the FEM model with the optimizer, some macros<br />

were built, or rather a series of pre- and post-processing<br />

instructions to mo<strong>di</strong>fy the geometry of the model during each<br />

simulation.<br />

During the set-up of the optimization, some factors, such as<br />

time for each calculation or maximum available time have to<br />

be taken into account in order to define the best strategy.<br />

In this project, the time for each calculation was about 75<br />

minutes, not negligible; this made us choose a genetic<br />

algorithm that has a good robustness to find the optimum.<br />

The objectives were:<br />

Minimization SXZ shear stress;<br />

Minimization SX normal stress;<br />

Minimization SZ normal.<br />

The chosen algorithm was the MOGA (Multi Objective Genetic<br />

Algorithm), starting from an initial random population (DOE)<br />

of the input variables domain.<br />

Simulation parameters:<br />

MOGA iterations: 10<br />

DOE <strong>di</strong>mensions: 12 - variables number multiplied for<br />

objectives<br />

With these settings we have to do 120 runs for a total run<br />

time of 150 hours<br />

4.2 Optimization results<br />

After the optimization process, a good convergence of results<br />

was achieved: values of shear and stresses decreased up to<br />

40% with respect to the original configuration.<br />

Picture 4.2.1 shows an example of the history charts of<br />

stresses SX.<br />

As this is a multi-objective optimization, optimum results are<br />

more than one: in fact, we could have some designs which<br />

achieve the first objective, but are very far from the other<br />

objectives. Hence we are looking for the best tradeoff!<br />

In this job, all three objective are very correlated, so the<br />

convergence is parallel, which allows us to choose two<br />

optimal designs.<br />

From the obtained results we can extract some important<br />

information about the component behavior in real working<br />

con<strong>di</strong>tions, especially with regard to the glass constraints<br />

<strong>di</strong>mension and their <strong>di</strong>spersion across the oven door:<br />

Distance of the lower constraint from the edge of the<br />

glass seems to have no influence on stresses;<br />

Width of lower constraint should be bigger than original;<br />

Distance of the upper constraint from the edge of the<br />

glass seems to have no influence on stresses;<br />

Width of upper constraint should be smaller than original;


20 - Newsletter <strong>EnginSoft</strong> Year 6 n°4<br />

In summary, for an optimal solution, the constraints layout<br />

should encompass the upper constraint going more close<br />

with the opposite behavior for the lower constraints. In the<br />

following picture the optimal solution is graphically<br />

represented.<br />

For the stresses, without having sufficient information about<br />

the glass characteristics, it is more opportune to present the<br />

deformation chart of the glass, during the pyrolysis phase.<br />

5 Conclusions<br />

The provided model is composed of an assembled system of<br />

three glasses, mounted on a chassis that keeps them<br />

separated to allow an air passage between them, in<br />

accordance with the regulations for this appliance.<br />

Experimental tests performed by Indesit are focused on<br />

temperature measurement of pre-determined points located<br />

on the internal side of the first glass, in pyrolysis con<strong>di</strong>tions,<br />

when the internal temperature of the oven rises to 500°C.<br />

Punctual values of temperature, were computed with<br />

response surface modeling in modeFRONTIER in order to<br />

obtain a function that describes the temperature <strong>di</strong>stribution<br />

on the entire glass, and assigns a relative value on each FEM<br />

model node.<br />

The built map is related to the hot side of the considered<br />

glass. To calculate temperature <strong>di</strong>stribution on the cold side,<br />

Picture 4.2.2 – Displacement sum<br />

Picture 4.2.3 – Elongation due to the shear SXZ<br />

the entire glass system was modeled by thermal analysis.<br />

Knowing the internal cavity temperature <strong>di</strong>stribution, the<br />

safety temperature on the external side of the outdoor glass<br />

and convex thermal coefficients, we were able to obtain the<br />

temperature <strong>di</strong>stribution on the coldest side of the most<br />

stressed glass and hence also the thermal gra<strong>di</strong>ent applied to<br />

this component.<br />

The focus of the first simulation was on examining the free<br />

constraint con<strong>di</strong>tion of the glass, or to verify the maximum<br />

deformation of the glass, without constraint.<br />

In the subsequent simulations, the initial configuration, as<br />

described in the initial 3D model, was modeled with the dual<br />

purpose to validate the FEM model with experimental results,<br />

and to determine stress and deformation values of the initial<br />

configuration.<br />

The aim of the optimization process was to find an optimal<br />

layout of the constraint system that minimizes stresses on<br />

the internal glass. To achieve this result, the FEM model was<br />

parametrized by means of a series of instructions named<br />

“macros”, to allow modeFRONTIER to manage the geometry of<br />

the model.<br />

The task of modeFRONTIER is to mo<strong>di</strong>fy the model geometry<br />

on each run and to drive the input variables to the best set.<br />

The mo<strong>di</strong>fied parameters are referred to as the upper and<br />

lower glass constraints <strong>di</strong>mension, and in particular, the<br />

reciprocal <strong>di</strong>stance and the width of each constraints are<br />

verified.<br />

The results were the values of stress and deformation on the<br />

model, due to the thermal gra<strong>di</strong>ent applied. Due to<br />

imperfections in the mesh, the mean value of stresses close<br />

to constraints, was taken into account.<br />

Obviously, the selected area for the calculation of this mean,<br />

was related to the area affected by higher stress values, to<br />

be precautionary.<br />

The obtained results meet our expectations: a sensible<br />

decrease of stresses was registered nearby 30-40% with<br />

respect to the customer configuration, and a good<br />

conversion of results was achieved, highlighting the good<br />

quality of the work performed by modeFRONTIER.<br />

The deformations of the optimized configuration are bigger<br />

than the original ones, which is an in<strong>di</strong>cation that the<br />

obtained design provides room for a better movement for the<br />

glass.<br />

Finally, we are certain that the obtained results are sufficient<br />

and correct, and that this work has delivered further<br />

information and details about the system behavior to the<br />

modeFRONTIER users at Indesit Company.<br />

For more information:<br />

Ing. Nicola Baldecchi<br />

info@enginsoft.it


Newsletter <strong>EnginSoft</strong> Year 6 n°4 - 21<br />

Robust Design Optimization of a<br />

Bumper System at Volvo Cars using<br />

modeFRONTIER<br />

70% are low speed crashes<br />

Accor<strong>di</strong>ng to a recent survey by Volvo<br />

Cars Brand Experience Centre, low<br />

speed crashes represent over 70% of<br />

the crashes today. Typically crashes<br />

up to approximately 15 km/h are<br />

categorized as low speed crashes and<br />

are often caused by accidents during<br />

parking, queuing and braking<br />

situations.<br />

The components of the rear part of<br />

the car are highly integrated, making<br />

repairs very expensive. Therefore,<br />

both customers and insurance<br />

companies require that the damage of<br />

a low speed crash should be limited<br />

to a few components which are easy<br />

to replace. In order to minimize the<br />

damage to the car body, the rear bumper beam must be<br />

designed to absorb all the energy from a crash. Due to the<br />

complexity and cost of repairs, the optimization of the<br />

bumper system becomes a very important and challenging<br />

topic.<br />

Ever since its establishment, Volvo Car Corporation has put<br />

safety among its top priorities and recently a thesis work [1]<br />

on best practices for robust design optimization of a rear<br />

bumper beam was carried out.<br />

Figure 3: modeFRONTIER was used to automate the robustness study using LS-DYNA and<br />

METApost. In order to save computational cost, a submodel instead of a full vehiclemodel<br />

was used for the robustness and metamodel evaluations.<br />

Figure 1: Low speed crashes represent more than 70% of the crashes and combined with very high costs for<br />

repairs make robust design optimization extremely important. The study focuses on the bumper beam shown<br />

to the right.<br />

Figure 2: Driving backwards into a fixed barrier at 15 km/h, i.e. the Allianz test, without damaging the car<br />

body is one of the toughest requirements. The figure shows the CAE model built in ANSA. This model of a<br />

full vehicle was used for verification.<br />

Performance varies due to tolerances in production<br />

Using modern crash simulation <strong>software</strong> such as LS-DYNA, it<br />

is now possible to pre<strong>di</strong>ct the behavior in a crash with good<br />

accuracy. However, everything that is manufactured has its<br />

tolerances on geometry, material properties etc which means<br />

that in practice a certain range of variation on the<br />

performance parameters always exists. Any small deviation,<br />

even a random noise, could influence the real crash, but may<br />

not be visible in the CAE analysis when nominal values are<br />

used for simulation.<br />

A robustness study looks into groups of<br />

simulations with <strong>di</strong>fferent combinations of input<br />

parameters, to see if they give similar responses or<br />

not. Just as with the input parameters, it is<br />

important to identify the relevant and interesting<br />

output parameters which are then traced in the<br />

robustness study. The analysis will show how the<br />

performance varies due to scatter in the input<br />

parameters.<br />

Evaluation of robustness<br />

Performing a robustness study is both complex and<br />

expensive. Complex, since the crashworthiness is<br />

determined by variations in a large number of<br />

parameters, such as material properties of <strong>di</strong>fferent<br />

parts, friction, impact angle and speed. Complexity<br />

includes both choosing the most influential<br />

parameters and implementing them for automatic<br />

evaluation. Expensive, since a single simulation


22 - Newsletter <strong>EnginSoft</strong> Year 6 n°4<br />

Figure 4: Linear correlations between the 10 input variables for the Latin Hypercube<br />

sampling.<br />

Figure 5: Correlation between input variables approach the ideal value of zero as the<br />

number of designs grows. A maximum correlation of 0.1 between two inputs is regarded<br />

as acceptable which corresponds to a requirement of approximately 75 to 100 samples.<br />

takes about 2 hours using parallel execution on 24 CPUs and<br />

a robustness study may need more than 100 evaluations.<br />

The selected input parameters in this study are:<br />

Material properties of the bumper beam<br />

Thickness of the bumper beam<br />

Material properties of the parts behind the bumper beam<br />

Barrier impact and tilt angle<br />

Friction<br />

The selected output parameters are:<br />

Maximum plastic strain in all parts except bumper and<br />

barrier<br />

Mean plastic strain in all parts except bumper and barrier<br />

Number of high plastic strain nodes in all parts except<br />

bumper and barrier<br />

Maximum deformation of the bumper beam<br />

Kinetic and internal energy of the model<br />

Maximum bumper beam internal energy<br />

Section forces of the side member<br />

Latch <strong>di</strong>splacements<br />

The preferred sampling method for this type of robustness<br />

study is Latin Hypercube. A central question is how many<br />

samples are needed for the chosen 10 variables in the study.<br />

A possible answer is to study the correlations between the<br />

input variables as shown in figure 4. Figure 5 shows the<br />

absolute max and arithmetic mean of the correlation versus<br />

the number of designs. It can be seen that both values<br />

approach the ideal correlation of 0 as the number of designs<br />

grow. A correlation of 0.1 is regarded as acceptable<br />

which corresponds to about 75 to 100 samples. In<br />

the crashworthiness study, the complexity of the<br />

evaluated results as well as the number and<br />

complexity of significant interactions among the<br />

input variables may require even more samples to be<br />

evaluated in order to reach converged stochastic<br />

results.<br />

In this study, convergence of the stochastic results of<br />

the initial sampling of 200 design points is verified<br />

by an ad<strong>di</strong>tional 100 design points. The ad<strong>di</strong>tional<br />

100 designs are also generated from Latin Hypercube,<br />

but from a <strong>di</strong>fferent random seed. This means that<br />

the ad<strong>di</strong>tional 100 designs <strong>di</strong>ffer from the original<br />

200 designs and the 300 designs as a whole still<br />

follow the Latin Hypercube space filler <strong>di</strong>stribution.<br />

It is observed that there was not a big <strong>di</strong>fference<br />

between the output correlations or the output<br />

<strong>di</strong>stributions gained from the 200 and 300 design<br />

sets.<br />

Results of the robustness study<br />

One result of the robustness study is a list of the<br />

main effects for each results quantity. Figure 6 shows<br />

the effect of input parameters on the maximum<br />

internal energy of the bumper beam, ranked from<br />

most to least influential. It can be seen that the<br />

maximum internal energy of the bumper beam is critically<br />

influenced by changes to the tilt and impact angle of the<br />

barrier. In ad<strong>di</strong>tion, an increase in the friction and a decrease<br />

in the bumper beam material strength could give higher<br />

energy absorption.<br />

Besides, the effect of each in<strong>di</strong>vidual input parameter<br />

interactions of several inputs can be significant. As it can be<br />

seen in table 1, the combination of material properties of the<br />

rear side members and the impact angle have more effect on<br />

the results than the single factors friction or material<br />

properties of the bumper beam.<br />

Table 1: Comparison of main and interaction effects of the inputs on<br />

maximum level of the bumper beam internal energy.<br />

The robustness study also uncovered a set of designs giving<br />

extreme results. A separate study on these outliers revealed<br />

that they all had low values of friction. The root cause of the<br />

outliers is related to the way LS-DYNA deals with friction. As<br />

a result, 200 new FE simulations were performed with the<br />

friction fixed at the nominal value. The ranking of main and<br />

interaction effects was not affected while the output values<br />

and their <strong>di</strong>stributions had to be updated. Table 2 shows how


the most important stochastic data changes when<br />

friction is removed as a stochastic input variable.<br />

The table also shows that the standard deviation<br />

of the internal energy is in the order of 5-10% of<br />

the nominal value. By comparison, the number of<br />

deformed elements, i.e. elements excee<strong>di</strong>ng a<br />

specified plastic strain, has a standard deviation<br />

excee<strong>di</strong>ng 50% of the nominal value.<br />

The correlation chart is a versatile tool and figure<br />

7 shows the original 10 input variables versus 4<br />

outputs. Marked boxes are regarded to have high<br />

values of correlation. Since the variables Tilt,<br />

Thickness, Impact Angle and Friction have many<br />

marked boxes but only one box is marked for the<br />

material properties, it is concluded that variations<br />

in material properties are of less importance than<br />

variations in the loa<strong>di</strong>ng case.<br />

Another important result is the correlation<br />

between the outputs. Figure 8 shows that an increase in the<br />

maximum internal energy of the bumper beam leads to a<br />

decrease in the number of deformed elements on the ring<br />

frame.<br />

Table 2: Variation of friction has a significant effect on some of the<br />

stochastic results. It is also clear that the robustness properties can hardly<br />

be ignored when the maximum value in the study exceed the nominal value<br />

by more than 5 times.<br />

The necessity of metamodels<br />

As seen in the robustness study, the scatter of<br />

the results cannot be neglected in an<br />

optimization. Furthermore, the computational<br />

expense makes it most desirable to find a fast<br />

replacement for the FE simulation during the<br />

optimization. In modeFRONTIER there are 7<br />

types of metamodels which aim to replace the<br />

underlying simulation model with a very fast<br />

but approximate function. The evaluation time<br />

is in the order of 0.05 seconds, making it<br />

possible to evaluate thousands of design<br />

can<strong>di</strong>dates in order to solve the robust design<br />

optimization task.<br />

The process of using metamodels is <strong>di</strong>vided into<br />

3 steps:<br />

Training the metamodel<br />

Evaluating the quality of the fit<br />

Using of the metamodel<br />

It was not obvious which metamodel would<br />

deliver the best fit so Kriging, Ra<strong>di</strong>al Basis<br />

Newsletter <strong>EnginSoft</strong> Year 6 n°4 - 23<br />

Figure 6: The main effects plot shows that the most influential parameter on the internal<br />

energy of the bumper beam is the tilt of the barrier followed by the impact angle and friction.<br />

Function and Neural Networks were included and evaluated.<br />

Besides the previously mentioned robustness parameters, 3<br />

new geometry parameters, implemented through mesh<br />

morphing in ANSA, were introduced.<br />

The <strong>training</strong> set consisted of 1000 FE simulations and<br />

another 170 FE simulations were used to check the quality of<br />

the metamodels. Figure 9 shows the <strong>di</strong>fference between the<br />

Ra<strong>di</strong>al Basis Function and the evaluation set for one of the<br />

results. The mean residual values between the three methods<br />

were close and the response looked similar to the same<br />

design IDs. As such, all three methods in this study are<br />

considered to give equally good results. In the end, the<br />

parameters given by the Neural Networks were chosen for<br />

final verification.<br />

Figure 7: Correlation between input and output variables. The variation in crashworthiness due to<br />

scatter in material properties is small if compared to the scatter in the load case variables.


24 - Newsletter <strong>EnginSoft</strong> Year 6 n°4<br />

Figure 8: Correlation between output and output variables. An increase in the internal energy<br />

is strongly correlated to fewer nodes with high strain in the ring frame.<br />

Figure 9: The residual chart shows the <strong>di</strong>fference between the forecasted value by the Ra<strong>di</strong>al<br />

Basis Function and the FE simulations for the evaluation set.<br />

Table 3: The optimized bumper has been improved in all stu<strong>di</strong>ed outputs.<br />

Robust Design Optimization<br />

The metamodels were used to<br />

run a multi-objective robust<br />

design optimization. A design<br />

found through optimization on<br />

the metamodels was then<br />

selected and verified using real<br />

FE simulations. Table 3 shows<br />

results for highly strained<br />

elements and it is clear that the<br />

optimized bumper beam is a big<br />

improvement over the original.<br />

Both the mean value and<br />

standard deviation have<br />

decreased. The comparison is<br />

also done for the full car model,<br />

to confirm that results<br />

calculated from the submodel can be applied to<br />

the full car, cf. figures 10 and 11.<br />

The bumper which was optimized accor<strong>di</strong>ng to<br />

the Allianz load case was also tested in other low<br />

and high speed crashes. The results highlighted<br />

the necessity to consider multiple load cases at<br />

the same time during the optimization.<br />

Summary<br />

Overall the results were very promising, proving<br />

the potential of running robust design<br />

optimization on metamodels for crash<br />

simulations. The initial robustness study also<br />

provided great value and insight into the<br />

dominant parameters and considerations<br />

regar<strong>di</strong>ng the FE simulations. The arithmetic<br />

mean and standard deviation for the stochastics<br />

simulations were improved for all stu<strong>di</strong>ed<br />

outputs, e.g. for the ringframe the results were<br />

improved by about 50% and 20% respectively.<br />

Reference<br />

[1] Xin Li and Tolga Olpak, "Robustness and<br />

Optimization Study of a Rear Bumper Beam<br />

During a Low Speed Impact", M.Sc. Thesis at<br />

Volvo Car Corporation, Göteborg, Sweden,<br />

Department of Solid Mechanics at the Royal<br />

Institute of Technology (KTH), Stockholm, 2009<br />

Authors<br />

Dr. Anneli Högberg, CAE Crash Engineer, Volvo Car Corporation,<br />

ahogberg@volvocars.com<br />

Ass. Professor Martin Kroon, Department of Solid Mechanics,<br />

Royal Institute of Technology (KTH), martin@hallf.kth.se<br />

Xin Li, CAE Engineer, FS Dynamics AB, xin.li@fsdynamics.se<br />

Tolga Olpak, CAE Engineer, X<strong>di</strong>n Systems AB,<br />

tolga.olpak@x<strong>di</strong>n.com<br />

Håkan Strandberg, Sales Manager, <strong>EnginSoft</strong> Nor<strong>di</strong>c AB,<br />

info@enginsoft.se<br />

Figure 10: a) shows the plastic strain on the ring frame (i.e. a rear part of car body) in the submodel with original<br />

bumper beam. b) shows the plastic strain on the ring frame in the submodel with optimized bumper beam.<br />

Figure 11: a) shows the plastic strain on the ring frame in the full car model with original bumper beam. b) shows<br />

the plastic strain on the ring frame in the full car model with optimized bumper beam.


Newsletter <strong>EnginSoft</strong> Year 6 n°4 - 25<br />

Optimization in product development -<br />

An efficient approach to integrate single<br />

CAE Technologies up to the entire<br />

design chain<br />

Overview<br />

In today’s industrial production plants, state-of-the-art<br />

<strong>software</strong> systems are used to analyze <strong>di</strong>fferent loa<strong>di</strong>ng<br />

con<strong>di</strong>tions in order to determine the performance and<br />

durability of a product. Similarly, production companies<br />

use simulation for manufacturing processes, such as<br />

casting and wel<strong>di</strong>ng. Optimization techniques are widely<br />

regarded and applied as the next logical step to perfect<br />

competencies in simulation for modern product<br />

development. Possible applications of optimization<br />

techniques range from local problems with single<br />

applications up to the mapping and optimization of a<br />

large range of parameters of an entire product<br />

development process. Hence optimization can provide<br />

significant time and resources savings, opportunities that<br />

are illustrated in this article.<br />

Introduction<br />

Since the introduction of the computer, nearly all areas of<br />

life have changed rapidly. This applies also, and in<br />

particular, to the working environment and all professional<br />

activities of engineers.<br />

For example, engineering<br />

drawings are no longer<br />

made on a drawing board<br />

using 2D techniques; 3D<br />

models are created<br />

instead on the screen.<br />

Thus necessary<br />

adjustments to the<br />

product are realized<br />

quickly, for example the<br />

weight or the moment of<br />

inertia of complex<br />

Figure 1: Stress analysis of a crank shaft<br />

Figure 3 (a) Soli<strong>di</strong>fication stage of a casting simulation and (b) forging simulation of a crank shaft<br />

Picture 2: CFD simulations for a turbine blade<br />

geometries can be determined – all in an automated way.<br />

Advances in computational mechanics, such as the FEA<br />

Finite-Element Method, have also made their way into<br />

modern production facilities a long time ago. Again, clear<br />

advantages of simulation are shortened product<br />

development cycles, improved assessments of product<br />

quality and, importantly, savings in experimental time and<br />

equipment.<br />

Today’s status of simulation in product development<br />

covers a number of standard analyses, inclu<strong>di</strong>ng:<br />

Strength and durability/fatigue analyses of mechanical<br />

and/or thermally stressed devices in most <strong>di</strong>verse<br />

loa<strong>di</strong>ng con<strong>di</strong>tions (Figure 1),<br />

Computation of characteristic measures in CFD<br />

problems as shown in Figure 2,<br />

Crash Simulations in the area of Safety Engineering and


26 - Newsletter <strong>EnginSoft</strong> Year 6 n°4<br />

Vibration and dynamic analyses of<br />

complex multi-body models.<br />

Considering its industrial infrastructure, the<br />

area of manufacturing process simulation<br />

could be regarded as a separate domain of<br />

computation. The attention here is not<br />

purely focused on the product, as also the<br />

required tools for the processes have to be<br />

taken into account. Those simulation<br />

methods comprise among others:<br />

Simulation of casting processes<br />

inclu<strong>di</strong>ng filling and soli<strong>di</strong>fication<br />

processes, the resulting impacts on the<br />

material microstructure and the<br />

correspon<strong>di</strong>ng local mechanical<br />

properties as well as the residual<br />

stresses (Figure 3a),<br />

Simulation of forging processes with<br />

forming simulations performed continuously or in<br />

several steps, inclu<strong>di</strong>ng material and stress-strain<br />

analyses of the device and the forging <strong>di</strong>es (Figure 3b),<br />

Injection-Mol<strong>di</strong>ng Simulation of plastic-based devices<br />

inclu<strong>di</strong>ng filling and soli<strong>di</strong>fication processes as well as<br />

joint formation,<br />

Simulation of machining processes inclu<strong>di</strong>ng chipforming<br />

analysis, thermo-mechanical analysis of the<br />

material removal rate of the workpiece and the tools as<br />

well as of surface properties.<br />

If we consider the structural trends in manufacturing and<br />

R&D industries as an example - the ever-growing global<br />

competition, shorter development cycles and increasing<br />

demands on product quality to name a few - it is evident<br />

that further efforts are necessary to reduce costs and<br />

improve product quality. This is particularly important for<br />

companies whose operations are based in technologically<br />

Figure 4: Parameter Optimization of a bicycle frame<br />

advanced countries, such as Germany. Here, the CAE<br />

application “Optimization” is a well-known common<br />

practice and among the primary goals of technical<br />

developments.<br />

Optimization<br />

Optimization is defined as the mathematical process for<br />

fin<strong>di</strong>ng optimal parameters of mostly complex systems<br />

with regard to a single or multi-objective functions. It is<br />

important to understand the advantages of optimization<br />

which are explained hereafter with the help of some<br />

examples:<br />

Target functions depend on in<strong>di</strong>vidual problems and, in<br />

reality, often conflict with each other. Therefore, the<br />

ultimate objective of optimization is to find a solution<br />

which represents the best compromise among the<br />

<strong>di</strong>fferent objective functions.<br />

Due to its mathematical background and its<br />

Picture 5: (a) The modeFRONTIER Workflow which integrates a FEA application for a strength calculation of a bicycle frame. (b) The results of the optimization<br />

run presented in a Bubble Chart with the highlighted Pareto Frontier.


independency from respective applications,<br />

optimization is often regarded as a complex and<br />

independent field of action. Thereby, commercial tools,<br />

such as modeFRONTIER, are rea<strong>di</strong>ly available for use<br />

since a long time. Such tools allow to setup, perform<br />

and automate optimization analyses in an easy way.<br />

The optimization level (and, hence, potential savings)<br />

depends to some degree on the development status of<br />

a company. On the one hand, it is possible to perform<br />

optimization on a relatively low level for the<br />

Figure 6: Optimization of a support roller of a paper machine<br />

parameters of a single product. On the other hand,<br />

optimization can be considered as a tool of process<br />

integration and automation, hence, to enable the<br />

mapping and simulation of the complete process and<br />

design chain.<br />

Optimization of a bicycle frame<br />

Figure 4 illustrates an optimization of a bicycle frame with<br />

relatively tra<strong>di</strong>tional optimization objectives in structural<br />

mechanics: The goal here is to minimize the stresses<br />

caused by <strong>di</strong>fferent loa<strong>di</strong>ng con<strong>di</strong>tions; at the same time,<br />

the weight of the frame should be minimized. Moreover,<br />

requirements regar<strong>di</strong>ng limits for maximum stresses<br />

(tensile strength and fatigue resistance) have to be<br />

observed.<br />

In this example, the available geometric optimization<br />

variables are some lengths, the thicknesses of the tubes<br />

and their ra<strong>di</strong>al <strong>di</strong>mensions. In fact, with modeFRONTIER<br />

the present problem can be described in a single run and<br />

by integrating a single FEA application, as shown in Figure<br />

5. Here, after an automatic analysis of the problem<br />

structure, modeFRONTIER recommends to run the<br />

optimization with a certain algorithm - in the present<br />

case a Multi-Objective Genetic Algorithm MOGA-II, with<br />

an appropriately generated DOE.<br />

The optimization run takes place automatically and allows<br />

a systematic Illustration of the results as, for example, by<br />

using a Bubble Chart as shown in Figure 5 (b). Here, the<br />

optimal solutions on the Pareto Frontier are clearly visible.<br />

In this example, the automation enabled the engineer to<br />

Newsletter <strong>EnginSoft</strong> Year 6 n°4 - 27<br />

compute 300 designs within a few minutes time. Hence,<br />

the design time was shortened, instead of wasting time<br />

for multiple manual variations. Ad<strong>di</strong>tionally, the<br />

performance of the bicycle frame with respect to stresses<br />

could be improved, while achieving significantly lower<br />

weight con<strong>di</strong>tions, which also led to lower material costs.<br />

Design Chain Optimization<br />

The relatively simple optimization approach applied to the<br />

design of the bicycle frame already delivered significant<br />

savings. This approach however is based on the (mostly<br />

feasible) assumption that existing residual stresses, σ0,<br />

inside the device can be neglected. These stresses derive<br />

from upstream manufacturing processes. With regard to<br />

the bicycle frame, we could consider such stresses being<br />

related to wel<strong>di</strong>ng, heat treatment, and quasi-static<br />

ben<strong>di</strong>ng (straightening) processes of the frame. If<br />

available, this data could be used in a subsequent stress<br />

analysis to take into account real initial stress con<strong>di</strong>tions<br />

and thus provide a far more accurate optimization. This<br />

way, we would obtain a process chain with four <strong>di</strong>fferent<br />

applications which also can be mapped and optimized in<br />

modeFRONTIER.<br />

As another similar example, we can take a closer look at a<br />

roller support of a paper machine, as illustrated in Figure<br />

6. The roller support is manufactured by a casting process,<br />

the weight of the first design was 476 kg. The<br />

optimization goal here was to minimize the weight and<br />

deformation at the same time. In ad<strong>di</strong>tion, the castability<br />

of the final form had to be guaranteed.<br />

In this example, the sole and initially performed<br />

optimization of the geometry (variation of 13 parameters)<br />

with respect to the most extreme load-case delivered a<br />

weight reduction from 476 kg to 360 kg, while the<br />

deformation was reduced slightly. The verification of the<br />

castability was performed using the <strong>software</strong> tool<br />

MAGMASOFT (sand casting) in a second step after<br />

optimization.<br />

Analyzing the casting simulation, the results ad<strong>di</strong>tionally<br />

revealed zones with non-homogeneous microstructure and


28 - Newsletter <strong>EnginSoft</strong> Year 6 n°4<br />

Figure 7: Standard Optimization (left) in comparison with an Optimization which encompasses the entire process chain: at the critical points, the analysis<br />

that considers casting simulation shows increased van Mises stress values.<br />

hardness due to <strong>di</strong>fferent thicknesses and local cooling<br />

rates. Also, local zones with high residual peak stresses<br />

were found, which have a decreasing effect on the fatigue<br />

life of the roller support.<br />

These results gave reason to consider performing a largely<br />

extended optimization analysis that includes both the<br />

casting simulation and load-case analyses. In a tool such<br />

as modeFRONTIER, the complete process chain could be<br />

setup, in which results of the casting simulation are<br />

transferred as initial con<strong>di</strong>tions to the subsequent FEMbased<br />

load-case simulation. Hence, all following steps are<br />

included in this kind of optimization problem:<br />

Casting simulation with MAGMASOFT to ensure the<br />

quality of the materials, to avoid casting defects,<br />

determination of local material properties (for example<br />

Young’s module, fatigue and yield stress limits), as well<br />

as residual stresses on the <strong>di</strong>fferent roller support<br />

zones.<br />

Transfer of the results via MAGMAlink (residual stresses<br />

and material properties) as initial con<strong>di</strong>tions to be<br />

used in ANSYS.<br />

Load case (stress-) analysis with ANSYS.<br />

This procedure enables also the systematic optimization of<br />

the support roller geometry with respect to the load in<br />

operating con<strong>di</strong>tions, but inclu<strong>di</strong>ng the consideration of<br />

residual stresses and the locally changed material<br />

properties from the casting manufacturing process. The<br />

castability could, therefore, be guaranteed reliably.<br />

Ad<strong>di</strong>tionally, statements with respect to the fatigue life of<br />

the product could be obtained and coupled to the<br />

optimization procedure as constraints.<br />

Figure 7 shows the original (tra<strong>di</strong>tional) load case analysis<br />

(left) and an excerpt of such a novel design chain<br />

approach that considers the results from the casting<br />

simulation (right). It is clearly seen that the stresses in<br />

the roller support are in no way homogeneously<br />

<strong>di</strong>stributed due to <strong>di</strong>fferent pre-stress con<strong>di</strong>tions and non-<br />

homogeneous mechanical material properties. Similarly,<br />

peak stresses (van Mises) can be seen to be increased in<br />

some areas from approximately 30MPa to 50MPa (166%).<br />

Maximum principle stresses (not shown) even highlight<br />

increased values from 60MPa to 228MPa (380%). Although<br />

these values are yet far away from the materials tensile<br />

and fatigue stresses, they lead to significant reductions in<br />

the fatigue life of the product.<br />

Conclusions<br />

The ever growing competitive global market place will call<br />

for more and more applications of optimization techniques<br />

in various industrial sectors. In this article, we have<br />

outlined the following key points:<br />

The optimization of real problems most often defines<br />

solutions which are in conflict with each other. Such<br />

Multi-Objective Optimization tasks can already be<br />

solved today with easy-to-use <strong>software</strong>, such as<br />

modeFRONTIER.<br />

It is possible to perform automatic optimization<br />

already for simple development cases by linking<br />

standard tools from arbitrary areas (e.g. CAE tools).<br />

Optimization can be extended infinitely and, hence, be<br />

regarded as a tool for process integration and<br />

automation. In this way, it is possible to setup<br />

simulations of an entire process chain and, therefore,<br />

to systematically extend the optimization capabilities<br />

from single device parameters to the parameters of the<br />

entire design chain.<br />

There is potential for large savings. They may comprise<br />

in experimental costs and reduction of development<br />

times due to the automation of computations. Thereby,<br />

savings even go hand-in-hand with ensuring product<br />

quality.<br />

Hans-Uwe Berger, <strong>EnginSoft</strong> GmbH, Frankfurt am Main<br />

25. Schmalkaldener Fachtagung/Conference:<br />

Die Digitale Fabrik–Module und Referenzlösungen/Digital<br />

Plant – Modules and Solutions


Newsletter <strong>EnginSoft</strong> Year 6 n°4 - 29<br />

ANSYS simulation of carbon fiber and<br />

anisotropic materials<br />

Introduction<br />

The scope of this R&D is to develop a new<br />

support, with an integrated cooling system, for<br />

the replacement of the inner layer of the<br />

Silicon Pixel Detector installed into the ATLAS<br />

Experiment, working on the Large Hadron<br />

Collider at CERN; for details, we ask our readers<br />

to visit: www.atlas.ch/pixel-detector.html. This<br />

replacement will become necessary because of<br />

the ra<strong>di</strong>ation damage, with the detector being<br />

very close, about 50 mm, to the high-energy<br />

proton-proton interaction point.<br />

The task of the support system is to hold the<br />

detector modules in positions with high<br />

accuracy, minimizing the deformation induced<br />

by the cooling; this must be done with the<br />

lowest possible mass because there are tight<br />

requirements in terms of material budget. An<br />

evaporative boiling system to remove the<br />

power <strong>di</strong>ssipated by the sensors is incorporated in the<br />

support: thermal contact is made through a very<br />

conductive light carbon foam to maintain the sensor<br />

temperature sufficiently low, to limit the leakage currents<br />

and hence the thermal run-away. The coolant should be a<br />

fluorocarbons blend or CO2. The worst case is imposing a<br />

cooling pipe design pressure of 10 MPa. The number of<br />

Prototype of a stave with 2 carbon fiber pipes integrated into the carbon<br />

foam and attached to the structural omega shaped laminate.<br />

The ATLAS Pixel Detector during construction. Here we can see one of the cylindrical shells of<br />

Pixel detectors formed by the longitu<strong>di</strong>nal cooled supports called staves.<br />

pipes could be 1 or 2 and the pipe material should be<br />

carbon fiber or titanium. The structural strength of the<br />

800 mm long support stave is given from a carbon fiber<br />

“omega” shaped laminate.<br />

Summary of the work<br />

The design is based on thermal, mechanical and thermostructural<br />

analyses of assemblies made of carbon fiber<br />

composites. Calculation of the Tsai-Hill safety factors and<br />

transversal strains in the<br />

plies are required for<br />

tightness assessment of<br />

the pipe. Moreover, the<br />

pipe lay-up optimization<br />

against the internal<br />

pressure has been made<br />

together with estimations<br />

of the thermal expansion<br />

coefficient of the pipe<br />

and omega laminates. We<br />

used ANSYS and<br />

ESAComp; input figures<br />

Carbon fiber pipe production test using<br />

brai<strong>di</strong>ng technology, before<br />

impregnation with resin<br />

for the ply properties, starting from fiber and matrix<br />

values, are provided by a de<strong>di</strong>cated spreadsheet. To<br />

validate the FEM simulations both Composite Laminate<br />

Theory hand-made calculations on cross-check simple<br />

models and experimental tests are used. Work is still in<br />

progress to measure material characteristics and FEM<br />

results: pull test on pipes performed with “braided”<br />

technology, burst pipe pressure, thermal transmission


30 - Newsletter <strong>EnginSoft</strong> Year 6 n°4<br />

Cross section example of a finite element model. Note the mapped mesh for the laminate pipe and omega, whose one possible stacking sequence is showed.<br />

coefficient K of the carbon pipe, CTE and deformations<br />

induced by the cooling using a Coor<strong>di</strong>nate Measuring<br />

Machine.<br />

The R&D key element is the production of the CF pipe and<br />

of the relative joints versus the external connecting<br />

piping, having suitable mechanical and tightness<br />

properties.<br />

FEM of composite materials<br />

Some assumptions are taken up in buil<strong>di</strong>ng the model and<br />

some parameters needed to run the <strong>software</strong> should be<br />

guessed as they are absent in literature (i.e. ply out-ofplane<br />

moduli and Poisson coefficient). A major problem<br />

found in buil<strong>di</strong>ng the models is the necessity to correctly<br />

orient the layered elements for the composites which<br />

turns out to be very time consuming. Moreover, in the<br />

multi-physics, during the switching from structural to<br />

thermal analysis automatically a <strong>di</strong>fferent orientation of<br />

the thermal element coor<strong>di</strong>nate systems is set; the use of<br />

de<strong>di</strong>cated APDL macro routines can be useful to optimize<br />

the FEM workflow. We used several meshing techniques:<br />

mapped mesh for composites materials and free mesh in<br />

Thermal solution example<br />

Internal pressure and longitu<strong>di</strong>nal stress applied to the pipe<br />

2D or extruded mesh in 3D for the anisotropic materials.<br />

Geometry of the anisotropic carbon foam has been<br />

carefully con<strong>di</strong>tioned in order to avoid degenerated shape<br />

elements. We have chosen to assemble models, avoi<strong>di</strong>ng<br />

the use of contact elements between the meshed parts in<br />

order to obtain a practicable linear solution method,<br />

merging the interfacing nodes and reducing both the<br />

number of elements and the run-time. Comparisons<br />

between <strong>di</strong>fferent sized meshes, with aspect ratio<br />

ranging from 1 to 10, and between 2D cross section<br />

and 3D solutions have been judged for time<br />

optimization and control purposes.<br />

The use of brick elements for thin solids was driven by<br />

our specific multi-physics needs.<br />

Note that the composite pipe produced by the<br />

“brai<strong>di</strong>ng” technology can only in first approximation<br />

be simulated by the laminate multi-ply hypothesis,<br />

like those implemented in the layered elements<br />

available at present. This could be an interesting<br />

ANSYS product development. We are also in contact<br />

with the DIGIMAT micro-mechanics developers to<br />

study the problem.


Thermal performance<br />

The thermal performances of the <strong>di</strong>fferent configurations<br />

proposed are stu<strong>di</strong>ed with steady-state 2D simulations. Heat<br />

flux is applied while the BC is the temperature setting of the<br />

cooling pipes inner surface. We collected the resulting max<br />

ΔT across the staves in a table, using a performance<br />

parameter obtained by <strong>di</strong>vi<strong>di</strong>ng ΔT by the thermal power flux<br />

imposed as load.<br />

Evaluation of the thermal expansion coefficients<br />

Longitu<strong>di</strong>nal CTE is calculated for the possible<br />

configurations; the simulations are executed with the volume<br />

fiber percentage measured on the samples, ranging from 30%<br />

to 60%. The calculation procedure is to build a model and<br />

increase the nodal temperature in order to have a ΔT: the<br />

nodal <strong>di</strong>splacement is evaluated and the relative CTE is then<br />

calculated. ESAComp has been used for cross check.<br />

Pressurized pipe lay-up optimization<br />

The design of the pipe laminate should satisfy these criteria:<br />

withstan<strong>di</strong>ng a pressure test of 15 MPa, having a safety<br />

factor of 4 on the design pressure against a Tsai-Hill failure<br />

criterion, matching the longitu<strong>di</strong>nal CTE of the other<br />

materials, remaining tight under pressure with maximum<br />

transversal ply strain ≤ 0.1%. This is the parameter that<br />

controls the micro-cracks growth. Pipe is modelled using the<br />

element layered-type Solid186. Pressurized vessel con<strong>di</strong>tions<br />

are simulated with axial force on the pipe extremities.<br />

Different pipe stacking sequences are considered for these<br />

structural simulations; for each ply longitu<strong>di</strong>nal, transversal<br />

and shear stresses and strains are extracted for the result<br />

Thermo-mechanical simulation results for a given configuration.<br />

analysis, used <strong>di</strong>rectly or combined in the failure criteria.<br />

Comparison between the stress values or Tsai-Hill index<br />

resulting from the simulation and the correspon<strong>di</strong>ng rupture<br />

stress values of the ply is done. Lastly, the best lay-up,<br />

matching the requirements and inclu<strong>di</strong>ng technological<br />

feasibility, is [45/-45]s.<br />

Deformations induced from gravity, cooling and pipe<br />

pressurization<br />

To understand the thermo-mechanical effects, we first<br />

performed 3D thermal simulations using 20 node Solid90<br />

Newsletter <strong>EnginSoft</strong> Year 6 n°4 - 31<br />

elements, in order to determine the temperature field<br />

under defined heat flux. The resulting nodal temperatures<br />

have been imported, node to node, in the structural<br />

environment, using Solid186 elements to determine the<br />

deformations and stress of the stave components due to<br />

the thermal induced deformation, related to the <strong>di</strong>fferent<br />

CTE values of the materials. Coefficients of thermal<br />

expansion of the ply are calculated by the Schapery<br />

formulas. In the following study the loads applied to<br />

analyse the behavior of the stave are: 1) cooling-down: ΔT<br />

= -60°C, that is the ΔT between the assembling<br />

temperature and the minimum evaporation temperature;<br />

2) static gravity to evaluate the maximum deformation<br />

due to the weight; 3) pressure 10 MPa inside the cooling<br />

pipe.<br />

Conclusions<br />

A number of considerations have been taken into account<br />

in the frame of this collaboration with regard to all ANSYS<br />

silmulation results and other parameters, such as the<br />

global ra<strong>di</strong>ation length, to optimize the assembly<br />

properties. The final choice to be made will also depend<br />

on the measurements in progress on the real prototypes.<br />

The ANSYS <strong>software</strong> can be used as a useful tool for the<br />

model analysis with composite and anisotropic materials.<br />

A lot of work has been devoted to understan<strong>di</strong>ng the<br />

method, and then to buil<strong>di</strong>ng the required models in a<br />

proper way, for achieving the various simulation goals.<br />

The real measurement performed on a pipe prototype,<br />

actually the CTE of a CF pipe, provides a first positive<br />

feedback from the R&D work which is still in progress.<br />

Acknowledgments<br />

Thanks to the colleagues of the INFN Milano Mechanical<br />

Design and Workshop Department, in particular Mauro Monti,<br />

the responsible for the simulations and to Danilo Giugni and<br />

the whole ATLAS Insertable B-Layer Collaboration.<br />

Ing. Simone Coelli<br />

Istituto Nazionale <strong>di</strong> Fisica Nucleare<br />

Sez. <strong>di</strong> Milano


32 - Newsletter <strong>EnginSoft</strong> Year 6 n°4<br />

Aeronautical engines:<br />

reduction of emissions and<br />

consumptions with a<br />

process simulation study<br />

The project “Marboré”,<br />

which is promoted by the<br />

Department of Mechanical<br />

Engineering of the<br />

University of Padua, aims<br />

at offering to aerospace<br />

students a trial aeronautical engine in order to carry out<br />

tests and researches. These stu<strong>di</strong>es are useful both to<br />

improve the performances of turbojets accor<strong>di</strong>ng to stricter<br />

laws for the reduction of CO2 and NOx emissions and to<br />

reduce fuel consumption.<br />

As the design of a new propeller involved many technical<br />

and economical <strong>di</strong>fficulties, the University decided to use a<br />

turbojet which was already available on the market.<br />

At the end of 2006, a Marboré VI-C turbojet, <strong>di</strong>smantled<br />

from a target plane which had crashed, was collected and<br />

given to the University. The engine had been designed and<br />

produced by the French company Turbomeca in the 70’s.<br />

After the impact, the propeller was heavily damaged, in<br />

particular the front section, seat of the centrifugal<br />

compressor. The project included the entire modelling of the<br />

turbojet with the help of a CAD <strong>software</strong> and the<br />

reconstruction of the damaged parts.<br />

At the end of 2007, the rotor was completed, while the<br />

intake casing, originally created with magnesium alloy, was<br />

excluded from any analysis, as this study required particular<br />

knowledge about the casting process. For this reason, it was<br />

necessary to carry out a specific study for this part with the<br />

aim to find out all the technological details to plan and<br />

perform the casting process.<br />

The first step was a careful CAD modelling which was<br />

slightly mo<strong>di</strong>fied from the original accor<strong>di</strong>ng to the<br />

<strong>di</strong>fferent use and then the project focused on the design of<br />

the casting system.<br />

Motori Aeronautici: riduzione<br />

delle emissioni e dei consumi<br />

attraverso lo stu<strong>di</strong>o delle<br />

simulazioni <strong>di</strong> processo<br />

Il progetto Marborè, promosso dal Dipartimento <strong>di</strong><br />

Ingegneria Meccanica dell’Università degli Stu<strong>di</strong> <strong>di</strong> Padova,<br />

ha lo scopo <strong>di</strong> mettere a <strong>di</strong>sposizione degli allievi aerospaziali<br />

un motore aereonautico funzionante a banco, su cui<br />

poter effettuare test e stu<strong>di</strong> <strong>di</strong> ricerca volti a migliorare le<br />

prestazioni, come l’abbattimento delle emissioni inquinanti,<br />

quali NOx e COx, e la <strong>di</strong>minuzione dei consumi.<br />

Visto il notevole sforzo, economico e tecnologico, che sarebbe<br />

stato necessario per la realizzazione ex-novo <strong>di</strong> un<br />

propulsore su cui lavorare, si decise <strong>di</strong> utilizzare un turbojet<br />

già presente sul mercato. Verso la fine del 2006 viene recuperato<br />

e messo a <strong>di</strong>sposizione dell’Università un turbogetto<br />

<strong>di</strong> tipo Marborè VI-C, realizzato negli anni ’70 dalla<br />

francese Turbomeca, smontato da un aereo bersaglio<br />

schiantatosi al suolo. A seguito dell’impatto, il propulsore è<br />

risultato essere fortemente danneggiato, soprattutto nel<br />

comparto anteriore, sede del compressore centrifugo. Il progetto<br />

prevede la completa modellazione del turbogetto, attraverso<br />

<strong>software</strong> CAD, e la ricostruzione degli organi danneggiati.


After a first sketch of<br />

the casting system<br />

using CAD, the<br />

<strong>software</strong> MAGMASOFT<br />

was used to verify and<br />

optimize the casting<br />

process. During this<br />

step an academic<br />

approach permitted to carry out a series of simulations<br />

which mo<strong>di</strong>fied the model as to a careful analysis of the<br />

results. This enabled to obtain a single good quality<br />

prototype without limits on time and elaboration methods.<br />

First of all, the simulations of the initial versions, which<br />

were created in agreement with the partners involved in the<br />

project, were essential to choose among <strong>di</strong>fferent possible<br />

configuration methods. These versions <strong>di</strong>ffered both in the<br />

cooling system and in the filters placement.<br />

The first version had a central cast iron chill and three<br />

exothermic feeders on top of the component. Soli<strong>di</strong>fication<br />

results imme<strong>di</strong>ately showed that this type of placement was<br />

perfect for the bearing support: as a matter of fact, a very<br />

quick cooling improved the mechanical characteristics in<br />

the most “significant” area of the component. At the same<br />

time, isolated liquid bubbles on the external surface during<br />

the cooling caused fee<strong>di</strong>ng problems.<br />

Newsletter <strong>EnginSoft</strong> Year 6 n°4 - 33<br />

Alla fine del 2007 i componenti rotorici sono stati completati,<br />

mentre è rimasta esclusa da ogni tipo <strong>di</strong> analisi la bocca<br />

anteriore del motore, fusione monoblocco in lega <strong>di</strong> magnesio,<br />

stu<strong>di</strong>o che richiede particolari conoscenze del processo<br />

produttivo.<br />

Si è quin<strong>di</strong> reso necessario realizzare un lavoro specifico per<br />

questa parte, che approfon<strong>di</strong>sse tutti i dettagli tecnologici<br />

per la progettazione e la realizzazione per processo fusorio<br />

del componente.<br />

Si è iniziata un’attenta modellazione CAD, con alcune lievi<br />

riprogettazioni dettate dalle <strong>di</strong>verse esigenze tra un componente<br />

progettato per il volo da uno statico da banco, soffermandosi<br />

poi sulla progettazione del sistema <strong>di</strong> colata.<br />

Dopo un primo abbozzo nell’ambiente CAD, si è passati a lavorare<br />

con il <strong>software</strong> MAGMASOFT, necessario per verificare<br />

e ottimizzare il processo <strong>di</strong> colata.<br />

Durante questa fase si è mantenuto un approccio <strong>di</strong> tipo accademico:<br />

si è realizzata una serie <strong>di</strong> simulazioni applicando<br />

<strong>di</strong> volta in volta alcune mo<strong>di</strong>fiche dettate dall’attenta<br />

analisi dei risultati ottenuti, ponendosi come unico obiettivo<br />

la realizzazione <strong>di</strong> un singolo prototipo <strong>di</strong> buona qualità,<br />

senza porsi limiti nei tempi e nei mo<strong>di</strong> <strong>di</strong> elaborazione.<br />

Innanzitutto si sono implementate più versioni rappresentanti<br />

le varie configurazioni del sistema <strong>di</strong> colata inizialmente<br />

progettate in accordo con le parti partecipanti al<br />

progetto. Queste <strong>di</strong>fferivano nel sistema <strong>di</strong> raffreddamento<br />

e nella <strong>di</strong>sposizione dei filtri <strong>di</strong> colata.<br />

Nella prima versione era previsto un raffreddatore centrale<br />

<strong>di</strong> ghisa e tre maniche esotermiche, in corrispondenza delle<br />

zone massicce. I risultati <strong>di</strong> soli<strong>di</strong>ficazione hanno evidenziato<br />

subito che tale <strong>di</strong>sposizione era ottima per il supporto<br />

del cuscinetto, in quanto il raffreddamento repentino garantisce<br />

caratteristiche meccaniche migliori, mentre per<br />

quanto riguarda la corona esterna erano presenti notevoli<br />

zone <strong>di</strong> liquido isolate durante la soli<strong>di</strong>ficazione e quin<strong>di</strong><br />

conseguenti problemi<br />

<strong>di</strong> porosità.<br />

La seconda versione<br />

prevedeva, invece,<br />

<strong>di</strong> utilizzare esclusivamente<br />

maniche<br />

esotermiche, <strong>di</strong>sposte<br />

nella parte su-


34 - Newsletter <strong>EnginSoft</strong> Year 6 n°4<br />

In the second version<br />

there were only<br />

exothermic feeders on<br />

the top. Just like the<br />

previous version, this<br />

new one presented both<br />

pros and cons during the<br />

analysis of the<br />

soli<strong>di</strong>fication results.<br />

The fluid temperature<br />

was more homogeneous<br />

in the cooling but the cooling front on the bearing support<br />

moving upward and the longer time of soli<strong>di</strong>fication led to<br />

worse mechanical characteristics, especially on the central<br />

part.<br />

Both configurations, which were initially designed, enabled<br />

to obtain a “hybrid” system and simulations showed that<br />

this version was definitely better. It was constituted by a<br />

central cast iron chill and eight exo-feeders on the top of<br />

the component. In ad<strong>di</strong>tion, the number of ingates<br />

increased up to six in order to improve the homogeneity of<br />

the input flow and to reduce the temperature gra<strong>di</strong>ents,<br />

which appeared at the end of the casting process in the<br />

previous versions with only four ingates.<br />

Filling and soli<strong>di</strong>fication results pointed out that fee<strong>di</strong>ng<br />

defects decreased in comparison to the previous versions,<br />

hence the quality target was reached. Defects could be<br />

considered irrelevant due to the precautionary <strong>software</strong><br />

applied and the particular refining of the casting process.<br />

The sand mold was therefore realized using SLS (Selective<br />

Laser Sintering) rapid prototyping techniques. Afterwards,<br />

light alloy casting was carried out taking into particular<br />

consideration the preparation of the alloy. Finally, some Xray<br />

analyses were performed to verify the<br />

integrity of the component and to<br />

compare the simulation results with real<br />

data. This study enabled to analyse each<br />

detail accurately and to follow the<br />

transformation from a CAD drawing to a<br />

real component. In ad<strong>di</strong>tion, it pointed<br />

out the potentialities of this process,<br />

which is suitable both to optimize all the<br />

steps using specific <strong>software</strong> and at the<br />

same time, to minimize errors.<br />

periore del getto. Anche in questo caso i risultati hanno<br />

messo in luce fattori positivi e negativi della configurazione.<br />

Si è ottenuta infatti una maggiore omogeneità del fluido<br />

in fase <strong>di</strong> soli<strong>di</strong>ficazione, peggiorando però le caratteristiche<br />

meccaniche, specialmente nel supporto centrale.<br />

Si è cercato quin<strong>di</strong> <strong>di</strong> unire le caratteristiche migliori delle<br />

due versioni, ottenendo un sistema ibrido che dalle simulazioni<br />

è risultato decisamente superiore rispetto alle precedenti<br />

<strong>di</strong>sposizioni.<br />

Esso prevede l’utilizzo del raffreddatore in ghisa centrale e<br />

otto maniche esotermiche sulla corona esterna.<br />

Inoltre per garantire una maggiore omogeneità del flusso in<br />

fase <strong>di</strong> riempimento, si è scelto <strong>di</strong> aumentare a sei il numero<br />

<strong>di</strong> attacchi, in maniera tale da limitare i gra<strong>di</strong>enti <strong>di</strong> temperatura<br />

presenti a fine colata nelle versioni con solo quattro<br />

ingressi.<br />

I risultati <strong>di</strong> riempimento e <strong>di</strong> soli<strong>di</strong>ficazione hanno sottolineato<br />

infatti che i <strong>di</strong>fetti <strong>di</strong> microporosità sono <strong>di</strong>minuiti<br />

rispetto alle versioni precedenti, raggiungendo la soglia <strong>di</strong><br />

qualità ricercata. I <strong>di</strong>fetti ottenuti possono essere ritenuti<br />

trascurabili per la cautelatività del <strong>software</strong> e la particolare<br />

affinazione del processo produttivo.<br />

Si è quin<strong>di</strong> realizzata la forma attraverso tecniche <strong>di</strong> prototipazione<br />

rapida, utilizzando tecnologie SLS<br />

(Sinterizzazione Laser Selettiva). Compiuta la fusione in lega<br />

leggera, con una particolare attenzione alla fase <strong>di</strong> preparazione<br />

del metallo da colare, si sono fatte alcune analisi<br />

ra<strong>di</strong>ografiche per verificare l’integrità del componente e<br />

confrontare quin<strong>di</strong> i dati delle simulazioni effettuate con i<br />

dati reali.<br />

Diversamente da come avviene solitamente in contesto lavorativo,<br />

dove normalmente non si seguono<br />

tutte le fasi progettuali e realizzative,<br />

in questo stu<strong>di</strong>o è stato possibile<br />

analizzare accuratamente ogni dettaglio<br />

e vedere un <strong>di</strong>segno CAD trasformarsi<br />

in un componente reale.<br />

Inoltre questo percorso ha evidenziato<br />

le potenzialità <strong>di</strong> questo processo che<br />

permette <strong>di</strong> ottimizzare tutti i passaggi<br />

attraverso <strong>software</strong> specifici, riducendo<br />

al minimo i margini <strong>di</strong> errore.


Healing the swine flu with<br />

modeFRONTIER<br />

One of the hot topics of the winter<br />

2009 that probably will be remembered<br />

is the outbreak of the so-called “swine<br />

flu”. The new virus A-H1N1 captured<br />

the attention of the Italian me<strong>di</strong>a,<br />

which literally bombarded the<br />

population with daily reports on the<br />

number of deaths, the severity of this<br />

virus and other alarms based on the<br />

opinion of some “epidemiology<br />

experts”, sprea<strong>di</strong>ng in this way the<br />

fear within the population.<br />

During the first weeks of autumn some<br />

sentences such as “We will have an<br />

extraor<strong>di</strong>nary peak of flu <strong>di</strong>ffusion between Christmas and<br />

the new year” or “we will be the victim of a new pandemia<br />

with many deaths” were pronounced.<br />

How is it possible to pre<strong>di</strong>ct such an “apocalyptic” scenario<br />

so many weeks in advance? The truth is that it is extremely<br />

<strong>di</strong>fficult, especially when no previous knowledge on the virus<br />

behavior is available. However, in epidemiology some simple<br />

mathematical models have been developed and used for<br />

many years; they are mainly based on or<strong>di</strong>nary <strong>di</strong>fferential<br />

equations (shortly ODEs).<br />

Probably, the most known model is the so-called SIR model,<br />

where the population, which is supposed to be large and<br />

homogeneous enough, is <strong>di</strong>vided into three groups<br />

(Susceptible, Infected and Recovered), accor<strong>di</strong>ng to their<br />

status (see [4]). Strong simplifications are present in this<br />

model which can be applied as scale level; in some cases it<br />

could lead to poor results. For this reason, there is a variety<br />

of SIR based models which remove some of these<br />

Newsletter <strong>EnginSoft</strong> Year 6 n°4 - 35<br />

A photo of the A-H1N1 virus (left) and a swine (right). They do not look so dangerous…<br />

Figure 2: The solution of a classical SIR model: the three categories S, I and R are plotted versus time,<br />

expressed in weeks. It is clear that the <strong>di</strong>sease has a peak between the first and the second week and that the<br />

maximum number of ill people is around 150 over 1000. In this case we adopted the following values for the<br />

parameters (β=10, ν=5 and the number of initial infected is 1.98 for 1000 persons).<br />

simplifications in an attempt to be closer to reality. In this<br />

work, we suggest to add a new category to the standard SIR<br />

model in order to consider the fact that unfortunately, some<br />

infected people may <strong>di</strong>e. The resulting model can be<br />

expressed as:<br />

This is a non-linear system of first<br />

order ODEs; the four categories used to<br />

classify the population are S =<br />

Susceptible, I = Infected, R =<br />

Recovered, D = Dead and they are<br />

expressed in percentage terms. For this<br />

reason the sum of all the categories<br />

has to be always equal to one. The<br />

parameters β, ν and δ are constants<br />

which determine the evolution of the <strong>di</strong>sease. The results<br />

strongly depend on the numerical values of these parameters.<br />

Specifically the peak value of the infected and the week of<br />

the year when it will appear, which<br />

are important information to have<br />

in advance, can be really <strong>di</strong>fficult to<br />

capture if there is not a rigorous<br />

estimation of the above mentioned<br />

parameters.<br />

Obviously, it is mandatory to know<br />

the initial con<strong>di</strong>tions before solving<br />

the system: in other words we have<br />

to know the number of susceptible,<br />

infected, recovered and dead<br />

persons at time zero, when we want<br />

to begin our simulation.<br />

The solution of such equations is<br />

always done, exclu<strong>di</strong>ng trivial cases,<br />

through numerical techniques which<br />

have been expressively defined to<br />

tackle this kind of problem. To


36 - Newsletter <strong>EnginSoft</strong> Year 6 n°4<br />

Table 1: The number of infected persons over 1000 (data source [2],<br />

November 15th) and the total deaths due to the swine flu (reported by the<br />

italian me<strong>di</strong>a) in Italy are reported in this table for some weeks of the year.<br />

obtain reliable solutions, the numerical strategies have to<br />

consider the nature of the ODE to be solved; in general, ODEs<br />

can be really complicated and strongly nonlinear and the<br />

independent functions could have sharp variations within<br />

time.<br />

For this reason, many techniques have been developed as it<br />

can be easily seen in literature (see [5] and [6] just to have<br />

an idea), to minimize the <strong>di</strong>fference between the numerical<br />

and the theoretical solution.<br />

The implementation of such techniques in general is not an<br />

easy task for many engineers and scientists who probably are<br />

more interested in obtaining a reliable solution for their<br />

problems rather than in spen<strong>di</strong>ng time and money in<br />

compiling codes.<br />

Figure 3: The modeFRONTIER workflow used for the model tuning problem.<br />

To partially mitigate this situation, we use a general-purpose<br />

and open source platform, Scilab (see [2]) which provides<br />

the user with powerful numerical tools to manage <strong>di</strong>fferent<br />

problems and to solve an ODEs system.<br />

In Figure 2 the three categories S, I and R (these quantities<br />

are measured with reference to a population of 1000 persons)<br />

have been plotted versus time (expressed in weeks). In this<br />

case a classical SIR model has been solved: it can be easily<br />

seen that the number of infected persons<br />

amounts to a maximum of 150 out of 1000 and<br />

that it falls between the first and the second<br />

week. The model parameters (β=10, ν=5 and<br />

the number of initial infected is 1.98 for 1000<br />

persons) have been chosen in this case<br />

without any reference to a real <strong>di</strong>sease.<br />

Unfortunately, the model parameters are not<br />

known in advance but, usually, they have to<br />

be estimated starting from some previously acquired<br />

knowledge on the evolution of the <strong>di</strong>sease. Once these<br />

parameters have been estimated, it will be possible to<br />

pre<strong>di</strong>ct the spread of the <strong>di</strong>sease.<br />

This is a typical model tuning problem which could be<br />

formulated, for example, as a least square problem. Actually,<br />

if we knew the number of infected persons and the deaths<br />

which can be ascribed to the flu during a given period, we<br />

could try to find out the values for the model parameters in<br />

order to best fit the known data. The result could give a<br />

better insight into the flu evolution, and the possible<br />

pre<strong>di</strong>cting of the peak of the infection and hence a better<br />

understan<strong>di</strong>ng of the general evolution of the <strong>di</strong>sease.<br />

To this aim we decided to use the data reported in Table 1,<br />

which are provided by the ISS (Istituto Superiore <strong>di</strong> Sanità)<br />

and collected by the author from <strong>di</strong>fferent Italian me<strong>di</strong>a (see<br />

[2]). It is obvious that they are not numerous, but they are<br />

the only ones available at the end of the 46th week of the<br />

year (November 15th). However we would like to pre<strong>di</strong>ct the<br />

swine flu evolution in Italy for the following weeks.<br />

As mentioned above, our aim is now to find out the best<br />

values of β, ν and δ in such a way that our mo<strong>di</strong>fied SIR<br />

model is able to best fit the data reported in Table 1. We are<br />

buil<strong>di</strong>ng the modeFRONTIER project drawn in<br />

Figure 3: the four input variables are represented<br />

by the four green nodes in the upper part while<br />

the output variables, the number of the infected<br />

and the deaths at <strong>di</strong>fferent weeks, are extracted<br />

<strong>di</strong>rectly from Scilab through two output vectors<br />

(the blue nodes).<br />

Among the many available strategies to adopt<br />

for the solution of this problem, we decided to<br />

use the following one, which has the desirable<br />

feature to lead to a mono-objective<br />

minimization problem.<br />

We introduce a target node, involving the<br />

computed number of infected people, looking<br />

for the best fit:<br />

and a constraint node, involving the number of actual<br />

deaths:<br />

For the solution of such a problem, usually, a Levenberg-<br />

Marquardt algorithm is recommended, in view of the nature<br />

Table 2: A comparison between the best solutions found with the two optimization algorithms<br />

adopted. It can be seen that the NLPQLP provides a better solution. C44, C45 and C46 represent<br />

the value of the constraint as defined in equation (2) expressed for the weeks 44, 45 and 46<br />

respectively.


Figure 4: The evolution of the swine flu in Italy accor<strong>di</strong>ng to our mo<strong>di</strong>fied SIR model. Note that the logarithmic<br />

scale has been adopted for the persons ages. It can be seen that the flu peak falls between the 45th and 46th<br />

week (blue curve)and that it concerns about 13.5 persons out of 1000. The flu should practically <strong>di</strong>sappear<br />

before the new year. The triangles represent the fitted data, contained in Table 1: it imme<strong>di</strong>ately becomes clear<br />

that the death rate is slightly overestimated.<br />

of the function to be minimized. It is well known, however,<br />

that this algorithm adopts a penalty oriented approach to<br />

manage constraints, which may not be the best in our case:<br />

we actually would like to have a very accurate fit also for the<br />

death rate, which is involved <strong>di</strong>rectly by the constraints.<br />

The NLPQLP algorithm, which has a completely <strong>di</strong>fferent<br />

approach in the constraint management, has also been<br />

tested: it can be seen (from Table 2) that it provides better<br />

results than the Levenberg-Marquardt algorithm.<br />

The evolution of the flu is reported in Figure 4, as computed<br />

using the best fit parameters by NLPQLP. It is evident that<br />

the peak falls between the 45th and 46th week and it<br />

concerns about 13.5 persons out of 1000. Moreover, it points<br />

out that the flu should practically <strong>di</strong>sappear before the new<br />

year. The mortality rate can be estimated by looking at the<br />

number of deaths after a long period (let us say after one<br />

year from the beginning): in our model this value amounts to<br />

0.0028 out of 1000 persons, which means 0.03% (170 deaths<br />

in Italy approximately). This value appears to be very close<br />

to analogous quantities computed for other<br />

seasonal flues in the past, which usually<br />

range between 0.02% and 0.04%. Finally, it<br />

has to be mentioned that the deaths are<br />

slightly overestimated in our model.<br />

However, if the reader visits the web site<br />

given in [2], he/she can read that the<br />

proposed data could be affected by slight<br />

variations, due to some delays in reporting by<br />

the surveillance network. Probably, the<br />

number of infected persons will not be exactly<br />

the same as those reported in Table 1, after<br />

November 15th. Hence knowing that the<br />

available data at the end of the 46th week<br />

may not be accurate, we would like to<br />

estimate how our previsions reported above,<br />

could change. In other words, we want to<br />

understand what is the error rate of our<br />

Newsletter <strong>EnginSoft</strong> Year 6 n°4 - 37<br />

previsions, as the target data may<br />

be affected by slight variations.<br />

Here, the first step certainly is to<br />

give a probabilistic characterization<br />

of the target values; we decided to<br />

use an exponential probability<br />

density function for each target<br />

value of the infected persons. This<br />

choice has been driven by the fact<br />

that the true values of the infected<br />

persons are certainly higher than<br />

those reported in Table 1; actually,<br />

they are expected to grow. In Table<br />

3 the values of the location and the<br />

scale for the four exponential<br />

probability functions are collected.<br />

These values have been arbitrary<br />

chosen (there is no information on the reliability of data we<br />

have) in such a way that values lesser than those reported in<br />

the last column of Table 3 have around 90% of probability to<br />

appear.<br />

Five thousand simulations have been organized mo<strong>di</strong>fying<br />

the target values in accordance with the given probability<br />

density functions mentioned above and the correspon<strong>di</strong>ng<br />

peak position, peak intensity and mortality have been<br />

computed.<br />

Table 3: The location and the scale parameters of the exponential probability<br />

functions used to characterize the target values of the infected people at<br />

<strong>di</strong>fferent weeks.<br />

Figure 5: The modeFRONTIER workflow used for the solution of the sensitivity problem. A Latin-<br />

Hypercube technique has been used to generate a DOE in accordance with the probability density<br />

functions characterizing the targets. In the project shown in Figure 3, the model tuning problem is<br />

solved by modeFRONTIER with a batch call and a Scilab routine which are used to continuously<br />

extract the information about the <strong>di</strong>sease.


38 - Newsletter <strong>EnginSoft</strong> Year 6 n°4<br />

Figure 6: The peak is plotted versus the peak position. The bubble color is used to represent the mortality.<br />

The cloud of points summarizes the simulated scenarious. It can be easily seen that even the worst previsions<br />

in terms of peak and mortality rate have nothing in common with a pandemia or a catastrophic outbreak.<br />

To launch these simulations a new modeFRONTIER project has<br />

been organized (see Figure 5): the Latin-Hypercube<br />

algorithm has been set up to plan an appropriate DOE and a<br />

batch call to the project described before has been applied<br />

in order to solve the model tuning problem. A Scilab routine<br />

finally extracts the results in correspondence with the best<br />

solution found.<br />

In Figure 6 a bubble chart is shown: the peak value is plotted<br />

versus the peak position and the bubble color is used to<br />

represent the expected mortality. It can be easily seen that<br />

we obtain three ranges of existence; we can say that the<br />

peak position ranges between 45.29 and 45.60 weeks and<br />

that the peak ranges between 13.19 and 13.24 infected for<br />

one thousand inhabitants. The mortality rate never passes<br />

the 0.00347 over 1000 persons. It is interesting to observe<br />

that the resulting cloud of points is not uniformly nor<br />

homogeneously <strong>di</strong>stributed, but it has important voids and<br />

regions with high densities.<br />

To understand how the probability of the couple peak and<br />

peak position is <strong>di</strong>stributed, we have built the <strong>di</strong>agram<br />

plotted in Figure 7. The cloud of points has been <strong>di</strong>vided in<br />

a 20 x 20 cells regular array, and we have counted the<br />

number of designs inside each cell. These counts have been<br />

<strong>di</strong>vided by the total number of computed designs obtaining<br />

the relative frequency, which can be reasonably associated<br />

with the probability. This plot allows to say<br />

that peaks of around 13.35 infected falling<br />

between the 45.43 and 45.44 week are the<br />

most probable ones. We can conclude that,<br />

even if considering uncertainties in the<br />

target values, it is possible to estimate the<br />

spread of the <strong>di</strong>sease with a reasonable<br />

accuracy: it is certainly possible to exclude<br />

catastrophic scenarious even if few data are<br />

available. During the next weeks we will see<br />

if the model presented in this work has<br />

been able to correctly pre<strong>di</strong>ct the spread of<br />

the swine flu or, on the contrary, if a<br />

terrible outbreak will happen. Let's hope for<br />

the best and be optimistic!<br />

Conclusions<br />

In this work we have shown how it is<br />

possible to model the natural spread<br />

of a <strong>di</strong>sease, within a population,<br />

with relatively simple equations. If<br />

some observed or measured data are<br />

available it is possible to tune the<br />

model and pre<strong>di</strong>ct the evolution of<br />

the <strong>di</strong>sease with sufficient accuracy<br />

at macro scale.<br />

The Scilab platform has been used to<br />

numerically solve the ODEs system<br />

and modeFRONTIER to tune the<br />

model and manage the uncertainties<br />

on available information. We would<br />

like to emphasize that the<br />

methodology adopted in this work can be used in the same<br />

way, also in other contexts, when a prevision is needed and<br />

experimental data are affected by errors.<br />

References<br />

[1] http://www.scilab.org/ to have more information on<br />

Scilab.<br />

[2] http://www.iss.it/iflu/ to have more information on the<br />

italian sentinel surveillance. The data relative to the<br />

infected have been downloaded here.<br />

[3] http://www.ministerosalute.it to have a complete<br />

description of the swine flu.<br />

[4] http://www.wikipe<strong>di</strong>a.com to have more information on<br />

the SIR model.<br />

[5] P. Blanchard, R. L. Devaney, G. R. Hall, Differential<br />

Equations, (2006) Thomson Brooks/Cole, 3nd ed.<br />

[6] K. S. Bhamra, O. R. Bala, Or<strong>di</strong>nary Differential Equations.<br />

An Introductory Treatment with Applications, (2003)<br />

Allied Publishers PVT. LTD.<br />

For more information on this document please contact the<br />

author: Massimiliano Margonari - <strong>EnginSoft</strong> S.p.A.<br />

info@enginsoft.it<br />

Figure 7: The frequency of the couples peak and peak position. The most probable scenarios are those<br />

characterized by a peak of around 13.35 infected falling around the 45.44 week of the year.


New trends in High Performance<br />

Computing<br />

New hardware and <strong>software</strong> technologies can reduce costs<br />

and computational time very effectively. In order to have<br />

productive clusters, the right choice of operating system,<br />

computer hardware, interconnection and <strong>di</strong>sk storage is<br />

crucial. Moreover, also deployment and support for<br />

computational <strong>software</strong> installation must be taken into<br />

account in order to have cost-effective solutions which will<br />

not become a nightmare for users and administrators.<br />

Operationg system and queue system<br />

Two worlds: Linux with Perceus project and Microsoft HPC<br />

Server 2008 are the lea<strong>di</strong>ng edge technologies for developing<br />

a cluster solution.<br />

Perceus<br />

Perceus is the next generation cluster and enterprise tool kit<br />

for the deployment, provisioning, and management of groups<br />

of servers. Employing the power of the Perceus OS and<br />

framework, the user can quickly suggest a machine out of the<br />

box. Perceus truly makes the computer a commo<strong>di</strong>ty, allowing<br />

an organization to manage large quantities of machines in a<br />

scalable fashion.<br />

Perceus is developed and provided to the world under the<br />

GNU GPL by Infiscale.com.<br />

HPC Server 2008<br />

Windows HPC Server 2008 provides a productive, costeffective,<br />

and high-performance computing (HPC) solution<br />

that runs on x64-bit hardware. Windows HPC Server 2008 can<br />

be deployed, managed, and extended using familiar tools and<br />

technologies. It enables broader adoption of HPC by<br />

provi<strong>di</strong>ng a rich and integrated end-user<br />

experience, ranging from the desktop<br />

application to the clusters. A wide range of<br />

<strong>software</strong> vendors, in various verticals, have<br />

designed their applications to work<br />

seamlessly with Windows HPC Server 2008<br />

so that users can submit and monitor jobs<br />

from within familiar applications avoi<strong>di</strong>ng<br />

to learn new or complex user interfaces.<br />

The queue system: the heart of a cluster<br />

There are several points involved in a queue<br />

system:<br />

HOSTS<br />

Master host – The master host is central<br />

to the overall cluster activity. The<br />

master host runs the master daemon<br />

sge_qmaster. This daemon controls all<br />

Newsletter <strong>EnginSoft</strong> Year 6 n°4 - 39<br />

Grid Engine system scheduling and components, such as<br />

queues and jobs. The daemon maintains tables about the<br />

status of the components, user access permissions, etc.<br />

By default, the master host is also an administration host<br />

and a submit host.<br />

Execution hosts – Execution hosts are systems allowed to<br />

execute jobs. Therefore, queue instances are attached to<br />

the execution hosts. Execution hosts run the execution<br />

daemon.<br />

Tipical High Performance cluster architecture<br />

When using the VGL Image Transport (formerly "Direct Mode"), the 3D rendering occurs on the<br />

application server, but the 2D rendering occurs on the client machine.<br />

VirtualGL compresses the rendered images from the 3D application and sends them as a video stream<br />

to the client, which decompresses and <strong>di</strong>splays the video stream in real time.


40 - Newsletter <strong>EnginSoft</strong> Year 6 n°4<br />

Administration hosts –<br />

Administration hosts are hosts<br />

allowed to carry out any kind of<br />

administrative activity for the<br />

Grid system.<br />

Submit hosts – Submit hosts<br />

enable users to submit and<br />

control batch jobs only. In<br />

particular, a user who is logged<br />

in to a submit host can submit<br />

jobs with the qsub command,<br />

can monitor the job status with<br />

the qstat command.<br />

QUEUES<br />

A queue is a container for a class of<br />

jobs allowed to run on one or more<br />

hosts concurrently. A queue<br />

determines certain job attributes,<br />

for example, whether the job can be<br />

migrated. Throughout its lifetime, a<br />

running job is associated with its queue. The association<br />

with a queue affects some of the things that can happen to<br />

a job. For example, if a queue is suspended, all jobs<br />

associated with that queue are also suspended. Jobs do not<br />

need to be submitted <strong>di</strong>rectly to a queue. If you submit a job<br />

to a specified queue, the job is bound to this queue. As a<br />

result, the Grid Engine system daemons are unable to select<br />

a better-suited device or a device that has a lighter load.<br />

You only need to specify the requirement profile of the job.<br />

A profile might include requirements such as memory,<br />

operating system, available <strong>software</strong>, and so forth. The Grid<br />

Engine <strong>software</strong> automatically <strong>di</strong>spatches the job to a<br />

suitable queue and a suitable host with a light execution<br />

load.<br />

A queue can reside on a single host or can extend among<br />

multiple hosts. For this reason, Grid Engine system queues<br />

are also referred to as cluster queues. Cluster queues enable<br />

users and administrators to work with a cluster of execution<br />

hosts by means of a single queue<br />

configuration. Each host that is<br />

attached to a cluster queue<br />

receives its own queue instance<br />

from the cluster queue.<br />

License management<br />

Most commercial <strong>software</strong> use<br />

FLEXLM (tm) license management<br />

system to <strong>di</strong>stribute licenses. The<br />

combination of licensing system<br />

with queue system has become in<br />

the past months a serious matter<br />

for mass intensive optimization<br />

computation, as well for users<br />

and system administrators.<br />

Available licenses are checked in<br />

only when the job has already<br />

entered the queue system, thus at<br />

that point is too late to deny a<br />

license because of no more licenses<br />

available.<br />

This is very <strong>di</strong>sappointing for users<br />

coming back from weekend to find<br />

their optimization job basically not<br />

done over time, just because some<br />

other batch jobs where launced by<br />

other departments, or because<br />

network delays. The control of this<br />

situation needs a very deep<br />

understan<strong>di</strong>ng how queue systems<br />

work and interactions between all<br />

system components: customization<br />

must be well engineered to avoid<br />

interferences between the license<br />

manager and the cluster.<br />

We develop lots of custom scripts for SunGridEngine (fully<br />

platform independent, portable to Microsoft cluster system)<br />

to solve this problem and to make queue jobs start at right<br />

time, allocating the right licenses and sub-licenses.<br />

There will be a 0.1% of cases where this procedures will not<br />

work, spawning job at the wrong time, but this is a side<br />

effect of communication among daemons (queue,<br />

system,cluster etc..) that could not be taken away.<br />

Parallel applications<br />

The development of parallel programs requires integrated<br />

development environments along with the support for<br />

<strong>di</strong>stributed computing standards. Visual Stu<strong>di</strong>o 2008 provides<br />

a comprehensive parallel programming environment for<br />

Windows HPC Server 2008. Besides supporting OpenMP, MPI,<br />

and Web Services, Windows HPC Server 2008 also supports<br />

third-party numerical library providers, performance<br />

optimizers, compilers, and a native parallel debugger for<br />

developing and troubleshooting parallel programs.


Large model with non-linear material and deformations example solved on a<br />

64 nodes cluster system<br />

Common bottleneck sources<br />

As the CAE industry continues an aggressive platform<br />

migration from proprietary Unix servers to commo<strong>di</strong>ty HPC<br />

clusters, CAE models are becoming more realistic, too,<br />

requiring clusters to handle ever-increasing volumes of I/O<br />

and the movement of large files.<br />

As organizations rapidly expand their cluster deployments,<br />

many encounter I/O bottlenecks when using legacy network<br />

attached storage (NAS) architectures.<br />

Initially, these NAS systems offered advantages such as shared<br />

storage and simplified IT administration which reduced costs,<br />

but today a few of them provide the scalability required for<br />

effective I/O performance in parallel CAE simulations.<br />

Recently, a new class of shared parallel storage technology has<br />

developed to remove serial bottlenecks and to improve i/o<br />

performances, therefore exten<strong>di</strong>ng the overall scalability of<br />

CAE simulations on clusters.<br />

Parallel storage is the lea<strong>di</strong>ng solution of parallel<br />

NAS and enables the most advanced and I/O<br />

deman<strong>di</strong>ng CAE challenges to become practical<br />

applications. Some examples include the highfidelity<br />

transient CFD, large eddy simulation<br />

(LES), aerocoustics, large DOF structural dynamic<br />

response, parameterized non-deterministic CAE<br />

simulations for design optimization and the<br />

coupling of CAE <strong>di</strong>sciplines such as fluid-structure<br />

interaction (FSI). CAE workflows are<br />

overburdened with lost productivity when<br />

engineers and scientists must wait for serial I/O<br />

operations and large file transfers to complete.<br />

Furthermore, as simulation and workflow<br />

performance degrades, so does CAE analyst<br />

efficiency and effective workgroup collaboration.<br />

A parallel storage eliminates the I/O bottlenecks<br />

with a cost-saving solution that restores<br />

productivity and drives analyst creativity.<br />

The benefits of parallel I/O for transient CFD were<br />

demonstrated with a production case of an ANSYS<br />

aerodynamics model of 111M cells, provided by<br />

Newsletter <strong>EnginSoft</strong> Year 6 n°4 - 41<br />

an industrial truck vehicle manufacturer. Figure 2 below,<br />

illustrates the I/O schematic of the performance tests that<br />

were conducted, which comprised a case file read, a compute<br />

solve of 5 time steps with 100 iterations and a write of the<br />

data file. In a full transient simulation the solve and write<br />

tasks would be repeated to a much larger number of time steps<br />

and iterations, and with roughly the same amount of<br />

computational work for each of these repeatable tasks.<br />

It is important to note that the performance of CFD solvers<br />

and the numerical operations are not affected by the choice of<br />

the file system, which only performs I/O operations. That is, a<br />

CFD solver will perform the same on a given cluster regardless<br />

of whether a parallel or serial NFS file system is used. The<br />

advantage of parallel I/O is best illustrated in a comparison of<br />

the computational profiles of each scheme. ANSYS CFD 12 on<br />

PanFS keeps the I/O percent of the total job time in the range<br />

of 3% at 64 cores to 8% at 256 cores, whereas 6.3 and NFS<br />

spend as much as 50% of the total job time in I/O.<br />

Visualization and Postprocessing<br />

Another relevant matter of large cluster is visualization and<br />

post-processing of results on relatively slow networks. An<br />

effective solution is performing 3D renders with openGL inside<br />

the cluster and giving the client the possibility of remote<br />

Display.<br />

VirtualGL is an open source package which gives any Unix or<br />

Linux remote <strong>di</strong>splay <strong>software</strong> the ability to run OpenGL<br />

applications with full 3D hardware acceleration. Some remote<br />

<strong>di</strong>splay <strong>software</strong>, such as VNC, lacks the ability to run OpenGL<br />

applications at all.<br />

Tipical cluster management system and visualization nodes


42 - Newsletter <strong>EnginSoft</strong> Year 6 n°4<br />

Other remote <strong>di</strong>splay <strong>software</strong> forces OpenGL applications to<br />

use a slow <strong>software</strong>-only OpenGL renderer, to the detriment of<br />

performance as well as compatibility. The tra<strong>di</strong>tional method<br />

of <strong>di</strong>splaying OpenGL applications to a remote X server<br />

(in<strong>di</strong>rect rendering) supports a 3D hardware acceleration, but<br />

this approach causes all of the OpenGL commands and 3D data<br />

to be sent over the network to be rendered on the client<br />

machine. This is not a tenable proposition unless the data is<br />

relatively small and static, unless the network is very fast and<br />

unless the OpenGL application is specifically tuned for a<br />

remote X-Windows environment.<br />

With VirtualGL the OpenGL commands and 3D data are instead<br />

re<strong>di</strong>rected to a 3D graphics accelerator on the application<br />

server and only the rendered 3D images are sent to the client<br />

machine. Thus VirtualGL "virtualizes" 3D graphics hardware<br />

allowing it to be placed in the "cold room" with compute and<br />

storage resources. VirtualGL also allows the 3D graphics<br />

hardware to be shared among multiple users and provides<br />

"workstation-like" levels of performance even on the most<br />

modest of networks. This makes it possible for large, noisy, hot<br />

3D workstations to be replaced with laptops or even thinner<br />

clients. More importantly, however, it is the fact that VirtualGL<br />

eliminates the workstation and the network as barriers to the<br />

data size. Users can now visualize gigabytes and gigabytes of<br />

data in real time without nee<strong>di</strong>ng to copy any of the data over<br />

the network or sitting in front of the machine that is rendering<br />

the data.<br />

Usually, a Unix OpenGL application would send all of its<br />

drawing commands and data, both 2D and 3D, to an X-<br />

Windows server which may be located across the network from<br />

the application server. VirtualGL, however, employs a<br />

technique called "split rendering" to force the 3D commands<br />

from the application to go to a 3D graphics card in the<br />

application server. VGL performs this by pre-loa<strong>di</strong>ng a dynamic<br />

shared object (DSO) into the application at run time. This DSO<br />

intercepts a handful of GLX, OpenGL, and X11 commands that<br />

are necessary to perform the split rendering. Whenever a<br />

window is created by the application, VirtualGL creates a<br />

correspon<strong>di</strong>ng 3D pixel buffer ("Pbuffer") on a 3D graphics<br />

card in the application server.<br />

Whenever the application requests that an OpenGL rendering<br />

context have to be created for the window, VirtualGL<br />

intercepts the request and creates the context on the<br />

correspon<strong>di</strong>ng Pbuffer instead. Whenever the application<br />

swaps or flushes the drawing buffer to in<strong>di</strong>cate that it has<br />

finished rendering a frame VirtualGL reads back the Pbuffer<br />

and sends the rendered 3D image to the client.<br />

For further information:<br />

Ing. Gino Perna - ICT Manager<br />

info@enginsoft.it<br />

An example of a mesh generation for a reactor pressure vessel, 11 million nodes and 35 million DOFs.<br />

Enginsoft provides all ranges of HPC solutions: from ready<br />

to use systems to de<strong>di</strong>cated HPC setup for specific needs<br />

in the simulation market.<br />

Enginsoft expertize ranges from system configuration,<br />

queue control, monitoring tools, licensing integration and<br />

etherogeneous systems buil<strong>di</strong>ng to maintain cluster<br />

efficiency along time.<br />

Also integration with parallel file systems and remote<br />

graphic system is under continuous monitoring to provide<br />

our customers with the best of class solutions.


Newsletter <strong>EnginSoft</strong> Year 6 n°4 - 43<br />

Development of Digital Mechatronic<br />

Applications using Co-Simulation<br />

The ever decreasing size and cost of embedded<br />

microcontrollers have brought <strong>di</strong>gital electronic equipment<br />

to be used in almost every physical process or machine. In<br />

the real world, the <strong>software</strong> that runs on the microcontrollers<br />

actually implements the logic, the decision making and the<br />

control functionality of industrial processes, transportation<br />

SimNumerica s.r.l. and his FE partner<br />

<strong>EnginSoft</strong> s.r.l. outline their approach to the<br />

virtual prototyping of systems where an<br />

embedded microcontroller controls a<br />

multiphysical process or a machine.<br />

systems, machine tools and electrical appliances in general.<br />

Moreover, the availability of low-cost sensors and actuators<br />

that provide a multitude of physical quantities in various<br />

fields to the electrical pins of a microcontroller, has made<br />

embedded electronics a crosswise pervasive ingre<strong>di</strong>ent to<br />

many engineering applications.<br />

In this context, a computer program (usually written in C<br />

language) becomes effectively a component of the<br />

engineering application. Therefore, it must be designed,<br />

optimized and verified like any other physical component.<br />

Moreover, these engineering steps have to be performed<br />

taking into account also the fine scale interactions that this<br />

running <strong>software</strong> develops with the physical components. In<br />

fact, the validation of a system governed by microcontrollers<br />

cannot be approached without taking into consideration the<br />

embedded control firmware and, on the other hand, the<br />

validation of the firmware cannot be performed without<br />

considering its embed<strong>di</strong>ng physical system.<br />

Therefore, the development of a <strong>di</strong>gital mechatronics<br />

application is a tricky mixture of physical and abstract<br />

phenomena, since the physics of the <strong>software</strong> execution are<br />

mostly unobservable in a physical experiment. In a computer<br />

simulation, instead, the execution of the microcontroller<br />

<strong>software</strong> can be replicated exactly. Moreover, by ad<strong>di</strong>ng a<br />

model for the simulation of the physical system (such as<br />

those commonly used in the FE-based design), a detailed<br />

evaluation of the interaction between the embedded <strong>software</strong><br />

and the physical system becomes possible.<br />

SimNumerica s.r.l. is targeted at the exploitation of muLab,<br />

the Microcontrolled Systems Simulation Laboratory, a<br />

prototype of which has been developed and widely tested at<br />

the University of Padua by a team of experts in numerical<br />

mathematics, electronics and <strong>software</strong>. muLab has been<br />

tested in a variety of pilot projects, which have already<br />

clearly demonstrated the advantages offered by muLab<br />

compared to general purpose platforms for the development<br />

of numerical algorithms and the hardware-in-the-loop<br />

approach.<br />

muLab performs the co-simulation of the embedded <strong>software</strong><br />

<strong>di</strong>rectly in the binary format which is executable by the<br />

microcontroller. In this way, the production <strong>software</strong> can be<br />

designed and tested well before the hardware prototype is<br />

available. Moreover, when the final product is available, a<br />

much larger set of functional tests can be performed in the<br />

co-simulation model, with respect to those feasible in a<br />

physical laboratory.<br />

With muLab, firmware people and mechanical engineers<br />

become aware of their mutual responsibilities concerning the<br />

final performance of their design activity. This is important<br />

since, in principle, <strong>software</strong> components are not<br />

understandable to mechanical engineers and, vice versa,<br />

electronics engineers often are not adequately familiar with<br />

mechanical components.<br />

FEA and muLab<br />

Finite Element Analysis and the co-simulation implemented<br />

in muLab have the same DNA in common: they reveal the<br />

details of physical phenomena occurring at various space and<br />

time scales. In this way, they allow to observe the<br />

interactions between a <strong>software</strong> running on a microcontroller<br />

and its embed<strong>di</strong>ng physical system, with an approximation<br />

level decided by the user.<br />

In the same <strong>di</strong>gital mechatronics application, the time-scales<br />

involved may be quite <strong>di</strong>stant from each other, e.g. firmware<br />

instructions are executed in microseconds or less, <strong>di</strong>gital<br />

electronics signals present a milliseconds time base,<br />

kinematic/dynamic variables evolve in centesimal fractions of<br />

seconds and thermal variables evolve in several seconds.<br />

For this reason, we use the term Computational Digital<br />

Mechatronics when we refer to this type of co-simulation. It<br />

inherits all the numerical engineering aspects of<br />

computational mechanics, plus:<br />

the co-simulation of a multiphysical engineering system<br />

and of the <strong>di</strong>gital embedded hardware/<strong>software</strong> that<br />

interacts with this system;<br />

the numerical analysis of the algorithms implemented in<br />

the embedded microcontroller <strong>software</strong> (firmware), that<br />

runs within the numerical simulation model of the whole<br />

system.


44 - Newsletter <strong>EnginSoft</strong> Year 6 n°4<br />

muLab is a fundamental tool for a large variety of<br />

applications designed with FEA. Indeed, even in simple<br />

mechatronics applications, such as the temperature control<br />

of an air-con<strong>di</strong>tioned railroad car (Figure 1), the algorithmic<br />

functionality implemented in a microcontroller may be quite<br />

complex. In general, it has to:<br />

read the temperature sensors and filter/compensate<br />

electrical <strong>di</strong>sturbances and physical deficiencies of the<br />

sensor (nonlinearities, thermal inertia, condensed vapour,<br />

etc);<br />

infer the temperature at the user site; this is usually an<br />

in<strong>di</strong>rect measurement, since the sensor can only be<br />

placed in hidden locations, which is performed by an<br />

algorithm that uses a numerical model of the process to<br />

pre<strong>di</strong>ct the unknown quantity; the numerical model must<br />

typically have low computational cost and it is built by<br />

using emerging numerical methods in engineering, such<br />

as model order reduction, system identification, machine<br />

learning.<br />

implement the logical behaviour required by the machine<br />

design; this is usually a rather complex set of functions<br />

and procedures that covers machine initialization and<br />

configuration, manual or self-<strong>di</strong>agnosis, <strong>di</strong>fferent<br />

operational modes, failure recognition and safe reaction,<br />

etc.<br />

Figure 1<br />

control the actuators accor<strong>di</strong>ng to the specifications; this<br />

usually involves algorithms to safely operate, optimize<br />

and monitor the physical actions performed by actuators<br />

and related subsystems.<br />

These algorithmic functionalities are easy to implement and<br />

verify in muLab, especially when they require the support of<br />

a numerical model. In particular, system identification and<br />

machine learning, which are based on the comparison<br />

between model pre<strong>di</strong>ctions and experimental data, will be<br />

algorithmically supported explicitly in the near future.<br />

MuLab: the <strong>software</strong> tool<br />

The main feature of the <strong>software</strong> tool muLab is the<br />

simulation-based prototyping and validation of algorithms<br />

that should run on the microcontrollers embedded in a<br />

variety of <strong>di</strong>gital mechatronics systems. The approach<br />

followed by muLab is hardware <strong>software</strong> co-design.<br />

A main ingre<strong>di</strong>ent is the ability to monitor the functional<br />

Figure 2<br />

behaviour of the system up to the finest scale detail. To do<br />

this efficiently, muLab offers to the user the possibility to<br />

write a multi-level ensemble of debug procedures (Figure 2)<br />

that renders this monitor activity fully automatic during the<br />

simulation. This is very important because the user typically<br />

wants the computer to do hundreds of simulations during the<br />

night. The language used to write the debug procedures is a<br />

slight customization of the simplest programming languages<br />

actually used in computer programming.<br />

Moreover, muLab is a collaborative design tool: the<br />

development of physical models becomes visible to<br />

the firmware designer and the firmware behaviour<br />

becomes visible to the mechanical engineer (Figure<br />

3). As a consequence, the firmware development<br />

takes place in parallel with the hardware<br />

construction and fits to it.<br />

At the same time, the physical system structure and<br />

organization can be cheaply mo<strong>di</strong>fied until the<br />

expected performance appears to be adequate.<br />

The environment includes also a source code<br />

debugger (Figure 4) that works both for the<br />

numerical models of the physical components and for the<br />

embedded <strong>software</strong> (firmware). The possibility to set a<br />

breakpoint during the simulation of a mechatronic system<br />

allows a deep understan<strong>di</strong>ng of the interactions between the<br />

firmware and its embed<strong>di</strong>ng physical system.<br />

It allows the numerical analysis of algorithms that run on<br />

embedded microcontrollers, i.e. running in a non-sequential<br />

mode. This is usually much more <strong>di</strong>fficult than it is for FE<br />

numerical methods. In fact, their execution is intrinsically<br />

non-sequential and may actually involve several subtasks<br />

executed by routines which are activated by interrupts<br />

caused by non-deterministic (and sometimes only loosely<br />

pre<strong>di</strong>ctable) events.<br />

Last but not least, muLab uses Standard and open languages<br />

and data formats:<br />

component model equations may be written in Python.<br />

model structures and user procedures are coded in XML.


Figure 3<br />

Advantages: reduced experimentation costs and<br />

development time<br />

muLab enhances firmware debugging and simulation-based<br />

robust design. This is accomplished through the specification<br />

of detailed Test Sequences (Figure 5) by which the user can:<br />

specify complex test sequences;<br />

track and identify firmware fault con<strong>di</strong>tions;<br />

Implement failure mode analysis (FMEA) of the hardware<br />

components.<br />

The automation of test sequences allows the user to verify<br />

the application functionality in a large variety of situations,<br />

much larger than what is physically possible. Moreover,<br />

the experimental test phase can take place selectively<br />

and on a relatively mature firmware, where a large number<br />

of bugs has already been removed;<br />

the quality and value of the firmware verification<br />

procedure increases, while the debugging time decreases.<br />

Thus, time, energy and money can be saved.<br />

Practical issues concerning the multi-level debugging of the<br />

firmware:<br />

About SimNumerica and <strong>EnginSoft</strong><br />

SimNumerica was founded by a de<strong>di</strong>cated research team, all<br />

experts with broad experiences in numerical mathematics,<br />

electronics and <strong>software</strong> design, of University of Padua –<br />

Italy. SimNumerca’s industrial partner and co-founder<br />

<strong>EnginSoft</strong> is an international CAE Computer-Aided<br />

Engineering Consulting company with unique<br />

multi<strong>di</strong>sciplinary competencies in virtual prototyping.<br />

SimNumerica’s joint expertise is focused on environments for<br />

the virtual prototyping of mechatronics systems based on<br />

micro-controllers.<br />

Newsletter <strong>EnginSoft</strong> Year 6 n°4 - 45<br />

one advantage of the numerical simulation compared to a<br />

correspon<strong>di</strong>ng physical experiment is that the former is<br />

deterministic, and hence repeatable, while the latter is<br />

not;<br />

the methodology implemented in muLab supports a userdefined<br />

ensemble of debug procedures that monitor the<br />

numerical simulation: if something is suspect, a debug<br />

procedure can restart the simulation with increasing<br />

levels of <strong>di</strong>agnosis. In this way, following the <strong>di</strong>agnostic<br />

tree, the details of a wrong behaviour of the system can<br />

be traced at affordable time and computational cost.<br />

Future Development<br />

In a future release, ad<strong>di</strong>tional parallel computing capabilities<br />

will be integrated in the <strong>software</strong> package. In particular,<br />

multi-core platforms and graphical processors (GPGPU) will<br />

be supported. The target is an efficient co-simulation of<br />

computational intensive models, such as large-scale dynamic<br />

FEM models, and of large firmware codes, in particular the<br />

ones involving the control of processes whose duration<br />

extends to relatively large time-scales. The combined use of<br />

multi-core CPUs and GPUs makes computational <strong>di</strong>gital<br />

mechatronics affordable to small industrial engineering<br />

teams, even for quite complex applications.<br />

Contact<br />

Fabio Marcuzzi, PhD - Simone Buso, PhD<br />

SimNumerica s.r.l., Pordenone - Italy<br />

email: info@simnumerica.it<br />

Figure 4<br />

Figure 5


46 - Newsletter <strong>EnginSoft</strong> Year 6 n°4<br />

Innovation and <strong>EnginSoft</strong><br />

in the USA<br />

SUNNYVALE, California – December 10, 2009 - Stefano<br />

Odorizzi, CEO of <strong>EnginSoft</strong>, has recently returned from a trip<br />

to the USA and has reported that recruitment, sales, and<br />

expansion plans are moving forward rapidly.<br />

<strong>EnginSoft</strong> CEO strengths connections with the US market<br />

<strong>EnginSoft</strong> is continuously strengthening its connections and<br />

network in the US market. Stefano Odorizzi visited the United<br />

States in the last week of October to view and develop<br />

<strong>EnginSoft</strong>'s local initiatives further. He met and interacted<br />

with several existing clients, and thus gained insights into<br />

how <strong>EnginSoft</strong>'s services have benefited their business<br />

models.<br />

During his visit, Stefano wanted to <strong>di</strong>scuss with US customers<br />

their visions for future product development, their concerns<br />

and existing alternatives to develop efficient working<br />

methodologies between clients and the <strong>EnginSoft</strong> teams. He<br />

managed to share <strong>EnginSoft</strong>'s philosophy and business model<br />

with all the people he met during his short visit, and stated,<br />

"I am pleased to report that our initiatives in California are<br />

moving forward and that there has been an incre<strong>di</strong>ble<br />

amount of interest and enthusiasm shown by the local<br />

market. I had the pleasure of reviewing our operations and<br />

meeting with our management staff to <strong>di</strong>scuss the next<br />

phases of our operations”.<br />

During this trip, Stefano met with some of the lea<strong>di</strong>ng<br />

experts in the areas of Electronic Design Automation (EDA),<br />

Computational Fluid Dynamics (CFD), and Design<br />

Optimization. Stefano emphasized the positive results which<br />

could be achieved to date in the American market despite the<br />

tough economic situation. He visited some of the world's top<br />

academic institutions, namely University of California at<br />

Berkeley, University of Stanford, and the University of Santa<br />

Clara. These relations will support the company to further<br />

develop its future technologies and strategies. Stefano's visit<br />

was very successful and is a milestone in<strong>EnginSoft</strong>'s road<br />

map. The outcomes will be incorporated in the company’s<br />

partners' network and business sectors.<br />

<strong>EnginSoft</strong> at UC Berkeley - Prof. Stefano Odorizzi meets<br />

with Prof. Alberto Sangiovanni Vincentelli<br />

During his visit at the University of California at Berkeley, the<br />

<strong>EnginSoft</strong> CEO met with Professor Alberto Sangiovanni<br />

Vincentelli, a worldwide renowned expert and cofounder of<br />

Cadence and Synopsys.<br />

The talk was a starting point for interaction and exchange of<br />

CAE, EDA, and VP knowledge, development and application<br />

results. The two experts shared<br />

their visions for the future of<br />

engineering simulation in<br />

industry with a very positive<br />

outlook for the upcoming<br />

years. With its highly<br />

innovative engineering and<br />

technology organization and network, <strong>EnginSoft</strong> wants to<br />

become an important player in the Global Computer Aided<br />

Engineering market fueling its growth also through close<br />

collaborations with top academic institutions.<br />

Prof. Alberto Sangiovanni Vincentelli<br />

holds the Edgar L. and Harold H. Buttner<br />

Chair of Electrical Engineering and<br />

Computer Sciences at the University of<br />

California at Berkeley. Moreover, he is a<br />

co-founder of Cadence and Synopsys,<br />

the two lea<strong>di</strong>ng companies in the area<br />

of Electronic Design Automation. He is<br />

the Chief Technology Adviser of Cadence, and a member of<br />

the Board of Directors of Cadence and the Chair of its<br />

Technology Committee, UPEK.<br />

The University of California at Berkeley and its<br />

flagship campus were founded in 1868.<br />

Berkeley ranks first nationally in the number<br />

of graduate programs in their espective fields.<br />

Among its active faculty are 7 Nobel<br />

Laureates, 28 MacArthur Fellows, and 4 Pulitzer Prize<br />

winners. Today it is the world's premier public university and<br />

a wellspring of innovation.<br />

<strong>EnginSoft</strong> special guest at the Business Association Italy<br />

America - BAIA<br />

In this successful networking event organized by BAIA, Prof.<br />

Stefano Odorizzi presented and <strong>di</strong>scussed the capabilities of


lea<strong>di</strong>ng edge technologies used to provide improved<br />

engineering designs across various innovative applications.<br />

Stefano shared the key factors that have led to his success as<br />

an Italian entrepreneur buil<strong>di</strong>ng a US and Global business, as<br />

well as the crucial role played by global partnerships with<br />

both companies and universities. This talk turned out to be<br />

a great opportunity to mix and mingle with young and<br />

seasoned professionals, entrepreneurs, students, and all the<br />

extended BAIA community, while enjoying Italian wine and<br />

delicious appetizers.<br />

Stefano participated in an animated and dynamic roundtable<br />

<strong>di</strong>scussion with students of the Fulbright BEST group<br />

pursuing the Certificate of the Technology Entrepreneurship<br />

program offered by the Center for Innovation &<br />

Entrepreneurship (CIE) of Santa Clara.<br />

BAIA is an independent,<br />

nonprofit, open, apolitical<br />

business network that offers a<br />

place (physical and virtual) to<br />

facilitate the open exchange of<br />

knowledge and information, business opportunities,<br />

relationships and to promote a culture of innovation through<br />

entrepreneurial spirit and principles for Entrepreneurs,<br />

managers, professionals and interested in<strong>di</strong>viduals in the<br />

United States and in Italy. For more information, please visit<br />

http://www.baia-network.org/<br />

<strong>EnginSoft</strong> at Stanford - Several Points in Common<br />

Stefano also met with Prof. Gianluca Iaccarino of Stanford<br />

University. The meeting turned out to be a pleasant talk<br />

between two people who share an enthusiasm for innovation<br />

and excellence. <strong>EnginSoft</strong> and Stanford both act as<br />

laboratories for technology transfer to industry. They strongly<br />

invest in the next generation of engineering and technology<br />

experts, to foster their growth and dynamism, a perfect<br />

combination for a future collaboration. The obvious synergy<br />

between Stanford and <strong>EnginSoft</strong> will provide our customers<br />

with even more innovative solutions to meet industrial<br />

challenges, such as increasing quality and reducing project<br />

times.<br />

<strong>EnginSoft</strong> provide access to a range of services related to the<br />

calculation and optimization of thermo-fluids, unmatched to<br />

Newsletter <strong>EnginSoft</strong> Year 6 n°4 - 47<br />

date by any other European or American CAE company.<br />

Prof. Iaccarino and Prof. Odorizzi <strong>di</strong>scovered that they have<br />

a lot of interests and business objectives in common. A part<br />

from the high technological content of their meeting and<br />

talks, both are aware that great networking opportunities are<br />

in<strong>di</strong>spensable to realize innovative visions.<br />

Please stay tuned for upcoming news in the Newsletter<br />

E<strong>di</strong>tions of <strong>2010</strong> and on www.enginsoft.com<br />

Stefano Odorizzi also met with Stanford Professor Bernard<br />

Widrow. In fact, the first statement of Professor Widrow<br />

was: “Optimization is everywhere," certainly a great start<br />

for a sparkling conversation! The two gurus exchanged<br />

ideas about the use of optimization techniques applied to<br />

human-like memory computers while enjoying tea. Prof.<br />

Widrow underlined its outstan<strong>di</strong>ng ability and talent for<br />

describing his most complex research at Stanford with simple<br />

words.<br />

Silicon Valley represents a unique blend of knowledge,<br />

advanced research, remarkable<br />

capital investments, and expertise. All this makes Silicon<br />

Valley an ideal and unique place to do business.<br />

Prof. Gianluca Iaccarino is an Assistant<br />

Professor at the Mechanical Engineering<br />

Institute for Computational Mathematical<br />

Engineering at Stanford University with<br />

many years of experience in fluid dynamics,<br />

physical modeling and advanced computer<br />

simulations.<br />

Prof. Bernard Widrow's<br />

research at Stanford<br />

focuses on adaptive<br />

signal processing,<br />

adaptive control systems,<br />

adaptive neural networks,<br />

human memory, and<br />

human-like memory for<br />

computers. He is the<br />

coinventor of the Widrow-Hoff Least mean squares filter<br />

(LMS) adaptive algorithm with the doctoral student Ted Hoff.<br />

The LMS algorithm led to the ADALINE and MADALINE<br />

artificial neural networks and to the back propagation<br />

technique. He has more than 21 patents under his name.<br />

Stanford University is located between San Francisco and San<br />

Jose, in the heart of Silicon Valley, it is world-known for its<br />

multi<strong>di</strong>sciplinary research within its schools and<br />

departments, as well as its independent laboratories, centers<br />

and institutes. There are currently more than 4,500 externally<br />

sponsored projects throughout the university,<br />

with a total budget for sponsored<br />

projects of $1.060 billion during<br />

2008-09, inclu<strong>di</strong>ng the SLAC<br />

National Linear Laboratory<br />

(SLAC).


48 - Newsletter <strong>EnginSoft</strong> Year 6 n°4<br />

BENIMPACT<br />

Buil<strong>di</strong>ng’s ENvironmental IMPACT<br />

evaluator & optimizer<br />

BENIMPACT is a research project co-funded by the autonomous<br />

Province of Trento (Northern Italy) by means of the ERDF<br />

(European Regional Development Fund), whose priorities<br />

include research, innovation, environmental protection and<br />

risk prevention. The duration of the research activities is<br />

foreseen to be a couple of years.<br />

BENIMPACT mainly aims at the development of methodologies<br />

(and of a related prototypical <strong>software</strong> platform) to support<br />

architects and engineers in the design of eco-sustainable<br />

buil<strong>di</strong>ngs. The methodology shall be used to optimize the<br />

design of green buil<strong>di</strong>ngs and will allow to identify the<br />

optimal trade-off between costs and environmental<br />

performances of the buil<strong>di</strong>ngs.<br />

The research activities will be carried out by <strong>EnginSoft</strong> and a<br />

bunch of authoritative partners: the Department of Civil and<br />

Environmental Engineering of the University of Trento,<br />

DTTNhabitech and the Trentino Institute for Social Housing.<br />

<strong>EnginSoft</strong> has carefully chosen the partners on the basis of<br />

their specific knowledge and their contribution to the research<br />

activities: the University of Trento will share its long-time<br />

experiences related to energy modeling tools and<br />

methodologies; DTTN-habitech, a consortium of more than 300<br />

companies operating in the green-buil<strong>di</strong>ng trade, will supply<br />

the required linkage with the market and their deep knowledge<br />

in green buil<strong>di</strong>ng rating tools (such as LEED, Green Star,<br />

BREEAM, etc.). The Trentino Institute for Social Housing, the<br />

public organization of the Province of Trento that manages<br />

and develops public residential housing projects, will bring to<br />

the project group also the views of today's<br />

buil<strong>di</strong>ng designers.<br />

The design methodology which will be defined<br />

during BENIMPACT, will allow to carry out an<br />

integrated buil<strong>di</strong>ng design process: all the steps<br />

required to achieve the design of a green buil<strong>di</strong>ng<br />

will be contemporary realized by means<br />

of a bunch of analysis tools reciprocally<br />

integrated into each other. This approach will<br />

significantly innovate tra<strong>di</strong>tional ones: in fact,<br />

nowadays,<br />

each <strong>di</strong>fferent buil<strong>di</strong>ng design topic is<br />

completed independently by <strong>di</strong>fferent<br />

professionals and<br />

in <strong>di</strong>fferent design stages, thus lea<strong>di</strong>ng to the<br />

definition of the buil<strong>di</strong>ng design parameters by<br />

means of subsequent steps and to buil<strong>di</strong>ngs that are not<br />

optimal in relation to all the required objectives.<br />

However, now with BENIMPACT, the use of the advanced<br />

modeFRONTIER technology will allow to build a suite of<br />

integrated applications (the BENIMPACT suite), that interact<br />

in a typical design chain process. Figure 1 shows the foreseen<br />

architecture of the design suite that will be implemented (in<br />

a prototypical release) in BENIMPACT. The shown architecture<br />

foresees the cooperation of core modules, databases and<br />

service modules (green design solutions and targets setting<br />

modules).<br />

In particular, the core modules are the embedded applications<br />

of the suite in charge of carrying out the whole calculations<br />

and analyses. The multi-objective optimization module is<br />

actually the kernel of the whole suite: thanks to the<br />

modeFRONTIER functionalities, it will lead the search for the<br />

optimal design features of the buil<strong>di</strong>ng, supplying a design<br />

environment where all the other applications are integrated.<br />

The geometric modeling module will translate the geometry of<br />

the buil<strong>di</strong>ng into a parametric model, able to store<br />

information related both to the buil<strong>di</strong>ng shape and materials,<br />

components and systems that will constitute the buil<strong>di</strong>ng<br />

construction. The energy modeling module will evaluate the<br />

energetic consumption of the designed buil<strong>di</strong>ng, taking into<br />

account the thermal loads required in order to guarantee<br />

predefined indoor comfort levels. The LCA (Life Cycle<br />

Assessment) modeling module will calculate the environmental


impact of the buil<strong>di</strong>ng during its entire life, and hence also<br />

consider the impacts that arise from resources extraction,<br />

manufacturing, on-site construction, occupancy/maintenance,<br />

demolition and recycling/reuse/<strong>di</strong>sposal. The LCC (Life Cycle<br />

Costing) modeling module will evaluate the costs of the<br />

buil<strong>di</strong>ng, totaling up in a unique value the complete costs for<br />

the buil<strong>di</strong>ng construction, its maintenance, occupancy (i.e. the<br />

costs for energy consumption) and demolition.<br />

It is important to note that all the core modules will be <strong>software</strong><br />

applications (customized or implemented by means of ad-hoc<br />

written codes) that will work also in a stand-alone modality in<br />

order to allow the validation of each single application.<br />

Furthermore, it is possible that, for some particular applications,<br />

such as energy modeling, some existing codes will offer the<br />

required functionalities: In such cases, freeware tools and opensource<br />

codes will be preferred to commercial ones, in order to<br />

allow further implementations and improvements by the whole<br />

community of practice.<br />

The databases included in the BENIMPACT suite will supply the<br />

required input data to all the applications involved. They will<br />

store data related to the systems and components of the<br />

buil<strong>di</strong>ng constructions and to the energy production systems<br />

normally used in buil<strong>di</strong>ngs (such as boilers, solar and<br />

photovoltaic panels, geothermal heat exchangers, etc.). They<br />

will also supply technical constraints, derived by the current<br />

buil<strong>di</strong>ng laws, and the required meteorological data.<br />

The service modules' green design solutions and target settings<br />

will supply border information to the analysis: the former,<br />

operating as an expert system, will suggest solutions for the<br />

green buil<strong>di</strong>ng design (such as green roofs, natural ventilation,<br />

externally ventilated façade, etc.), while the latter will translate,<br />

in an engineering format, the design objectives set by the user<br />

(for example, the design objective of low energy consumption<br />

should be translated, for the sake of the numerical analysis, into<br />

a defined value of Watts required per square meter of the<br />

buil<strong>di</strong>ng).<br />

<strong>EnginSoft</strong> strongly believes that the activities which will be<br />

carried out in the framework of the BENIMPACT research project<br />

will bring benefits to the buil<strong>di</strong>ng trade, thanks to the tuning of<br />

brand-new CAE tools that will eventually improve the green<br />

buil<strong>di</strong>ng design. Moreover, BENIMPACT will help to protect the<br />

environment, it will allow and promote the <strong>di</strong>ffusion of ecosustainable<br />

buil<strong>di</strong>ngs based on the definition, during the design<br />

phase, of the buil<strong>di</strong>ng features that guarantee lowenvironmental<br />

impacts and, at the same time, low life-cycle<br />

costs of the buil<strong>di</strong>ng. Last but not least, <strong>EnginSoft</strong> itself will<br />

take advantage of the BENIMPACT research activities: enhancing<br />

its knowledge related to green buil<strong>di</strong>ng techniques, the company<br />

will be able to expand its market to this emerging sector,<br />

offering its engineering consultancy services, specific <strong>software</strong><br />

and educational program to new clients in in the eco-sustainable<br />

business, that seems to be thriving and not suffer from<br />

economic downturns.<br />

For futher information, please contact:<br />

Ing. Angelo Messina - R&D Manager<br />

info@enginsoft.it<br />

Newsletter <strong>EnginSoft</strong> Year 6 n°4 - 49<br />

<strong>EnginSoft</strong> al METEF<strong>2010</strong><br />

Anche quest’anno <strong>EnginSoft</strong><br />

prenderà parte alla Metef-<br />

Foundeq, l’ottava e<strong>di</strong>zione<br />

dell’expo internazionale <strong>di</strong> riferimento dell’alluminio e dei<br />

metalli tecnologici in parallelo a Foundeq Europe expo<br />

internazionale degli impianti, attrezzature e prodotti della<br />

fonderia metalli. La manifestazione con cadenza biennale, a cui<br />

<strong>EnginSoft</strong> ha sempre partecipato, è in programma al Centro<br />

Fiera del Garda, a Montichiari, in provincia <strong>di</strong> Brescia, dal 14 al<br />

17 aprile <strong>2010</strong>.<br />

<strong>EnginSoft</strong> presenzierà all’evento con uno proprio stand<br />

all’interno dell’area fieristica. In questa e<strong>di</strong>zione verranno<br />

presentate le nuove releases <strong>di</strong> MAGMA, FORGE e ADVANTEDGE.<br />

Nella scorsa e<strong>di</strong>zione, nel 2008, la fiera ha registrato la<br />

presenza <strong>di</strong> 568 aziende espositrici (<strong>di</strong> cui 396 italiane e 172<br />

estere), inoltre la cifra dei visitatori, provenienti sia dall’Italia<br />

che dall’estero, ha raggiunto quasi quota 19000.<br />

Si preannuncia quin<strong>di</strong> un evento <strong>di</strong> grande successo, arricchito<br />

da interessanti appuntamenti quali:<br />

una tavola rotonda a cura del Comitato Laminazione nella<br />

prima giornata denominata: “Il futuro della laminazione<br />

dopo la crisi: l'innovazione come chiave per vincere le sfide<br />

del mercato”,<br />

la presentazione del nuovo "Manuale <strong>di</strong> <strong>di</strong>fettologia"<br />

intitolato “Difettologia dei presso colati” organizzato da<br />

AIM – Associazione Italiana <strong>di</strong> Metallurgia, Centro Stu<strong>di</strong><br />

Pressocolata<br />

la presentazione dei risultati del progetto europeo NADIA<br />

"New Automotive components Designed for a manufactured<br />

by Intelligent processing of light Alloys" coor<strong>di</strong>nato da<br />

<strong>EnginSoft</strong><br />

una conferenza internazionale organizzata da ITmetal.it e<br />

da CSMT Centro Servizi Multisettoriale e Tecnologico<br />

intitolata “ICT e settore dell’alluminio: quali formule per il<br />

successo”.<br />

Sito della manifestazione: www.metef.com


50 - Newsletter <strong>EnginSoft</strong> Year 6 n°4<br />

Continuing Higher Education on CAE:<br />

The TCN Consortium<br />

Born in 2001, TCN Consortium is a private Italian company<br />

which organizes higher education activities in the<br />

engineering and CAE (Computer-Aided Engineering) fields.<br />

The specific objective of TCN is to train the key resources,<br />

that ensure competitiveness to companies in each<br />

technological sectors fundamental to process and product<br />

innovation. The TCN motto – “<strong>training</strong> innovation leader” -<br />

embo<strong>di</strong>es this objective.<br />

The TCN Consortium has been working for many years in a<br />

professional and reliable way; moreover, it supports the<br />

entrepreneurship and the <strong>training</strong> managers in projecting<br />

and <strong>di</strong>stributing customized <strong>training</strong> trails. The TCN efficient<br />

and agile approach is based on surveying<br />

enterprises’ real educational needs to be<br />

converted into customized <strong>training</strong> trails:<br />

TCN Faculty, teamed by professors in<br />

Italian and foreign Universities together<br />

with experienced researchers and<br />

engineers, represents the key to achieve<br />

this goal.<br />

TCN helps the enterprises to face the<br />

innovation challenges, enabling them to<br />

face an ever-changing industrial and<br />

technological landscape, transferring the<br />

necessary knowledge to create highly qualified human<br />

resources, that will imme<strong>di</strong>ately work in the industrial<br />

environment.<br />

TCN Consortium offers <strong>courses</strong> from the catalogue and ondemand<br />

<strong>courses</strong> for entrepreneurship. In particular, TCN<br />

offers:<br />

Short Courses (1 to 5 days)<br />

MiniMaster (intensive <strong>training</strong> over two non-consecutive<br />

weeks)<br />

On-demand <strong>training</strong> via the Internet<br />

Publishing of manuals for the industry (TCN SBE&S Series)<br />

TCN maintains a strong European and international identity:<br />

every two years it organizes “TCN CAE International<br />

Conference on Simulation Based<br />

Engineering and Sciences”, an<br />

international conference based on the<br />

CAE technologies in the industry.<br />

Furthermore, TCN takes actively part in<br />

Europe to pilot projects aimed at<br />

designing innovative higher education<br />

contents and <strong>training</strong> trails for the<br />

industry.<br />

On the website www.consorziotcn.it it is<br />

possible to consult the up-to-date TCN<br />

<strong>courses</strong> catalogue for the <strong>2010</strong>, which is<br />

constantly enlarged and updated on the entrepreneurs<br />

demand. Nevertheless, this is just a general view of the TCN<br />

<strong>training</strong> offer.<br />

For further information and requests, please contact:<br />

TCN Consortium organizing secretary Mirella Prestini<br />

Ph. +39 035 368711 – info@consorziotcn.it


Newsletter <strong>EnginSoft</strong> Year 6 n°4 - 51<br />

Analizzare cinematica e <strong>di</strong>namica dei<br />

meccanismi con le tecniche multibody:<br />

terminologia, ambiti <strong>di</strong> applicazione ed<br />

opportunità Le scuole <strong>di</strong> progettazione<br />

più tra<strong>di</strong>zionali portano a<br />

considerare con maggior<br />

frequenza problematiche <strong>di</strong><br />

tipo strutturale (incluse fatica<br />

ed acustica), fluido<strong>di</strong>namico,<br />

o <strong>di</strong> processo. Gli<br />

strumenti <strong>di</strong> simulazione<br />

numerica offrono, in tutti<br />

questi ambiti, un aiuto formidabile<br />

ed efficace, ben<br />

noto alla grande maggioranza<br />

degli utenti che hanno<br />

una cultura ingegneristi-<br />

Automobile <strong>di</strong> Leonardo da Vinci<br />

(Co<strong>di</strong>ce Atlantico, f. 812r del 1478)<br />

ca moderna orientata all’efficienza.<br />

La progettazione meccanica è tuttavia un contesto dove possono<br />

<strong>di</strong>ventare decisivi i fattori non analizzabili dalle suddette<br />

branche della simulazione. Si pensi, per esempio, alle caratteristiche<br />

<strong>di</strong> guidabilità <strong>di</strong> un veicolo, alla stabilità <strong>di</strong><br />

una lavatrice, alla precisione <strong>di</strong> un cambio da bicicletta, per<br />

restare su applicazioni che riguardano la quoti<strong>di</strong>anità. Allo<br />

stesso modo potremmo citare la velocità delle macchine per<br />

la produzione e la lavorazione su larga scala <strong>di</strong> qualsiasi prodotto<br />

“consumer” (per esempio tessile, carta, alimentari, semilavorati),<br />

senza <strong>di</strong>menticare i complessi sincronismi nascosti<br />

all’interno <strong>di</strong> qualsiasi mezzo <strong>di</strong> trasporto (per esempio<br />

auto, treni, aerei).<br />

Tutte queste applicazioni sono accomunate da requisiti e<br />

prestazioni che non sono esclusivamente <strong>di</strong> tipo strutturale.<br />

La <strong>di</strong>sciplina che fornisce questo tipo <strong>di</strong> risposte è la<br />

meccanica applicata, che stu<strong>di</strong>a la cinematica e la <strong>di</strong>namica<br />

<strong>di</strong> sistemi <strong>di</strong> corpi variamente interconnessi. Cinematica e<br />

Dinamica sono termini <strong>di</strong> uso comune, ma sono spesso utilizzati<br />

in modo poco corretto. Senza addentrarci in eccessivi<br />

formalismi, precisiamo che l’analisi cinematica determina il<br />

modo in cui si muovono i corpi <strong>di</strong> un sistema (posizioni, velocità,<br />

accelerazioni) in relazione agli azionamenti (motori,<br />

camme) e ai vincoli. Viceversa, l’analisi <strong>di</strong>namica determina<br />

le forze e le coppie che sono causa e/o effetto del movimento.<br />

In alcuni problemi è sufficiente limitare lo stu<strong>di</strong>o alla parte<br />

cinematica (ad esempio per la verifica <strong>di</strong> sincronismi e/o<br />

<strong>di</strong> possibili interferenze), mentre nei casi più generali è necessario<br />

completare le indagini con la determinazione delle<br />

forze in gioco (ad es. per trasmetterle allo strutturista o per<br />

scegliere componenti da catalogo).<br />

Gli strumenti <strong>di</strong> simulazione adatti a condurre queste particolari<br />

analisi sono i cosiddetti <strong>software</strong> multibody.<br />

All’interno <strong>di</strong> un ambiente multibody l’utente assembla virtualmente<br />

il sistema meccanico e procede con l’analisi della<br />

risposta nel dominio del tempo e/o delle frequenze. I co<strong>di</strong>ci<br />

commerciali offrono la possibilità <strong>di</strong> interagire <strong>di</strong>rettamente<br />

con le geometrie CAD, a vantaggio dei tempi <strong>di</strong> modellazione<br />

e della qualità <strong>di</strong> visualizzazione. Per applicazioni <strong>di</strong> nicchia<br />

e per scopi <strong>di</strong> ricerca si utilizzano, tuttavia, efficacemente<br />

anche approcci prettamente analitici, con i quali il<br />

modello viene definito attraverso scrittura <strong>di</strong>retta delle equazioni<br />

<strong>di</strong> moto.<br />

In<strong>di</strong>pendentemente dallo strumento utilizzato, il passaggio<br />

fondamentale per giungere a risultati corretti ed affidabili<br />

nella simulazione multibody è rappresentato dalla fase <strong>di</strong><br />

“virtualizzazione” del modello fisico. Con “virtualizzazione”<br />

si intende l’approssimazione <strong>di</strong> un sistema meccanico reale<br />

(infinitamente complesso), con una collezione <strong>di</strong> oggetti numerici<br />

pensati per riprodurne moto e proprietà.<br />

La schematizzazione virtuale può avvenire in modo più o meno<br />

raffinato, con conseguenze <strong>di</strong>rette sull’efficacia della simulazione.<br />

È compito del modellista scegliere le <strong>di</strong>mensioni,<br />

il grado <strong>di</strong> complessità e i dettagli del modello che vuole<br />

creare, considerando simultaneamente gli obiettivi da raggiungere,<br />

onere computazionale e il tempo a <strong>di</strong>sposizione. Il<br />

miglior modello non è quello più dettagliato, ma quello che<br />

risponde in modo più veloce ed esauriente alle esigenze.<br />

Questa regola, che vale in generale per tutte le <strong>di</strong>mensioni<br />

del CAE, assume un ruolo decisivo nella simulazione<br />

multibody. Per queste ragioni è in<strong>di</strong>spensabile provvedere ad<br />

una formazione teorico-pratica specifica per l’analista meccanico.<br />

<strong>EnginSoft</strong> propone un corso <strong>di</strong> modellistica multibody della<br />

durata <strong>di</strong> 2 giorni (2-3 Febbraio <strong>2010</strong>, sede <strong>di</strong> Padova), rivolto<br />

a tutti i progettisti che affrontano problemi <strong>di</strong> cinematica<br />

e <strong>di</strong>namica. Il corso è pensato e strutturato in modo da<br />

trasmettere in tempi brevi le nozioni per poter poi in seguito<br />

intraprendere le scelte per la modellazione multibody. Il<br />

corso sarà tenuto dal prof. Roberto Lot dell’Università <strong>di</strong><br />

Padova in collaborazione con l’ing. Fabiano Maggio <strong>di</strong><br />

<strong>EnginSoft</strong>.<br />

Per informazioni sui contenuti consultare il sito del consorzio<br />

TCN www.consorziotcn.it<br />

Per iscrizioni e informazioni generali consultare la sig.ra<br />

Mirella Prestini della segreteria del consorzio.<br />

E-mail: info@consorziotcn.it - Tel: +39 035 368711


52 - Newsletter <strong>EnginSoft</strong> Year 6 n°4<br />

Interview with Mr Sakae Morita, General<br />

Manager, Marketing and Mr Kentaro<br />

Fukuta of ELYSIUM Co., Ltd. Japan<br />

What are your impressions of the <strong>EnginSoft</strong> International<br />

Conference 2009?<br />

Mr. Morita: Indeed, we brought back many new <strong>di</strong>scoveries<br />

from our first participation in the <strong>EnginSoft</strong> Conference. It<br />

has been particularly interesting to see that there are many<br />

joint efforts and activities between industry and the<br />

academia and that lots of successes are actually linked to<br />

these collaborations. Although we can see similar efforts in<br />

Japan, there is still a huge gap between industry and the<br />

universities. The attitude and openness in Italy and in the<br />

surroun<strong>di</strong>ng countries in Europe seem to be very good.<br />

Mr.Fukuta: Our time at the Conference in Bergamo was an<br />

extremely significant experience, more than I had anticipated<br />

before our trip to Europe. Much to our surprise, we met many<br />

participants from all over the world. This is one of the<br />

<strong>di</strong>fferences compared to CAE conferences in Japan. It’s great<br />

to have the opportunity to actively exchange technical<br />

information between organizations from <strong>di</strong>fferent countries.<br />

Mr.Morita: From Professor Stefano Odorizzi’s keynote speech<br />

and my personal conversation with him, I was particularly<br />

impressed by the fact that <strong>EnginSoft</strong> is expan<strong>di</strong>ng its<br />

business not only in Italy but also internationally and this in<br />

harsh economic times. At Elysium, we are keen to establish a<br />

longterm relationship with <strong>EnginSoft</strong>.<br />

Bergamo’s me<strong>di</strong>eval Città Alta - Impressions photographed by Mr. Morita / Mr Fukuta in<br />

October 2009<br />

Elysium Booth in the exhibition area<br />

Apart from the Conference, <strong>di</strong>d you have time to explore<br />

Italy a bit?<br />

Mr.Morita: Luckily, we had enough time to stroll around in the<br />

old city of Bergamo and in Milan after the conference. What<br />

really moved me is the deep history and the beautiful<br />

harmony between the past and modernity. These are<br />

memories I brought back from looking at the old<br />

architectures and from our visits to some museums.<br />

Mr.Fukuta: I will remember my first visit to Italy for a<br />

long time to come. I was fascinated by the beautiful<br />

landscape of Bergamo and the wonderful <strong>di</strong>nner we<br />

have enjoyed in a restaurant on one of the surroun<strong>di</strong>ng<br />

hills of the city.<br />

Would you say that your presence, also as an<br />

exhibitor, at the Conference was effective?<br />

Mr.Morita: Certainly yes. There were quite a few<br />

positive <strong>di</strong>scussions about our products and we could<br />

generate some leads for our future business in Europe.<br />

I am really grateful to Ms. Barbara Leichtenstern for<br />

her deep considerations and to everybody at <strong>EnginSoft</strong>.<br />

Mr.Fukuta: Thank you for all your support and for giving<br />

us such a good opportunity to meet the people of<br />

<strong>EnginSoft</strong> and the au<strong>di</strong>ence of the International<br />

Conference.<br />

This interview was conducted by Ms Akiko Kondoh<br />

Consultant for <strong>EnginSoft</strong> in Japan


New Year<br />

Greetings from<br />

Japan<br />

with best wishes from Akiko Kondoh<br />

It has been a great pleasure to launch<br />

the Japan Column in 2009. Sometimes<br />

inspiration is needed for product<br />

design and manufacturing. The same<br />

is true for CAE. I hope that the new<br />

encounter in the <strong>EnginSoft</strong> Newsletter, between Japanese and<br />

European (CAE) cultures, creates inspiration and motivation for<br />

<strong>2010</strong>.<br />

In the New Year, Shogatsu is generally celebrated on the first<br />

3 days of January. In Japan, this is the most important period<br />

to spend with family. Osechi-ryori are special side <strong>di</strong>shes which<br />

we enjoy on the first 3 days of the year. Osechi-ryori consist of<br />

tra<strong>di</strong>tional ingre<strong>di</strong>ents in Japanese cuisine, all of them have<br />

special meanings. For example, sea bream (tai) should bring<br />

luck (medetai), herring roe (kazunoko) sends out “a wish for<br />

prosperity to our descendants”, and sea tangle roll (kobumaki)<br />

means “happiness” (yorokobu).<br />

This Osechi-ryori<br />

are arranged on<br />

the Urushi, a<br />

Japanese lacquer<br />

tiered box. Urushi<br />

is the coating<br />

material made<br />

from refined and<br />

processed lacquer<br />

tree sap. Urushi<br />

has been used for<br />

the last thousands of years. Indeed, Japanese lacquering<br />

techniques had improved rapidly at a time more than 1500<br />

years ago. The black shining Urushi became a tra<strong>di</strong>tional craft<br />

and nowadays it is widely used for tableware, fine furniture and<br />

musical instruments. Urushi is resistant to humi<strong>di</strong>ty, heat, acid<br />

and alkali, but becomes depleted under extreme ultraviolet<br />

irra<strong>di</strong>ation or desiccation. This is why Urushi was not much<br />

used for industrial products in the past. However, in recent<br />

years, Urushi has attracted people’s attention not only in Japan<br />

but around the world because of its unique glazing style and<br />

excellent characteristics. Today, Urushi is applied to brand new<br />

areas of MONODUKURI*, for example for the interior of cars and<br />

airplanes and the exterior of various electrical products by<br />

combining Urushi material characteristics and specific<br />

lacquering techniques.<br />

*MONODUKURI: Japanese for manufacturing and Japan’s spirit<br />

for excellence in manufacturing<br />

Newsletter <strong>EnginSoft</strong> Year 6 n°4 - 53<br />

modeFRONTIER at the 2009<br />

MADYMO Users Meeting in<br />

Melbourne<br />

<strong>EnginSoft</strong>'s partner in<br />

Australia, ADVEA<br />

Engineering, hosted their<br />

semi-annual event “The<br />

2009 MADYMO Users<br />

Meeting” in Melbourne,<br />

Australia on the 23rd &<br />

24th of November.<br />

The event attracted a widerange<br />

of engineers from the Asia Pacific region with a focus on<br />

automotive active/passive safety, biomechanics, pedestrian<br />

safety and DOE/optimization.<br />

Maciej Mazur, a University Student at the School of Aerospace,<br />

Mechanical and Manufacturing Engineering at RMIT, The Royal<br />

Melbourne Institute of Technology, one of Australia’s original<br />

and lea<strong>di</strong>ng educational institutions, presented a DOE and an<br />

optimization study of a cast-aluminium servo motor housing.<br />

In his presentation, Maciej detailed how he coupled<br />

successfully modeFRONTIER with Catia and Abaqus for Catia to<br />

optimize the housing for weight and stiffness.<br />

For more information about this presentation and about<br />

modeFRONTIER and CAE in Australia, feel free to contact Mr.<br />

Ryan Adams, email: radams@advea.com, Manager ADVEA<br />

Engineering. www.advea.com<br />

Optimization Training Star-<br />

CCM+ AND modeFRONTIER<br />

in Göteborg, February 23<br />

In cooperation with CDadapco<br />

and FS Dynamics,<br />

<strong>EnginSoft</strong> Nor<strong>di</strong>c will<br />

present a one-day hands-on<br />

<strong>training</strong> on optimization<br />

with modeFRONTIER and<br />

Star-CCM+. This <strong>training</strong>, to<br />

be held in Göteborg on<br />

February 23rd <strong>2010</strong>, will<br />

teach how to automate and perform scripting of Star-CCM+<br />

analyses, and how to setup an optimization together with<br />

modeFRONTIER. After an introduction and demonstration,<br />

<strong>training</strong> participants will be given a complete workshop to<br />

work through on their own. As such, they are expected to bring<br />

a laptop with Star-CCM+ for the exercises. After the workshop,<br />

the <strong>training</strong> will conclude with a <strong>di</strong>scussion and a Q&A session.<br />

For more information, please contact Adam Thorp<br />

at info@enginsoft.se or visit http://nor<strong>di</strong>c.enginsoft.com


54 - Newsletter <strong>EnginSoft</strong> Year 6 n°4<br />

Il mondo della forgiatura a stampi aperti,<br />

della laminazione piana e circolare, si è dato<br />

appuntamento a Padova per fare il punto<br />

sulle tecniche più avanzate <strong>di</strong> ottimizzazione<br />

<strong>di</strong> processo/prodotto.<br />

Dopo il successo dei primi due appuntamenti <strong>di</strong> Lecco, il<br />

3 aprile, de<strong>di</strong>cato allo stampaggio a caldo <strong>di</strong> acciaio, e <strong>di</strong><br />

Bergamo, il 7 maggio, de<strong>di</strong>cato allo stampaggio a caldo <strong>di</strong><br />

non ferrosi (ottone ed alluminio), <strong>EnginSoft</strong> ha voluto de<strong>di</strong>care<br />

un pomeriggio al mondo della forgiatura a stampi<br />

aperti, della laminazione <strong>di</strong> prodotti lunghi e della laminazione<br />

circolare.<br />

L’invito è stato accolto da quasi una cinquantina <strong>di</strong> rappresentanti<br />

delle aziende più importanti in Italia che si<br />

occupano <strong>di</strong> trasformazione <strong>di</strong> acciaio a stampi aperti o<br />

per laminazione, desiderosi <strong>di</strong> conoscere le più avanzate<br />

Grande successo per il pomeriggio<br />

tecnologico - Forgiatura, Laminazione a<br />

Caldo <strong>di</strong> Prodotti Lunghi e Laminazione<br />

Circolare: Simulazione dei Processi: Nuovi<br />

Sviluppi, Vantaggi e Prospettive –<br />

organizzato il 24 giugno a Padova da<br />

<strong>EnginSoft</strong>, con la presenza <strong>di</strong> AFV Beltrame,<br />

Hydromec, FICEP e DIMEG – Università <strong>di</strong><br />

Padova.<br />

tecniche <strong>di</strong> ottimizzazione <strong>di</strong> processo<br />

e prodotto.<br />

A fare gli onori <strong>di</strong> casa è stato Piero<br />

Parona, Sales Manager <strong>di</strong> <strong>EnginSoft</strong>,<br />

con una descrizione delle molteplici<br />

attività <strong>di</strong> <strong>EnginSoft</strong> nel campo della<br />

prototipazione virtuale e della<br />

strategicità dell’uso <strong>di</strong> queste tecniche<br />

nell’ottica <strong>di</strong> riduzione dei costi.<br />

Si è entrati quin<strong>di</strong> nel vivo dell’argomento<br />

con gli interventi dell’ing. Marcello Gabrielli,<br />

sempre <strong>di</strong> <strong>EnginSoft</strong>, che hanno riguardato le tecniche <strong>di</strong><br />

simulazione numerica dei processi <strong>di</strong> stampaggio a stampi<br />

aperti e laminazione con il <strong>software</strong> Forge <strong>di</strong> Transvalor. A<br />

partire da una analisi del modo attuale <strong>di</strong> progettare le sequenze<br />

<strong>di</strong> stampaggio, si è costruito un percorso innovativo<br />

dove, grazie alla simulazione applicata ad esempi reali<br />

su particolari noti ai presenti, si sono evidenziati tutti i<br />

vantaggi concreti ottenibili. Le recenti mo<strong>di</strong>fiche apportate<br />

al <strong>software</strong> grazie ad <strong>EnginSoft</strong> ed agli utilizzatori italiani,<br />

consentono ora <strong>di</strong> simulare per lo stampaggio a<br />

stampi aperti cicli anche molto complessi, con rotazioni<br />

relative <strong>di</strong> pezzo e\o<br />

mazze. Sono stati mostrati<br />

esempi concreti <strong>di</strong><br />

forgiatura, ricalcatura in<br />

chiodaia e con mazze,<br />

blumatura, compattazione,<br />

sbozzatura, segnatura,<br />

bigornatura, evidenziando<br />

per ciascuno <strong>di</strong> essi i risultati più significativi forniti<br />

dall’approccio virtuale. Per un caso <strong>di</strong> riscaldo <strong>di</strong> un<br />

lingotto poligonale è stato mostrato un approccio <strong>di</strong> ottimizzazione,<br />

ottenuto me<strong>di</strong>ante l’integrazione con<br />

modeFRONTIER, che ha consentito un risparmio <strong>di</strong> 4 ore <strong>di</strong><br />

permanenza in forno, garantendo comunque il riscaldo a<br />

cuore del lingotto. Altrettanto significativi i risultati ottenuti<br />

grazie alla simulazione del processo <strong>di</strong> tempra, in termini<br />

<strong>di</strong> previsione delle fasi, durezza e <strong>di</strong>storsioni.<br />

L’ing. Carlo Contri <strong>di</strong> Hydromec (www.hydromec.it) ha<br />

quin<strong>di</strong> mostrato le novità dei propri impianti per la forgiatura<br />

e la laminazione circolare, sottolineando come grazie<br />

a Forge, utilizzato attraverso la collaborazione con<br />

<strong>EnginSoft</strong>, per alcuni propri clienti,<br />

è stato fornito un servizio <strong>di</strong> codesign<br />

che ha consentito sia <strong>di</strong> valutare<br />

a priori se una macchina è in<br />

grado <strong>di</strong> produrre un certo particolare,<br />

sia <strong>di</strong> ridurre significativamente<br />

i sovrametalli, fornendo<br />

quin<strong>di</strong> un servizio “chiavi in mano”<br />

ai propri clienti.<br />

L’ing. Stefano Fongaro <strong>di</strong> FICEP<br />

(www.ficep.it) ha quin<strong>di</strong> mostrato come ha affrontato e risolto<br />

il problema del taglio delle barre me<strong>di</strong>ante nuove segatrici<br />

ad alta velocità per barre fino a 800mm <strong>di</strong> <strong>di</strong>ametro.<br />

Ritornando a tematiche relative alla simulazione <strong>di</strong> processo,<br />

la parte relativa alla simulazione della laminazione<br />

<strong>di</strong> prodotti lunghi è stata affidata alla testimonianza <strong>di</strong> un<br />

utilizzatore, la AFV Beltrame SpA (www.beltrame.it) <strong>di</strong><br />

Vicenza. A partire dai risultati della simulazione della singola<br />

gabbia <strong>di</strong> laminazione, utili per una prima valutazione<br />

della deformazione del materiale, si è passati all’anali-


si <strong>di</strong> un treno completo <strong>di</strong> quattro gabbie<br />

<strong>di</strong> laminazione per l’ottenimento <strong>di</strong><br />

un profilo IPE. I risultati ottenuti per<br />

questo particolare e per altri profili mostrati<br />

(bulbo, cingolo, T80) hanno <strong>di</strong>mostrato<br />

come la simulazione ha effettivamente<br />

consentito <strong>di</strong> valutare a priori le<br />

corrette calibrature delle gabbie.<br />

Si è passati infine all’analisi del processi<br />

<strong>di</strong> laminazione circolare, per il quale<br />

sono state analizzate le fasi <strong>di</strong> forgiatura<br />

e tranciatura dell’anello, risolte in<br />

tempi molto rapi<strong>di</strong> grazie all’approccio 2D, e quin<strong>di</strong> la simulazione<br />

della laminazione vera e propria. Particolarità<br />

<strong>di</strong> questo processo è la moltitu<strong>di</strong>ne <strong>di</strong> cinematiche adottate<br />

per laminare (a rack assiale fermo o mobile, con coni<br />

fermi o mobili, con rullo ad asse verticale o inclinato, fermo<br />

o mobile) ed inoltre le cinematiche stesse sono funzione<br />

della crescita dell’anello. Nella pratica si definiscono<br />

delle curve <strong>di</strong> laminazione nel <strong>software</strong> del laminatoio ed<br />

i tool si muovono <strong>di</strong> conseguenza. Grazie alla flessibilità<br />

<strong>di</strong> Forge nella definizione delle cinematiche, si è mostrato<br />

come forge riesca a replicare in modo molto accurato<br />

quanto avviene nella realtà, aspetto questo <strong>di</strong>mostrato<br />

con esempi partici <strong>di</strong> laminazione <strong>di</strong> anelli <strong>di</strong> geometria<br />

dalla più semplice, rettangolare, alle più complesse, per<br />

anelli profilati, sagomati, flange e rulli. Non meno interessante<br />

è stato l’intervento del dott. Andrea Ghiotti del DI-<br />

MEG – Università <strong>di</strong> Padova (www.<strong>di</strong>meg.unipd.it) che ha<br />

mostrato le attività del DIMEG nella simulazione, tramite<br />

Forge ed un approccio a reti neurali, della <strong>di</strong>storsione degli<br />

anelli nelle fasi <strong>di</strong> raffreddamento.<br />

A completare la sezione tecnica, una <strong>di</strong>mostrazione dal vivo<br />

<strong>di</strong> utilizzo <strong>di</strong> Forge, curata dall’ing. Andrea Pallara <strong>di</strong><br />

<strong>EnginSoft</strong>, che ha impostato il caso <strong>di</strong> una sequenza <strong>di</strong> fucinatura<br />

e stampo aperto ed una laminazione <strong>di</strong> un anello<br />

a sezione rettangolare. La demo live ha evidenziato come<br />

questi strumenti siano ormai molto facili da utilizzare, sia<br />

nella fase <strong>di</strong> preparazione delle simulazioni, che nella fase<br />

<strong>di</strong> interpretazione dei risultati.<br />

Un appuntamento importante, <strong>di</strong>cevamo, dove alle presentazioni<br />

previste in agenda è seguito un partecipato <strong>di</strong>battito<br />

tra i relatori ed il pubblico, dal quale è emerso come<br />

lo strumento sia già molto maturo per quanto riguarda le<br />

tematiche <strong>di</strong> forgiatura. Per quanto riguarda la laminazione<br />

circolare, l’aspetto critico sembra essere la precisione<br />

Newsletter <strong>EnginSoft</strong> Year 6 n°4 - 55<br />

con la quale si riescono a modellare le curve <strong>di</strong> laminazione<br />

reali, in modo da prevedere comportamenti anomali del<br />

materiale durante il processo. Forge è stato migliorato in<br />

modo importante per questi aspetti specifici, grazie alla<br />

collaborazione con dei produttori <strong>di</strong> laminatoi.<br />

Volendo sintetizzare, quanto mostrato nel workshop ha <strong>di</strong>mostrato<br />

come questi strumenti siano realmente in grado<br />

<strong>di</strong> dare una maggior coscienza del proprio modo <strong>di</strong> produrre<br />

e come le esperienze fatte con Forge siano utili sia a far<br />

crescere molto rapidamente chi si avvicina a questo mondo,<br />

e a far <strong>di</strong>ventare “patrimonio aziendale” le procedure<br />

<strong>di</strong> stampaggio ottimizzate in tal modo. Ultimo aspetto<br />

non meno importante è il fatto che, grazie ai concreti vantaggi<br />

ottenibili, è possibile ammortizzare l’investimento<br />

in tempi molto rapi<strong>di</strong>.<br />

In questo momento <strong>di</strong> <strong>di</strong>fficoltà legata alla congiuntura<br />

economica, è necessario cogliere l’occasione per investire<br />

in metodologie innovative, in grado <strong>di</strong> dare maggiore<br />

competenza e conoscenza del proprio processo ai reparti<br />

<strong>di</strong> progettazione e produzione, <strong>di</strong> ridurre i costi, e <strong>di</strong> promuovere<br />

la propria immagine aziendale aumentando le<br />

possibilità <strong>di</strong> co-design nei confronti dei propri clienti.<br />

Per maggiori informazioni:<br />

Ing. Marcello Gabrielli - <strong>EnginSoft</strong><br />

info@enginsoft.it<br />

<strong>EnginSoft</strong> sponsorizza lo<br />

sport in trentino<br />

Squadra <strong>di</strong> calcio femminile <strong>di</strong> serie A2 ACF TRENTO.<br />

www.calciotrento.it


56 - Newsletter <strong>EnginSoft</strong> Year 6 n°4<br />

Il mondo dello stampaggio a freddo <strong>di</strong> viterie<br />

e minuterie metalliche, si è dato<br />

appuntamento a Bergamo per fare il punto<br />

sulle tecniche più avanzate <strong>di</strong> ottimizzazione<br />

<strong>di</strong> processo/prodotto.<br />

Il 25/10 a Bergamo si è tenuto l’ultimo appuntamento del<br />

2009 sulla simulazione dei processi <strong>di</strong> stampaggio dei metalli,<br />

de<strong>di</strong>cato questa volta al mondo dello stampaggio a freddo.<br />

L’invito è stato accolto da una quarantina <strong>di</strong> rappresentanti<br />

delle aziende più importanti in Italia che si occupano <strong>di</strong><br />

stampaggio a freddo <strong>di</strong> acciaio nei campi della viteria e bulloneria,<br />

della minuteria metallica e <strong>di</strong> altri particolati ottenuti<br />

per stampaggio, desiderosi <strong>di</strong> fare il punto sui vantaggi<br />

offerti dagli strumenti <strong>di</strong> simulazione nel miglioramento dei<br />

processi/prodotti.<br />

Grande successo per il pomeriggio<br />

tecnologico - Stampaggio a Freddo <strong>di</strong> Viterie<br />

e Minuterie Metalliche: Simulazione dei<br />

Processi: Nuovi Sviluppi, Vantaggi e<br />

Prospettive – organizzato il 25 ottobre a<br />

Bergamo da <strong>EnginSoft</strong>, con la presenza <strong>di</strong><br />

SACMA Limbiate, Panzeri, Omega Ifs.<br />

A rompere il ghiaccio, come <strong>di</strong> consueto, è stato Piero<br />

Parona, Sales Manager <strong>di</strong> <strong>EnginSoft</strong>, con una descrizione delle<br />

molteplici attività <strong>di</strong> <strong>EnginSoft</strong> nel campo della prototipazione<br />

virtuale e della strategicità dell’uso <strong>di</strong> queste tecniche<br />

nell’ottica <strong>di</strong> riduzione dei costi.<br />

L’intervento successivo, a cura dell’ing. Marcello Gabrielli,<br />

sempre <strong>di</strong> <strong>EnginSoft</strong>, ha riguardato le tecniche <strong>di</strong> simulazione<br />

numerica dei processi <strong>di</strong> stampaggio a freddo con il <strong>software</strong><br />

ColdForm <strong>di</strong> Transvalor. Attraverso esempi reali si è analizzato<br />

come il <strong>software</strong> sia un valido supporto alle decisioni<br />

che i tecnici devono<br />

prendere nella messa a<br />

punto del processo produttivo,<br />

per ogni operazione<br />

<strong>di</strong> stampaggio. Si è<br />

partiti dal processo <strong>di</strong><br />

stampaggio da filo, trattando<br />

alcune sequenze <strong>di</strong><br />

formatura per dei particolari <strong>di</strong> minuteria e viteria e mostrando<br />

come l’analisi dei contatti, del flusso <strong>di</strong> materiale e delle<br />

ripieghe possa aiutare ad in<strong>di</strong>viduare i problemi e mostrare la<br />

via per risolverli. Si è passati quin<strong>di</strong> all’analisi delle sollecitazioni<br />

sugli stampi, mostrando come intervenire per ridurne<br />

l’usura e migliorarne la vita utile, una volta in<strong>di</strong>viduate le zone<br />

<strong>di</strong> massima sollecitazione. Per alcune configurazioni si è<br />

affrontata una messa a punto delle con<strong>di</strong>zioni <strong>di</strong> interferenza<br />

(blindaggio) per garantire il corretto precarico alle matrici.<br />

Si è quin<strong>di</strong> accennato ai risultati ottenibili nell’analisi<br />

della tranciatura e della rollatura dei filetti.<br />

Sono stati quin<strong>di</strong> analizzati dei casi <strong>di</strong> stampaggio e tranciatura<br />

<strong>di</strong> lamiere, con cenni relativi all’influenza dell’anisotropia<br />

sul risultato dell’imbutitura ed è stato mostrato un approccio<br />

<strong>di</strong>fferente, con i <strong>software</strong> della FTI<br />

(www.forming.com) per i casi <strong>di</strong> stampaggio <strong>di</strong> lamiera sottile,<br />

per la quale vengono calcolati gli spessori, le zone <strong>di</strong> ce<strong>di</strong>mento<br />

e <strong>di</strong> grinzatura.<br />

In conclusione, sono stati mostrati esempi <strong>di</strong> messa in opera<br />

<strong>di</strong> rivetti e viti, dove il <strong>software</strong> ha consentito <strong>di</strong> valutare<br />

le resistenza degli accoppiamenti all’applicazione <strong>di</strong> con<strong>di</strong>zioni<br />

<strong>di</strong> sollecitazione assiali e tangenziali.<br />

Ha quin<strong>di</strong> preso la parola L’ing. Brigatti della<br />

SACMA Limbiate (http://www.sacmalimbiate.it),<br />

riferimento per le macchine automatiche per lo<br />

stampaggio a freddo, che ha mostrato quali sono<br />

le tecnologie che vengono adottate per migliorare<br />

precisione e prestazioni, quali ad esempio<br />

la slitta a guida conica, il sistema <strong>di</strong> cambio<br />

rapido degli stampi ed i sistemi <strong>di</strong> microregolazione<br />

degli aggiustamenti. Si è quin<strong>di</strong> soffermato<br />

sugli ultimi sviluppi nel campo dello stampaggio<br />

a tiepido, evidenziando i vantaggi <strong>di</strong><br />

questa tecnologia.


Lo spazio de<strong>di</strong>cato alle testimonianze degli utilizzatori si è<br />

aperto con la presentazione dell’ing. Giussani della Panzeri<br />

(http://www.panzerionline.com), che ha mostrato come<br />

Coldform può essere utilizzato per la verifica e la messa a<br />

punto del processo <strong>di</strong> tranciatura <strong>di</strong> rondelle. Interessante lo<br />

stu<strong>di</strong>o effettuato con la collaborazione <strong>di</strong> <strong>EnginSoft</strong> e<br />

dell’Università <strong>di</strong> Trento, me<strong>di</strong>ante il quale Panzeri è ora in<br />

grado <strong>di</strong> caratterizzare i materiali per la simulazione numerica,<br />

ma anche <strong>di</strong> certificarne la qualità per la produzione.<br />

Si è passati infine alla presentazione dell’ing. Wegner <strong>di</strong> OME-<br />

GA IfS (http://www.omegaifs.it), che ha mostrato l’utilizzo<br />

del <strong>software</strong> in tre casi particolari: un perno, dove la formatura<br />

del profilo superiore dell’ingranaggio portatava alla formazione<br />

<strong>di</strong> bave, una doppia estrusione, dove è stato usato<br />

Coldform per valutare la forma della superficie libera ed una<br />

forcella, per la quale le analisi hanno consentito <strong>di</strong> rime<strong>di</strong>are<br />

ad una rottura delle matrici.<br />

A completare la sezione tecnica, una <strong>di</strong>mostrazione dal vivo<br />

<strong>di</strong> utilizzo <strong>di</strong> ColdForm, curata dall’ing. Andrea Pallara <strong>di</strong><br />

<strong>EnginSoft</strong>, che ha impostato il caso <strong>di</strong> una sequenza <strong>di</strong> formatura<br />

<strong>di</strong> una vita a partire dallo spezzone <strong>di</strong> filo, passando<br />

per l’estrusione del gambo, la formatura della testa e la creazione<br />

dell’impronta. La demo live ha evidenziato come questi<br />

strumenti siano ormai molto facili da utilizzare, sia nella fase<br />

<strong>di</strong> preparazione delle simulazioni, che nella fase <strong>di</strong> interpretazione<br />

dei risultati.<br />

Al termine delle presentazioni i presenti hanno avuto lo spazio<br />

per porre delle domande ed ottenere degli approfon<strong>di</strong>-<br />

Newsletter <strong>EnginSoft</strong> Year 6 n°4 - 57<br />

menti da tutti i relatori presenti. Volendo sintetizzare, quanto<br />

mostrato nel workshop ha <strong>di</strong>mostrato come questi strumenti<br />

siano realmente in grado <strong>di</strong> dare una maggior coscienza<br />

del proprio modo <strong>di</strong> produrre e come le esperienze fatte<br />

con ColdForm siano utili sia a far crescere molto rapidamente<br />

chi si avvicina a questo mondo, e a far <strong>di</strong>ventare “patrimonio<br />

aziendale” le procedure <strong>di</strong> stampaggio ottimizzate in<br />

tal modo. Ultimo aspetto non meno importante è il fatto che,<br />

grazie ai concreti vantaggi ottenibili, è possibile ammortizzare<br />

l’investimento in tempi molto rapi<strong>di</strong>.<br />

In questo momento <strong>di</strong> <strong>di</strong>fficoltà legata alla congiuntura economica,<br />

è necessario cogliere l’occasione per investire in metodologie<br />

innovative, in grado <strong>di</strong> dare maggiore competenza<br />

e conoscenza del proprio processo ai reparti <strong>di</strong> progettazione<br />

e produzione, <strong>di</strong> ridurre i costi, e <strong>di</strong> promuovere la propria immagine<br />

aziendale aumentando le possibilità <strong>di</strong> co-design nei<br />

confronti dei propri clienti.<br />

Per maggiori informazioni:<br />

Ing. Marcello Gabrielli - <strong>EnginSoft</strong><br />

info@enginsoft.it<br />

Bilancio del Ciclo <strong>di</strong> Workshop<br />

de<strong>di</strong>cati alla Simulazione dei<br />

Processi <strong>di</strong> Deformazione dei<br />

Metalli<br />

Con l’appuntamento del 25/10 a Bergamo si è quin<strong>di</strong><br />

chiuso il ciclo <strong>di</strong> workshop de<strong>di</strong>cati alla simulazione dei<br />

processi <strong>di</strong> deformazione dei metalli: il 03/04 a Lecco<br />

per lo stampaggio a caldo <strong>di</strong> acciaio, il 07/05 a Bergamo<br />

per lo stampaggio dei non ferrosi, il 24/06 a Padova per<br />

la forgiatura, la laminazione a caldo <strong>di</strong> prodotti lunghi e<br />

la laminazione circolare.Volendo fare un bilancio dell’intero<br />

ciclo, la partecipazione <strong>di</strong> oltre 180 persone <strong>di</strong> quasi<br />

90 aziende ha decretato il pieno successo <strong>di</strong> questa<br />

iniziativa e con <strong>di</strong>verse delle aziende presenti si sta iniziando<br />

un percorso per l’introduzione <strong>di</strong> questi strumenti<br />

nella pratica progettuale quoti<strong>di</strong>ana. Probabilmente le<br />

<strong>di</strong>fficoltà economiche legate alla crisi hanno impe<strong>di</strong>to ad<br />

altri <strong>di</strong> partecipare.<br />

Questo ci ha spinto, per<br />

l’anno <strong>2010</strong>, ad organizzare<br />

degli eventi simili,<br />

però avvalendoci <strong>di</strong> webinar che sfruttano la rete internet<br />

per proporre gli stessi contenuti, senza obbligare le persone<br />

ad effettuare delle trasferte. Rimanete sintonizzati<br />

sul nostro sito www.enginsoft.it per le date <strong>di</strong> questi<br />

eventi o contattateci per degli incontri specifici presso la<br />

vostra sede.<br />

Le date sono:<br />

11 Febbraio - 12 Marzo - 15 Aprile - 13 Maggio<br />

www.enginsoft.it/webinar


58 - Newsletter <strong>EnginSoft</strong> Year 6 n°4<br />

<strong>EnginSoft</strong> Event Calendar<br />

ITALY<br />

14-17 April - METEF <strong>2010</strong> - International aluminium and<br />

foundry exhibition. Visit the <strong>EnginSoft</strong> Booth where we<br />

present news on process simulation technologies related<br />

to MAGMA, Forge, Coldform, AdvantEdge…<br />

www.metef.com<br />

14-15 April <strong>2010</strong> - Affidabilità e Tecnologie <strong>2010</strong><br />

Meet <strong>EnginSoft</strong> in the exhibition and learn from our<br />

Seminar on Innovation in industry through Virtual<br />

Prototyping! www.affidabilita.eu<br />

27-28 May - International modeFRONTIER Users’ Meeting<br />

<strong>2010</strong>. Starhotel Savoia Excelsior Palace, Trieste<br />

Learn how modeFRONTIER, the lea<strong>di</strong>ng multi<strong>di</strong>sciplinary &<br />

multi-objective design optimization tool, is used globally<br />

in many industries to better understand product<br />

development processes, and achieve higher quality at<br />

reduced cost, allowing them to meet the challenge of<br />

producing better products faster!<br />

www.esteco.com<br />

Fall <strong>2010</strong> – <strong>EnginSoft</strong> International CAE Conference <strong>2010</strong><br />

Exact dates and venue will be announced soon!<br />

www.caeconference.com<br />

FRANCE<br />

17-18 Mars <strong>2010</strong> - Micado : Etats Généraux Micado : "La<br />

contribution de l’ingénierie numérique à l’ECO conception"<br />

Evry (91). E<strong>di</strong>tion exceptionnelle en partenariat avec la<br />

Chambre de Commerce de l'Essonne sur le thème: "La<br />

contribution de l'Ingénierie Numérique à l'ECO<br />

Conception". www.af-micado.com<br />

<strong>EnginSoft</strong> France <strong>2010</strong> Journées porte ouverte. Dans nos<br />

locaux à Paris et dans d’autres villes de France et de<br />

Belgique, en collaboration avec nos partenaires. Prochaine<br />

événement: Journées de présentation modeFRONTIER<br />

<strong>2010</strong> Séminaires Simulation de Process et Optimisation<br />

<strong>EnginSoft</strong> France Boulogne Billancourt – Paris.S eminars<br />

hosted by <strong>EnginSoft</strong> France and <strong>EnginSoft</strong> Italy. Veuillez<br />

contacter Marjorie Sexto, info@enginsoft.com, pour plus<br />

d'information ou visitez : www.enginsoft-fr.com<br />

21-23 June – ASMDO <strong>2010</strong> 3rd International Conference<br />

on Multi<strong>di</strong>sciplinary Design Optimization and Applications<br />

- Co-sponsored by ISSMO, ESTP, <strong>EnginSoft</strong>, and NAFEMS<br />

Paris. ASMDO <strong>2010</strong> will bring together scientists and<br />

practitioners working in <strong>di</strong>fferent areas of engineering<br />

optimization! www.asmdo.com<br />

GERMANY<br />

Please stay tuned to www.enginsoft-de.com and contact<br />

Stephanie Koch at: info@enginsoft.com for more<br />

information.<br />

Seminars Process Product Integration. <strong>EnginSoft</strong> GmbH,<br />

Frankfurt Office. How to innovate and improve your<br />

production processes! Seminars hosted by <strong>EnginSoft</strong><br />

Germany and <strong>EnginSoft</strong> Italy. Dates will be announced in<br />

early <strong>2010</strong>.<br />

modeFRONTIER Seminars <strong>2010</strong>. <strong>EnginSoft</strong> GmbH, Frankfurt<br />

am Main: 26 January, 16 February, 9 March, 30 March, 20<br />

April, 18 May, 15 June<br />

UK<br />

Please stay tuned to www.enginsoft-uk.com and contact<br />

Bipin Patel at: info@enginsoft.com for more information.<br />

modeFRONTIER Workshops at Warwick Digital Lab<br />

Please check www.enginsoft-uk.com for next dates!<br />

25th February - Technical Seminar on Manufacturing<br />

Process Simulation Cranfield University<br />

Attend <strong>EnginSoft</strong> UK’s FREE Seminar and learn how stateof-the-art<br />

simulation tools can help reduce development<br />

time and drastically cut costs in manufacturing processes.<br />

The seminar will provide an interesting and effective<br />

overview of the most modern CAE technologies available<br />

today and how they can enhance your design production<br />

processes when combined with world-class expertise.<br />

To register online, please visit: www.enginsoft-uk.com<br />

SPAIN<br />

24 - 27 February - 9th International Symposium on<br />

Computer Methods in Biomechanics and Biome<strong>di</strong>cal<br />

Engineering. Valencia. For more information and to<br />

arrange a meeting with Gino Duffett, APERIO Tecnología,<br />

please contact: g.duffett@aperiotec.es, www.aperiotec.es<br />

SWEDEN<br />

23 February - Optimization Training Star-CCM+ and<br />

modeFRONTIER. Goeteborg. In cooperation with CDadapco<br />

and FS Dynamics, Esteco <strong>EnginSoft</strong> Nor<strong>di</strong>c will<br />

present a one-day hands-on <strong>training</strong> on optimization with<br />

modeFRONTIER and Star-CCM+<br />

modeFRONTIER Courses scheduled so far for <strong>2010</strong>:<br />

Esteco <strong>EnginSoft</strong> Nor<strong>di</strong>c Office, Lund


21-22 January - Introduction to modeFRONTIER<br />

9-10 February - Introduction to modeFRONTIER<br />

11 February - Robust Design with modeFRONTIER<br />

For further information, please contact Adam Thorp at:<br />

info@esteconor<strong>di</strong>c.se<br />

USA<br />

Courses on: Design Optimization with modeFRONTIER<br />

Ozen Engineering, Sunnyvale – Silicon Valley, CA<br />

Learn about Optimization coupled with ANSYS. OZEN can<br />

easily help you out automating the search for the optimal<br />

design. The primary au<strong>di</strong>ence for this course includes<br />

ANSYS Classic and Workbench users as well as new<br />

modeFRONTIER users who want to have a complete<br />

overview to all <strong>software</strong> capabilities. Stay tuned to our US<br />

partner’s website for the next events in the USA:<br />

www.ozeninc.com - info@ozeninc.com<br />

EUROPE, VARIOUS LOCATIONS<br />

modeFRONTIER Academic Training<br />

Please note: These Courses are for Academic users only.<br />

The Courses provide Academic Specialists with the fastest<br />

route to being fully proficient and productive in the use of<br />

modeFRONTIER for their research activities. The <strong>courses</strong><br />

combine modeFRONTIER Fundamentals and Advanced<br />

Optimization Techniques. For more information, please<br />

contact Rita Podzuna, info@enginsoft.it<br />

To meet with <strong>EnginSoft</strong> at any of the above events, please<br />

contact us: info@enginsoft.com<br />

Optimization Crossword Puzzle<br />

Newsletter <strong>EnginSoft</strong> Year 6 n°4 - 59<br />

Search the words linked to modeFRONTIER® in the puzzle on the left, then put together the remaining letters starting from<br />

top: You will <strong>di</strong>scover a nice message from <strong>EnginSoft</strong>!<br />

O B R E T U P M O C E S<br />

B P S T A T I S T I C S<br />

J T T W I M C D M T S I<br />

E S C I N H C E T A H M<br />

C I L E M T O O L M O U<br />

T M U G N I L E D O M L<br />

I P S S F R Z T R T E A<br />

V L T E M O G A O U D T<br />

E E E D M G E R T A N O<br />

G X R O I L N E S I O R<br />

F T T N I A R T S N O C<br />

K R I G I N G I S E D N<br />

SOLUTION<br />

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _<br />

<strong>EnginSoft</strong> CAE Webinars in <strong>2010</strong><br />

<strong>EnginSoft</strong>'s engineering team will conduct a new series of<br />

CAE webinars in <strong>2010</strong>. A variety of CAE topics will be<br />

covered by our experts based on <strong>EnginSoft</strong><br />

multi<strong>di</strong>sciplinary expertise and tra<strong>di</strong>tion.<br />

The CAE webinars will demonstrate the best ways to<br />

innovate industrial processes using Virtual Prototyping.<br />

Stay tuned on webinars calendar:<br />

www.enginsoft.it/webinar<br />

ALGORITHM<br />

AUTOMATIC<br />

CLUSTER<br />

COMPUTER<br />

CONSTRAINT<br />

DEMO<br />

DESIGN<br />

ITERATE<br />

KRIGING<br />

MCDM<br />

MODELING<br />

MOGA<br />

NODE<br />

OBJECTIVE<br />

OPTIMIZATION<br />

SIMPLEX<br />

SIMULATOR<br />

STATISTICS<br />

TECHNICS<br />

TOOL


NUOVO LIBRETTO - NEW PUBBLICATION<br />

CORSI DI ADDESTRAMENTO SOFTWARE <strong>2010</strong><br />

SOFTWARE TRAINING COURSES <strong>2010</strong><br />

<strong>EnginSoft</strong> è la società italiana <strong>di</strong> maggior consistenza e tra<strong>di</strong>zione nel<br />

settore del CAE ove, grazie alla multi<strong>di</strong>sciplinarietà delle competenze,<br />

è in grado <strong>di</strong> proporsi come partner unico per le aziende.<br />

L'attività <strong>di</strong> formazione rappresenta da sempre uno dei tre maggiori<br />

obiettivi <strong>di</strong> <strong>EnginSoft</strong> accanto alla <strong>di</strong>stribuzione ed assistenza del<br />

<strong>software</strong> ed ai servizi <strong>di</strong> consulenza e progettazione.<br />

Per ciascuno dei possibili livelli cui la richiesta <strong>di</strong> formazione può porsi<br />

(quella del progettista, dello specialista o del responsabile <strong>di</strong><br />

progettazione), <strong>EnginSoft</strong> mette a <strong>di</strong>sposizione la propria esperienza<br />

per accelerare i tempi del completo appren<strong>di</strong>mento degli strumenti<br />

necessari con una gamma completa <strong>di</strong> <strong>corsi</strong> <strong>di</strong>fferenziati sia per livello<br />

(<strong>di</strong> base o specialistico), che per profilo professionale dei destinatari<br />

(progettisti, neofiti od analisti esperti).<br />

La finalità è sempre <strong>di</strong> tipo pratico: condurre rapidamente all'utilizzo<br />

corretto del co<strong>di</strong>ce, sviluppando nell'utente la capacità <strong>di</strong> gestire<br />

analisi complesse attraverso l'uso consapevole del co<strong>di</strong>ce <strong>di</strong> calcolo.<br />

Per questo motivo ogni corso è <strong>di</strong>viso in sessioni de<strong>di</strong>cate alla<br />

presentazione degli argomenti teorici alternate a sessioni 'hands on',<br />

in cui i partecipanti sono invitati ad utilizzare attivamente il co<strong>di</strong>ce <strong>di</strong><br />

calcolo eseguendo applicazioni guidate od abbozzando, con i<br />

suggerimenti del trainer, soluzioni per i problemi <strong>di</strong> proprio interesse, e<br />

<strong>di</strong>scutendone impostazioni e risultati.<br />

Anche nel <strong>2010</strong> <strong>EnginSoft</strong> propone una serie completa <strong>di</strong> <strong>corsi</strong> che<br />

coprono le necessità <strong>di</strong> formazione all'uso dei <strong>di</strong>versi <strong>software</strong><br />

commercializzati.<br />

Le novità proposte sono <strong>di</strong>verse, a conferma che l'idea che <strong>EnginSoft</strong><br />

ha della formazione non è una realtà statica che si ripropone uguale a<br />

se stessa <strong>di</strong> anno in anno, ma è un <strong>di</strong>venire, guidato dall'esperienza<br />

accumulata negli anni, dall'evoluzione del <strong>software</strong> e dalle esigenze<br />

delle società che si affidano a noi per la formazione del proprio<br />

personale.<br />

L'offerta dei <strong>corsi</strong> ANSYS è stata ridefinita per adeguarsi sia<br />

all'evoluzione del <strong>software</strong> ed alle caratteristiche della recentissima<br />

versione 12.1 che all' introduzione <strong>di</strong> nuovi moduli e solutori<br />

recentemente resi <strong>di</strong>sponibili.<br />

In tale senso si segnalano:<br />

• il corso de<strong>di</strong>cato allo stu<strong>di</strong>o con ANSYS delle strutture in materiale<br />

composito, in particolare attraverso l'utilizzo del modulo de<strong>di</strong>cato<br />

ACP;<br />

• il corso per il solutore esplicito ANSYS WORKBENCH<br />

EPLICIT/STR integrato nell' ambiente WorkBench e quello per il<br />

solutore esplicito generalizzatoAUTODYN;<br />

• i nuovi <strong>corsi</strong>, relativi alle applicazioni specializzate per la<br />

progettazione offshore, AQWA (co<strong>di</strong>ce per lo stu<strong>di</strong>o dell'<br />

idro<strong>di</strong>namica <strong>di</strong> strutture galleggianti) ed ASAS (co<strong>di</strong>ce<br />

specializzato per la verifica <strong>di</strong> strutture OffShore);<br />

• in campo elettromagnetico viene introdotto un corso per ANSOFT-<br />

MAXWELL, <strong>software</strong> che rappresenta il riferimento nel settore delle<br />

Training Center <strong>EnginSoft</strong><br />

• un modulo relativo al solutore ANSYS POLYFLOW de<strong>di</strong>cato allo<br />

stu<strong>di</strong>o <strong>di</strong> processi quali l' estrusione, la termoformatura, il soffiaggio<br />

<strong>di</strong> polimeri o del vetro;<br />

• in campo fluido<strong>di</strong>namico è da rimarcare l' introduzione, accanto ai<br />

<strong>corsi</strong> classici tra<strong>di</strong>zionalmente erogati, <strong>di</strong> <strong>corsi</strong> specifici per il<br />

solutoreANSYS-FLUENT.<br />

Sono stati inoltre rivisti ed aggiornati i <strong>corsi</strong> relativi a tutti gli altri<br />

<strong>software</strong> sostenuti da <strong>EnginSoft</strong> per adeguarli allo stato attuale delle<br />

relative <strong>di</strong>stribuzioni.<br />

Dal punto <strong>di</strong> vista organizzativo nel <strong>2010</strong> tutte le cinque se<strong>di</strong> <strong>EnginSoft</strong><br />

saranno impegnate nella formazione, dando la possibilità agli utenti <strong>di</strong><br />

scegliere la location a loro più conveniente in termini <strong>di</strong> vicinanza<br />

geografica alla propria società.<br />

Tutto questo a riprova dell'impegno nella formazione che, per<br />

<strong>EnginSoft</strong>, è e rimane un punto fondamentale della politica aziendale,<br />

un impegno costante verso l'eccellenza, un servizio per fare crescere i<br />

nostri clienti e, se lo desiderano, crescere con loro.<br />

analisi elettromagnetiche in bassa frequenza; www.enginsoft.it/<strong>corsi</strong><br />

Key partner in Design Process Innovation

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!