Skip to main content
Log in

Improved germination of threatened medicinal Prunus africana for better domestication: effects of temperature, growth regulators and salts

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Prunus africana is an endangered medicinal species and has been classified as a priority for domestication in Cameroon. However, the seeds rapidly lose their viability during storage at room temperature after 2–3 months. This study aimed to improve seed germination of P. africana by germinating at different temperatures (4 °C, 28 °C) using different concentrations of growth stimulators (sodium nitrate and gibberellic acid) and different concentrations of salts. P. africana seeds had 91.7% germination at 4 °C after 1 month of storage. Growth regulators considerably influenced germination after 6 months and reached 66.0% with 10 mM gibberellic acid and 100% with 10 mM sodium nitrate. Approximately three shoots per seed were developed, an indication of polyembryony. Histochemical analyses revealed the presence of protein-like bodies close to the embryo axis and accumulations of starch after 7 days of germination. After 14 days, amyloplasts and dark protein bodies of various sizes were observed. The outcome of this study will contribute to improve the germination of P. africana for better domestication and conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amougou A, Betti JL, Ewusi NB, Mbarga N, Akagou ZHC, Fonkoua C, Nkouna AC (2010) Preliminary report on sustainable harvesting of Prunus africana (Rosaceae) in the North West region of Cameroon. National Forestry Development Agency (ANAFOR), Cameroon

    Google Scholar 

  • Avana ML (2006) Domestication de Prunus africana (Hook. f.) Kalkam (Rosaceae): étude de la germination et du bouturage. Thèse Doctorat/Ph.D. en Biologie végétale, Université de Yaoundé I.

  • Balotf S, Islam S, Kavoosi G, Kholdebarin B, Juhasz A, Ma WJ (2018) How exogenous nitric oxide regulates nitrogen assimilation in wheat seedlings under different nitrogen sources and levels. PloS One 13:190–269

    Google Scholar 

  • Barbedo JC (2018) A new approach towards the so-called recalcitrant seeds. J Seed Sci 37:241–247

    Google Scholar 

  • Beentje HJ (1994) Kenyan trees, shrubs and lianas. National Museums of Kenya, Nairobi

    Google Scholar 

  • Berjak P, Pammenter NW (2004) Recalcitrant seeds. In: Benech-Arnold RL, Sánchez RA (eds) Handbook of seed physiology: applications to agriculture. Haworth Press, New York, pp 305–345

    Google Scholar 

  • Bewley JD, Black M (1994) Seeds. Physiology of development and germination. Plenum Press, New York

    Google Scholar 

  • Bodeker G, van‘tKlooster C, Weisbord E (2014) Prunus africana (Hook.f.) Kalkman: The overexploitation of a medicinal plant species and its legal context. J Altern Complement Med (New York, N.Y.) 20(11): 810−822.

    Google Scholar 

  • Buckeridge MS, Tiné MAS, Santos HP, Lima DU (2000) Polissacarídeos de reserva de paredecelularemsementes: estrutura, metabolismo, funções e aspectosecológicos. Revista Brasileira de Fisiologia Vegetal 12:137–162

    Google Scholar 

  • Buckeridge MS, Aidar MPM, Santos HP, Tine MAS (2004) Acu´mulo de reservas. In: Ferreira AG, Borghetti F (eds) Germinação: do básicoaoaplicado. Artmed, Porto Alegre, pp 31–50

    Google Scholar 

  • Cunningham AB, Mbenkum FT (1993) Sustainability of harvesting Prunus africana bark in Cameroon: a medicinal plant in international trade. People and Plants working paper 2. UNESCO Press, Paris

  • Dawson I, Were J, Lengkeek A (2000) Conservation of Prunus africana, an over-exploited African medicinal tree. For Genet Resour FAO 28:27–33

    Google Scholar 

  • Del Rio LA, Corpas FJ, Barroso JB (2004) Nitric oxide and nitric oxide synthase activity in plants. Phytochemistry 65:783–792

    PubMed  Google Scholar 

  • Greggains V, Finch-Savage WE, Quick WP, Atherton MN (2000) Putative desiccation tolerance mechanisms in orthodox and recalcitrant seeds of the genus Acer. Seed Sci Res 3:317–327

    Google Scholar 

  • Hendry GAF, Finch-Savage WE, Thorpe PC, Atherkon NM, Buckland SH, Nilsson KA, Seel WE (1992) Free radical processes and loss of seed viability during desiccation in the recalcitrant species Quercus robur L. New Phytol 122:273–299

    CAS  Google Scholar 

  • Jamnadass RH, Dawson IK, Franzel S, Leakey RRB, Mithöfer D, Akinnifesi FK, Tchoundjeu Z (2011) Improving livelihoods and nutrition in sub-Saharan Africa through the promotion of indigenous and exotic fruit production in smallholders’ agroforestry systems: a review. Int For Rev 13:338–354

    Google Scholar 

  • Jena AK, Vasisht K, Sharma N, Kaur R, Dhingra MS, Karan M (2016) Amelioration of testosterone induced benign prostatic hyperplasia by Prunus species. J Ethnopharmacol 190:33–45

    CAS  PubMed  Google Scholar 

  • Jones RL, Macmillan J (1984) Gibberellins. In: Wilkins MB (ed) Advanced plant physiology. Pitman Publishing Limited, London, pp 21–52

    Google Scholar 

  • Koltunow AM, Hidaka T, Robinson SP (1996) Polyembryony in citrus: accumulation of seed storage proteins in seeds and in embryos cultured in vitro. Plant Physiol 110(2):599–609

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koornneef M, Bentsink L, Hilhorst H (2002) Seed dormancy and germination. Curr Opin Plant Biol 5:1–4

    Google Scholar 

  • Lamotte O, Coutois C, Barnavon L, Pugin A, Wendehenne D (2005) Nitric oxide in plants: the biosynthesis and cell signaling properties of a fascinating molecule. Planta 221:1–4

    CAS  PubMed  Google Scholar 

  • Li ZG, Liu AQ, Wu HS, Tan LH, Long YZ, Gou YF, Sun SW, Sang LW (2010) Influence of temperature, light and plant growth regulators on germination of black pepper (Piper nigrum L.) seeds. Afr J Biotechnol 9:1354–1358

    CAS  Google Scholar 

  • Lima RBS, Gonçalves JFC, Pando SC, Fernandes V, Santos ALW (2008) Primary metabolite mobilization during germination in rosewood (Anibaro saedora Ducke) seeds. Revista Árvore 32:19–25

    CAS  Google Scholar 

  • Loch DS, Adkins SW, Heslehurst MR, Paterson MF, Bellairs SM (2004) Seed formation, development, and germination. In: Moser L, Burson B, Sollenberger L (eds) Warm season (C4) grasses. Agronomy Society of America, Inc., Omaha, pp 95–144

    Google Scholar 

  • McDonald MB (2004) Orthodox seed deterioration and its repair. In: Benech-Arnold RL, Sanchez RA (eds) Handbook of seed physiology: applications to agriculture. Food Products Press, New York, pp 273–304

    Google Scholar 

  • Mendes-Rodrigues C, Ranal MA, Oliveira PE (2011) Does polyembryony reduce seed germination and seedling development in Eriotheca pubescens (Malvaceae: Bombacoideae)? Am J Bot 98(10):1613–1622

    PubMed  Google Scholar 

  • Paixão MVS, Lopes JC, Schmildt ER, Sobreira AR, Meneghelli CR (2016) Avocado seedlings multiple stems production. Revista Brasileira de Fruticultura 38(2):e-221. https://doi.org/10.1590/0100-29452016221

    Article  Google Scholar 

  • Pérez-Tornero O, Porras I (2008) Assessment of polyembryony in lemon: rescue and in vitro culture of immature embryos. Plant Cell Tissue Organ Cult 93(2):173–180

    Google Scholar 

  • Prego I, Maldonado S, Otegui M (1998) Seed structure and localization of reserves in Chenopodium quinoa. Ann Bot 82:481–488

    Google Scholar 

  • Pritchard SL, Charlton WL, Baker A, Grahan IA (2002) Germination and storage reserve mobilization are regulated independently in Arabdopsis. Plant J 31:639–647

    CAS  PubMed  Google Scholar 

  • Rehman S, Park IH (2000) Effect of scarification, gibberellic acid and chilling on the germination of golden rain-tree (Koelreuteria paniculata Laxm) seeds. Scientia Horticulturae 85:319–324

    CAS  Google Scholar 

  • Roberts EH (1973) Predicting the storage life of seeds. Seed Sci Technol 1:499–514

    Google Scholar 

  • Rosnah AHM, Dalorima T (2018) The effects of application of exogenous IAA and GA3 on the physiological activities and quality of Abelmoschus esculentus (Okra) var. Singa 979. Pertanika J Trop Agric Sci 41(1):209−224

    Google Scholar 

  • Sacandé M, Pritchard HW, Dudley AE (2004) Germination and storage characteristics of Prunus africana seeds. New For 27(3):1573–5095

    Google Scholar 

  • Sivasubramaniam K, Selvarani K (2012) Viability and vigor of jamun (Syzygium cumini) seeds. Braz J Bot 35:4

    Google Scholar 

  • Smith MT, Bejark P (1995) Deteriorative changes associated with the loss of viability of stored desiccation-tolerant and -sensitive seeds. In: Kigel J, Galili G (eds) Seed development and germination. Marcel Dekker Inc, New York, pp 701–746

    Google Scholar 

  • Song J, Feng G, Tian CY, Zhang FS (2005) Strategies for adaptation of Suaeda physophora, Haloxylon ammodendron and Haloxylon persicum to a saline environment during seed germination stage. Ann Bot 96:399–405

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steinmacher DA, Krohn NG, Dantas ACM, Stefenon VM, Clement CR, Guerra MP (2007) Somatic embryogenesis in peach palm using the thin cell layer technique: induction, morpho-histological aspects and AFLP analysis of somaclonal variation. Ann Bot 100:699–709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart MK (2003) The african cherry (Prunus africana): from hoe-handles to the international herb market. Econ Bot 57:559–569

    Google Scholar 

  • Sunderland TCH, Nkefor JP (1997) Trees as crops: the case of Prunus africana. Paper presented to the Tropical Agriculture Association Seminar "Tree as Crops". Saint Anne's College, Oxford

  • Sunderland TCH, Tako CT (1999) The exploitation of Prunus africana on the island of Bioko, Equatorial Guinea. A report for the People and Plants Initiative, WWF-Germany and the IUCN/SSC Medicinal Plant Specialist Group

  • Szabó V, Mándy A, Magyar L, Hrotko K (2012) Germination of Prunus mahaleb L. seeds by gibberellic acid (GA) treatments in different seed age. Eur J Hortic Sci 77(5):199−203

    Google Scholar 

  • Tchoundjeu Z, Avana ML, Leakey RRB, Simons AJ, Asaah E, Duguma B, Bell JM (2002) Vegetative propagation of Prunus africana: effects of rooting medium, auxin concentrations and leaf area. Agrofor Syst 54:483–492

    Google Scholar 

  • Tiedemann J, Neubohn B, Müntz K (2000) Different functions of vicilin and legumin are reflected in the histopattern of globulin mobilization during germination of vetch (Vicia sativa L.). Planta 211:1–12

    CAS  PubMed  Google Scholar 

  • Tobe K, Li XM, Omasa K (2000) Effects of sodium chloride on seed, germination and growth of two Chinese desert shrubs, Haloxylo nammodendron and H. persicum (Chenopodiaceae). Aust J Bot 48:455–460

    CAS  Google Scholar 

  • Tonini PP, Lisboa CGS, Freschi L, Mercier H, Mazzoni-viveiros SC, Buckeridge MS (2006) Effect of abscisic acid on galactomannan degradation and endo-β-mannanase activity in seeds of Sesbania virgata (cav.) Pers. (Leguminosae). Tree 20:669–678

    CAS  Google Scholar 

  • Vinceti B, Loo J, Gaisberger H, van Zonneveld MJ, Schueler S, Konrad H, Kadu CAC, Geburek T (2013) Conservation priorities for Prunus africana defined with the aid of spatial analysis of genetic data and climatic variables. PloS One 8(3):e59987

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by The Rufford Small Grants Foundation to Niemenak Nicolas (RSG Ref. 70.05.09) and by the UNESCO l’Oreal Fellowship for Women in Science Program to Nzweundji Justine Germo. The Alexander von Humboldt Foundation is also acknowledged for material donation to Niemenak Nicolas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Niemenak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding: The work was supported by the Rufford Small Grants Foundation to Niemenak Nicolas (RSG Ref. 70.05.09) and by the UNESCO l’Oreal Fellowship for Women in Science Program to Nzweundji Justine Germo.

The online version is available at http://www.springerlink.com

Corresponding editor: Tao Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nzweundji, J.G., Konan, K., Nyochembeng, L.M. et al. Improved germination of threatened medicinal Prunus africana for better domestication: effects of temperature, growth regulators and salts. J. For. Res. 31, 2403–2411 (2020). https://doi.org/10.1007/s11676-019-01000-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-019-01000-0

Keywords

Navigation