Skip to main content

Ceratonia siliqua (Carob-Locust Bean) Outgoing and Potential Trends of Phytochemical, Economic and Medicinal Merits

  • Chapter
  • First Online:
Wild Fruits: Composition, Nutritional Value and Products

Abstract

Ceratonia siliqua (Carob); is a Mediterranean legume globally recognized for its commercial value, being used as a cold beverage, in bakery and confectionary products. It is widely used as a Cocoa substitute not only due to its richness in sugar but rather the absence of caffeine and theobromine stimulant action. Both fruit pulp and seeds are of potential nutritive and medicinal values. The pulp comprises a high sugar content dominantly sucrose as well as polyphenols viz. phenolic acids, flavonoids and tannins. Seeds potential usage is attributed to its locust bean gum (LBG), commercially and pharmaceutically used as gelling and stiffening agent. Carob syrup is a traditional product native to the Mediterranean region, enriched in D-pinitol sugar of anti-diabetic effect. Considering the diversity of carob active constituents’ classes, a myriad of biological effects is recorded to include antioxidant, anticancer, antimicrobial and anti-hyperlipidemic effects. This book chapter presents up to date information on carob usage and chemistry while providing insight on research questions or applications yet to be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

LBG:

Locust bean gum

References

  • Aissani N, Coroneo V, Fattouch S, Caboni P (2012) Inhibitory effect of carob (Ceratonia siliqua) leaves methanolic extract on Listeria monocytogenes. J Agric Food Chem 60:9954–9958

    CAS  PubMed  Google Scholar 

  • AkĹźit S, Çagˇlayan S, Cukan R, Yaprak I (1998) Carob bean juice: a powerful adjunct to oral rehydration solution treatment in diarrhoea. Paediatr Perinat Epidemiol 12:176–181

    PubMed  Google Scholar 

  • Al-Hadid KJ (2016) Evaluation of antiviral activity of different medicinal plants against Newcastle disease virus. Am J Agric Biol Sci 11(4):157–163

    Google Scholar 

  • Amessis-Ouchemoukh N, Ouchemoukh S, Meziant N, Idiri Y, Hernanz D, Stinco CM, RodrĂ­guez-Pulido FJ, Heredia FJ, Madani K, Luis J (2017) Bioactive metabolites involved in the antioxidant, anticancer and anticalpain activities of Ficus carica L., Ceratonia siliqua L. and Quercus ilex L. extracts. Ind Crop Prod 95:6–17

    CAS  Google Scholar 

  • Amico F, Sorce E (1997) Medicinal plants and phytotherapy in Mussomeli area (Caltanissetta, Sicily, Italy). Fitoterapia 68:143–159

    Google Scholar 

  • Anderson JW, Baird P, Davis RH, Ferreri S, Knudtson M, Koraym A, Waters V, Williams CL (2009) Health benefits of dietary fiber. Nutr Rev 67:188–205

    PubMed  Google Scholar 

  • Andrade SE, Walker AM, Gottlieb LK, Hollenberg NK, Testa MA, Saperia GM, Platt R (1995) Discontinuation of antihyperlipidemic drugs—do rates reported in clinical trials reflect rates in primary care settings? N Engl J Med 332:1125–1131

    CAS  PubMed  Google Scholar 

  • Avallone R, Plessi M, Baraldi M, Monzani A (1997) Determination of chemical composition of carob (Ceratonia siliqua): protein, fat, carbohydrates, and tannins. J Food Compos Anal 10:166–172

    CAS  Google Scholar 

  • Ayaz FA, Torun H, Ayaz S, Correia PJ, Alaiz M, Sanz C, Gruz J, Strnad M (2007) Determination of chemical composition of anatolian carob pod (Ceratonia siliqua L.): sugars, amino and organic acids, minerals and phenolic compounds. J Food Qual 30:1040–1055

    CAS  Google Scholar 

  • Ayaz FA, Torun H, Glew RH, Bak ZD, Chuang LT, Presley JM, Andrews R (2009) Nutrient content of carob pod (Ceratonia siliqua L.) flour prepared commercially and domestically. Plant Food Hum Nutr 64:286–292

    CAS  Google Scholar 

  • Azab A (2017) Carob (Ceratonia siliqua): health, medicine and chemistry. Eur Chem Bull 10:456–469

    Google Scholar 

  • Balaban M (2004) Identification of the main phenolic compounds in wood of Ceratonia siliqua by GC-MS. Phytochem Anal 15:385–388

    CAS  PubMed  Google Scholar 

  • Bates SH, Jones RB, Bailey CJ (2000) Insulin-like effect of pinitol. Br J Pharmacol 130:1944–1948

    CAS  PubMed  PubMed Central  Google Scholar 

  • Battle I, Tous J (1997) Carob tree: Ceratonia siliqua L. – promoting the conservation and use of underutilized and neglected crops. 17. Bioversity International, Rome

    Google Scholar 

  • Baumgartner S, Genner-Ritzmann R, Haas J, Amado R, Neukom H (1986) Isolation and identification of cyclitols in carob pods (Ceratonia siliqua L.). J Agric Food Chem 34:827–829

    CAS  Google Scholar 

  • Bengoechea C, Romero A, Villanueva A, Moreno G, Alaiz M, Millán F, Guerrero A, Puppo M (2008) Composition and structure of carob (Ceratonia siliqua L.) germ proteins. Food Chem 107:675–683

    CAS  Google Scholar 

  • Biner B, Gubbuk H, Karhan M, Aksu M, Pekmezci M (2007) Sugar profiles of the pods of cultivated and wild types of carob bean (Ceratonia siliqua L.) in Turkey. Food Chem 100:1453–1455

    CAS  Google Scholar 

  • Bouzouita N, Khaldi A, Zgoulli S, Chebil L, Chekki R, Chaabouni M, Thonart P (2007) The analysis of crude and purified locust bean gum: a comparison of samples from different carob tree populations in Tunisia. Food Chem 101:1508–1515

    CAS  Google Scholar 

  • Corsi L, Avallone R, Cosenza F, Farina F, Baraldi C, Baraldi M (2002) Antiproliferative effects of Ceratonia siliqua L. on mouse hepatocellular carcinoma cell line. Fitoterapia 73:674–684

    CAS  PubMed  Google Scholar 

  • CustĂłdio L, Nogueira JMF, Romano A (2004) Sex and developmental stage of carob flowers affects composition of volatiles. J Hortic Sci Biotechnol 79:689–692

    Google Scholar 

  • CustĂłdio L, Fernandes E, Escapa AL, LĂłpez-AvilĂ©s S, Fajardo A, AliguĂ© R, AlberĂ­cio F, Romano A (2009) Antioxidant activity and in vitro inhibition of tumor cell growth by leaf extracts from the carob tree (Ceratonia siliqua). Pharm Biol 47:721–728

    Google Scholar 

  • CustĂłdio L, Escapa AL, Fernandes E, Fajardo A, Aligue R, Albericio F, Neng N, Nogueira JM, Romano A (2011a) Phytochemical profile, antioxidant and cytotoxic activities of the carob tree (Ceratonia siliqua L.) germ flour extracts. Plant Foods Hum Nutr 66:78–84

    PubMed  Google Scholar 

  • CustĂłdio L, Fernandes E, Escapa AL, Fajardo A, AliguĂ© R, AlberĂ­cio F, Neng NR, Nogueira JMF, Romano A (2011b) Antioxidant and cytotoxic activities of carob tree fruit pulps are strongly influenced by gender and cultivar. J Agric Food Chem 59:7005–7012

    PubMed  Google Scholar 

  • CustĂłdio L, Patarra J, AlberĂ­cio F, Neng NR, Nogueira JMF, Romano A (2015) In vitro antioxidant and inhibitory activity of water decoctions of carob tree (Ceratonia siliqua L.) on cholinesterases, α-amylase and α-glucosidase. Nat Prod Res 29:2155–2159

    PubMed  Google Scholar 

  • Dakia PA, Wathelet B, Paquot M (2007) Isolation and chemical evaluation of carob (Ceratonia siliqua L.) seed germ. Food Chem 102:1368–1374

    CAS  Google Scholar 

  • El Ansari Zineb BM, Alain B, Ahmed L (2017) Total polyphenols and gallic acid contents in domesticated carob (Ceratonia siliqua L.) pods and leaves. Int J Pure App Biosci 5:22–30

    Google Scholar 

  • El Batal H, Hasib A, Ouatmane A, Dehbi F, Jaouad A, Boulli A (2016) Sugar composition and yield of syrup production from the pulp of Moroccan carob pods (Ceratonia siliqua L.). Arab J Chem 9:S955–S959

    Google Scholar 

  • Eldahshan O (2011) Isolation and structure elucidation of phenolic compounds of carob leaves grown in Egypt. Curr Res J Biol Sci 3:52–55

    CAS  Google Scholar 

  • El-Neketi M, Ebrahim W, Lin W, Gedara S, Badria F, Saad H-EA, Lai D, Proksch P (2013) Alkaloids and polyketides from Penicillium citrinum, an endophyte isolated from the Moroccan plant Ceratonia siliqua. J Nat Prod 76:1099–1104

    CAS  PubMed  Google Scholar 

  • Ershoff BH, Wells AF (1962) Effects of gum guar, locust bean gum and carrageenan on liver cholesterol of cholesterol-fed rats. Proc Soc Exp Biol Med 110:580–582

    CAS  PubMed  Google Scholar 

  • Farag MA, El-Kersh DM (2017) Volatiles profiling in Ceratonia siliqua (Carob bean) from Egypt and in response to roasting as analyzed via solid-phase microextraction coupled to chemometrics. J Adv Res 8:379–385

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farag MA, Wessjohann LA (2012) Metabolome classification of commercial Hypericum perforatum (St. John Wort) preparations via UHPLC-qTOF-MS and chemmometrics. Planta Med 78(5):488–496

    CAS  PubMed  Google Scholar 

  • Farag MA, El-Ahmady SH, Elian FS, Wessjohann LA (2013) Metabolomics driven analysis of artichoke leaf and its commercial products via UHPLC–q-TOF-MS and chemometrics. Phytochemistry 95:177–187

    CAS  PubMed  Google Scholar 

  • Forestieri A, Galati E, Trovato A, Tumino G (1989) Effects of guar and carob gums on glucose, insulin and cholesterol plasma levels in the rat. Phytother Res 3:1–4

    CAS  Google Scholar 

  • Goulas V, Stylos E, Chatziathanasiadou MV, Mavromoustakos T, Tzakos AG (2016) Functional components of carob fruit: linking the chemical and biological space. Int J Mol Sci 17:1875

    PubMed Central  Google Scholar 

  • Gruendel S, Garcia AL, Otto B, Mueller C, Steiniger J, Weickert MO, Speth M, Katz N, Koebnick C (2006) Carob pulp preparation rich in insoluble dietary fiber and polyphenols enhances lipid oxidation and lowers postprandial acylated ghrelin in humans. J Nutr 136:1533–1538

    CAS  PubMed  Google Scholar 

  • Haber B (2003) Carob product based antiinflammatory or chemopreventative agent. Eur Patent 366:A3

    Google Scholar 

  • Haber, B., Kiy, T., Hausmanns, S., Ruesing, M. (2006). Dietary foodstuff for positively influencing cardiovascular health. Google Patents

    Google Scholar 

  • Harper JL, Lovell P, Moore K (1970) The shapes and sizes of seeds. Annu Rev Ecol Evol Syst 1:327–356

    Google Scholar 

  • Hassanein KM, Youssef MKE, Ali HM, El-Manfaloty MM (2015) The influence of carob powder on lipid profile and histopathology of some organs in rats. Comp Clin Pathol 24:1509–1513

    CAS  Google Scholar 

  • Hsouna AB, Saoudi M, Trigui M, Jamoussi K, Boudawara T, Jaoua S, El Feki A (2011) Characterization of bioactive compounds and ameliorative effects of Ceratonia siliqua leaf extract against CCl4 induced hepatic oxidative damage and renal failure in rats. Food Chem Toxicol 49:3183–3191

    PubMed  Google Scholar 

  • Hsouna AB, Trigui M, Jarraya RM, Damak M, Jaoua S (2015) Identification of phenolic compounds by high performance liquid chromatography/mass spectrometry (HPLC/MS) and in vitro evaluation of the antioxidant and antimicrobial activities of Ceratonia siliqua leaves extracts. J Med Plant Res 9:479–485

    Google Scholar 

  • Karim AA, Azlan A (2012) Fruit pod extracts as a source of nutraceuticals and pharmaceuticals. Molecules 17:11931–11946

    PubMed  PubMed Central  Google Scholar 

  • Kim MJ, Yoo KH, Kim JH, Seo YT, Ha BW, Kho JH, Shin YG, Chung CH (2007) Effect of pinitol on glucose metabolism and adipocytokines in uncontrolled type 2 diabetes. Diabetes Res Clin Pract 77:S247–S251

    CAS  PubMed  Google Scholar 

  • Kivçak B, Mert T, Ă–ztĂĽrk HT (2002) Antimicrobial and cytotoxic activities of Ceratonia siliqua L. extracts. Turkish. J Biol 26:197–200

    Google Scholar 

  • Klenow S, Jahns F, Pool-Zobel BL, Glei M (2009) Does an extract of carob (Ceratonia siliqua L.) have chemopreventive potential related to oxidative stress and drug metabolism in human colon cells? J Agric Food Chem 57:2999–3004

    CAS  PubMed  Google Scholar 

  • Kumazawa S, Taniguchi M, Suzuki Y, Shimura M, Kwon M-S, Nakayama T (2002) Antioxidant activity of polyphenols in carob pods. J Agric Food Chem 50:373–377

    CAS  PubMed  Google Scholar 

  • Loeb H, Vandenplas Y, WĂĽrsch P, Guesry P (1989) Tannin-rich carob pod for the treatment of acute-onset diarrhea. J Pediatr Gastroenterol Nutr 8:480–485

    CAS  PubMed  Google Scholar 

  • Loullis A, Pinakoulaki E (2017) Carob as cocoa substitute: a review on composition, health benefits and food applications. Eur Food Res Technol:244(6)1–19

    Google Scholar 

  • Meziani S, Oomah BD, Zaidi F, Simon-Levert A, Bertrand C, Zaidi-Yahiaoui R (2015) Antibacterial activity of carob (Ceratonia siliqua L.) extracts against phytopathogenic bacteria Pectobacterium atrosepticum. Microb Pathog 78:95–102

    CAS  PubMed  Google Scholar 

  • Milek Dos Santos L, Tomzack Tulio L, Fuganti Campos L, Ramos Dorneles M, Carneiro Hecke KrĂĽger C (2015) Glycemic response to carob (Ceratonia siliqua L) in healthy subjects and with the in vitro hydrolysis index. Nutr Hosp 31:482–487

    Google Scholar 

  • Moosmann B, Behl C (2004) Selenoprotein synthesis and side-effects of statins. Lancet 363:892–894

    CAS  PubMed  Google Scholar 

  • Morton JF (1987) Carob. In: Fruits of warm climates. JF Morton, Miami

    Google Scholar 

  • Narayanan C, Joshi D, Mujumdar A, Dhekne V (1987) Pinitol—a new anti-diabetic compound from the leaves of Bougainvillea spectabilis. Curr Sci 56:139–141

    CAS  Google Scholar 

  • Orwa C, Mutua A, Kindt R, Jamnadass R, Simons A (2009) Agroforestree database: a tree species reference and selection guide version 4.0. World Agroforestry Centre ICRAF, Nairobi

    Google Scholar 

  • Owen R, Haubner R, Hull W, Erben G, Spiegelhalder B, Bartsch H, Haber B (2003) Isolation and structure elucidation of the major individual polyphenols in carob fibre. Food Chem Toxicol 41:1727–1738

    CAS  PubMed  Google Scholar 

  • Owis AI, El-Naggar E-MB (2016) Identification and quantification of the major constituents in Egyptian carob extract by liquid chromatography–electrospray ionization-tandem mass spectrometry. Pharmacogn Mag 12:S1

    PubMed  PubMed Central  Google Scholar 

  • Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med Cell Longev 2:270–278

    Google Scholar 

  • Papagiannopoulos M, Wollseifen HR, Mellenthin A, Haber B, Galensa R (2004) Identification and quantification of polyphenols in Carob Fruits (Ceratonia siliqua L.) and derived products by HPLC-UV-ESI/MS n. J Agric Food Chem 52:3784–3791

    CAS  PubMed  Google Scholar 

  • Phillips DV, Dougherty DE, Smith AE (1982) Cyclitols in soybean. J Agric Food Chem 30:456–458

    CAS  PubMed  Google Scholar 

  • Picariello G, Sciammaro L, Siano F, Volpe MG, Puppo MC, Mamone G (2017) Comparative analysis of C-glycosidic flavonoids from Prosopis spp. and Ceratonia siliqua seed germ flour. Food Res Int 99:730–738

    CAS  PubMed  Google Scholar 

  • Ranilla LG, Kwon Y-I, Apostolidis E, Shetty K (2010) Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America. Bioresour Technol 101:4676–4689

    CAS  PubMed  Google Scholar 

  • Romano A, CustĂłdio L, Fernandes E (2007) Study of the antioxidant activity of extracts from carob tree (Ceratonia siliqua L.). II International symposium on human health effects of fruits and vegetables: FAVHEALTH 2007(841):507–510

    Google Scholar 

  • Roseiro LB, Duarte LC, Oliveira DL, Roque R, Bernardo-GIL MG, Martins AI, SepĂşlveda C, Almeida J, Meireles M, GĂ­rio FM (2013a) Supercritical, ultrasound and conventional extracts from carob (Ceratonia siliqua L.) biomass: effect on the phenolic profile and antiproliferative activity. Ind Crop Prod 47:132–138

    CAS  Google Scholar 

  • Roseiro LB, Duarte LC, Oliveira DL, Roque R, Bernardo-GIL MG, Martins AI, SepĂşlveda C, Almeida J, Meireles M, GĂ­rio FM, Rauter AP (2013b) Supercritical, ultrasound and conventional extracts from carob (Ceratonia siliqua L.) biomass: effect on the phenolic profile and antiproliferative activity. Ind Crop Prod 47:132–138

    CAS  Google Scholar 

  • Roseiro LB, Tavares CS, Roseiro JC, Rauter AP (2013c) Antioxidants from aqueous decoction of carob pods biomass (Ceretonia siliqua L.): optimisation using response surface methodology and phenolic profile by capillary electrophoresis. Ind Crop Prod 44:119–126

    CAS  Google Scholar 

  • Rtibi K, Selmi S, Grami D, Amri M, Eto B, El-Benna J, Sebai H, Marzouki L (2017a) Chemical constituents and pharmacological actions of carob pods and leaves (Ceratonia siliqua L.) on the gastrointestinal tract: a review. Biomed Pharmacother 93:522–528

    CAS  PubMed  Google Scholar 

  • Rtibi K, Selmi S, Grami D, Saidani K, Sebai H, Amri M, Eto B, Marzouki L (2017b) Ceratonia siliqua L.(immature carob bean) inhibits intestinal glucose absorption, improves glucose tolerance and protects against alloxan-induced diabetes in rat. J Sci Food Agric 97:2664–2670

    CAS  PubMed  Google Scholar 

  • Ruiz-Roso B, Quintela JC, De la Fuente E, Haya J, PĂ©rez-Olleros L (2010) Insoluble carob fiber rich in polyphenols lowers total and LDL cholesterol in hypercholesterolemic sujects. Plant Foods Hum Nutr 65:50–56

    CAS  PubMed  Google Scholar 

  • Sebai H, Souli A, Chehimi L, Rtibi K, Amri M, El-Benna J, Sakly M (2013) In vitro and in vivo antioxidant properties of Tunisian carob (Ceratonia siliqua L.). J Med Plants Res 7:85–90

    CAS  Google Scholar 

  • Shawakfeh K, Ereifej K (2005) Pod characteristics of two Ceratonia siliqua L. varieties from Jordan. Ital J Food Sci 17:187–194

    CAS  Google Scholar 

  • Sigge G, Lipumbu L, Britz T (2011) Proximate composition of carob cultivars growing in South Africa. S Afr J Plant Soil 28:17–22

    CAS  Google Scholar 

  • Sivakumar S, Palsamy P, Subramanian SP (2010) Impact of D-pinitol on the attenuation of proinflammatory cytokines, hyperglycemia-mediated oxidative stress and protection of kidney tissue ultrastructure in streptozotocin-induced diabetic rats. Chem Biol Interact 188:237–245

    CAS  PubMed  Google Scholar 

  • Son D-W, Lee J-W, Lee P-J, Bae K-H (2010) Glycemic index of Insu 100® herbal preparation containing Korean red ginseng, carob, mulberry, and banaba. J Ginseng Res 34:89–92

    Google Scholar 

  • Talibi I, Askarne L, Boubaker H, Boudyach E, Msanda F, Saadi B, Ait Ben Aoumar A (2012) Antifungal activity of Moroccan medicinal plants against citrus sour rot agent Geotrichum candidum. Lett Appl Microbiol 55:155–161

    CAS  PubMed  Google Scholar 

  • Tetik N, YĂĽksel E (2014) Ultrasound-assisted extraction of d-pinitol from carob pods using response surface methodology. Ultrason Sonochem 21:860–865

    CAS  PubMed  Google Scholar 

  • Tetik N, Turhan I, Oziyci HR, Karhan M (2011) Determination of D-pinitol in carob syrup. Int J Food Sci Nutr 62:572–576

    CAS  PubMed  Google Scholar 

  • Torun H, Ayaz FA, Colak N, GrĂşz J, Strnad M (2013) Phenolic acid content and free radical-scavenging activity of two differently processed carob tree (Ceratonia siliqua L.) pod. Food Nutr Sci 4:547

    CAS  Google Scholar 

  • Tous J, Ferguson L (1996) Mediterranean fruits. Prog New Crops:416–430

    Google Scholar 

  • Turhan I (2014) Relationship between sugar profile and D-pinitol content of pods of wild and cultivated types of carob bean (Ceratonia siliqua L.). Int J Food Prop 17:363–370

    CAS  Google Scholar 

  • Turhan I, Tetik N, Aksu M, Karhan M, Certel M (2006) Liquid–solid extraction of soluble solids and total phenolic compounds of carob bean (Ceratonia siliqua L.). J Food Process Eng 29:498–507

    Google Scholar 

  • Turnbull LA, Santamaria L, Martorell T, Rallo J, Hector A (2006) Seed size variability: from carob to carats. Biol Lett 2:397–400

    PubMed  PubMed Central  Google Scholar 

  • Valero-Muñoz M, MartĂ­n-Fernández B, Ballesteros S, Lahera V, de las Heras N (2014) Carob pod insoluble fiber exerts anti-atherosclerotic effects in rabbits through sirtuin-1 and peroxisome proliferator-activated receptor-Îł coactivator-1α–3. J Nutr 144:1378–1384

    PubMed  Google Scholar 

  • Vaya J, Mahmood S (2006) Flavonoid content in leaf extracts of the fig (Ficus carica L.), carob (Ceratonia siliqua L.) and pistachio (Pistacia lentiscus L.). Biofactors 28:169–175

    CAS  PubMed  Google Scholar 

  • Wursch P (1991) Treatment of diarrhoea with compositions derived from carob pod. Google Patents

    Google Scholar 

  • Yamamoto Y, Sogawa I, Nishina A, Saeki S, Ichikawa N, Iibata S (2000) Improved hypolipidemic effects of xanthan gum-galactomannan mixtures in rats. Biosci Biotechnol Biochem 64:2165–2171

    CAS  PubMed  Google Scholar 

  • Youssef MKE, El-Manfaloty MM, Ali HM (2013) Assessment of proximate chemical composition, nutritional status, fatty acid composition and phenolic compounds of carob (Ceratonia Siliqua L.). Food Public Health 3:304–308

    Google Scholar 

  • Zavoral JH, Hannan P, Fields DJ, Hanson MN, Frantz ID, Kuba K, Elmer P, Jacobs DR Jr (1983) The hypolipidemic effect of locust bean gum food products in familial hypercholesterolemic adults and children. Am J Clin Nutr 38:285–294

    CAS  PubMed  Google Scholar 

  • Zunft H, LĂĽder W, Harde A, Haber B, Graubaum H, Koebnick C, GrĂĽnwald J (2003) Carob pulp preparation rich in insoluble fibre lowers total and LDL cholesterol in hypercholesterolemic patients. Eur J Nutr 42:235–242

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed A. Farag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rasheed, D.M., El-Kersh, D.M., Farag, M.A. (2019). Ceratonia siliqua (Carob-Locust Bean) Outgoing and Potential Trends of Phytochemical, Economic and Medicinal Merits. In: Mariod, A. (eds) Wild Fruits: Composition, Nutritional Value and Products. Springer, Cham. https://doi.org/10.1007/978-3-030-31885-7_36

Download citation

Publish with us

Policies and ethics