Massively parallel functional analysis of missense mutations in *BRCA1* for interpreting variants of uncertain significance

Lea Starita, PhD @lea_starita Shendure and Fields Labs Department of Genome Sciences University of Washington

Variants of uncertain significance (VUS)

1 RING	BRCA1	BRCT	1863
--------	-------	------	------

How do we interpret the impact of genetic variation at scale?

Massively parallel functional assays for assessing function of missense variants

Biochemical functions of BRCA1

ubiquitin ligase activity

Multiplex assays for BRCA1 protein function and splicing

Experiments 1 and 2: BARD1-BRCA1-RING E3 ligase activity BARD1-BRCA1-RING interaction

Experiment 3:

Saturation genome editing to assess the effect of SNVs on splicing.

Multiplex assays for BRCA1 protein function and splicing

Experiments 1 and 2: BARD1-BRCA1-RING E3 ligase activity BARD1-BRCA1-RING interaction

Experiment 3:

Saturation genome editing to assess the effect of SNVs on splicing.

Massively parallel assays for the BRCA1-RING E3 ligase and BARD1-binding activities

Massively parallel assays for the BRCA1-RING E3 ligase and BARD1-binding activities

How can we leverage these measurements to estimate the likelihood that a BRCA1 variant would be pathogenic?

How can we leverage these measurements to estimate the likelihood that a BRCA1 variant would be pathogenic? to understand the homology-directed DNA repair (HDR) function of BRCA1?

Ransburgh et al. Cancer Research 2010

Experimental data build a better predictor of BRCA1 HDR function

HDR predictions for clinical BRCA1 variants

HDR predictions for 1,287 BRCA1 variants not yet seen in patients

HDR predictions for 1,287 BRCA1 variants not yet seen in patients

Multiplex assays for BRCA1 protein function and splicing

Experiments 1 and 2: BARD1-BRCA1-RING E3 ligase activity BARD1-BRCA1-RING interaction

Experiment 3:

Saturation genome editing to assess the effect of SNVs on splicing.

Multiplex genome editing to measure the effects of SNVs on splicing

- 1. CRISPR-Cas9 construct targeting BRCA1 exon 18
- Repair template library to substitute SNVs within the exon.

Findlay, Boyle et al., Nature (2014).

Multiplex genome editing to measure the effects of SNVs on splicing

Multiplex genome editing to measure the effects of SNVs on splicing

Variants that create splice enhancers and silencers or trigger nonsense-mediated decay behave as expected

* defined from Ke et al. 2011

Effects of SNVs across BRCA1 exon 18

---- *Dashed lines represent nonsense mutations

Effects of SNVs across BRCA1 exon 18

MutPred Splice annotations:

- C49G "Splice Affecting Variant"
- A53G "ESE Loss / ESS Gain"
- A56G "ESE Loss"
- G63T "Cryptic 5' SS"
- T67G "Cryptic 5' SS" aka VUS V1714G

In summary

Parallelized assays for the protein function of the RING domain of BRCA1

Saturation genome editing to understand the effect of missense variants on splicing

Next steps...

Suggestions?

Challenges for scaling up

Library construction and variant delivery

Parallelizable assays for protein function

Sequencing of variants

Computational variant scoring pipeline

Calculate likelihood estimates for pathogenicity

How the results from massively parallel assays could get to the bedside...

hhmi

Shendure lab

Fields lab

Dave Young Justin Gullingsrud

Fowler lab

Parvin lab

Muhtadi Islam The Ohio State University

Kitzman lab

University of Michigan

Funding from the Yeast Resource Center NIH P41

The effects of missense SNVs on splicing and protein function are difficult to predict

Stop Gain $\sqrt{}$

Frameshift 🔨 🛛 Missense ?

Splicing effects

Multiplex genome editing to determine effects of SNVs on splicing of exon 18 of BRCA1 Findlay et al. Nature 2014

Learning the Sequence Determinants of Alternative Splicing from Millions of **Random Sequences** Rosenberg et al. Cell 2015

Scoring full-length BRCA1 variants for HDR function in human cells

Muhtadi Islam and Jeff Parvin

Scoring full-length BRCA1 variants for HDR function in human cells

HDR rescue assay

Construction of the barcoded single amino acid substitution BRCA1-RING library

Multiplex genome editing to measure the effects of SNVs on splicing

Prospective functional map for 1,287 BRCA1 RING variants

Massively parallel assays for BRCA1-RING E3 ligase activity

Massively parallel assays for BRCA1-RING E3 ligase activity

Massively parallel assays for the BRCA1-RING E3 ligase and BARD1-binding activities

Massively parallel assays for the BRCA1-RING E3 ligase and BARD1-binding activities

Genetic testing is big business

More companies, lower costs, more genes*

*41.7% of tests revealed a VUS in at least one gene

Tung et al. Frequency of mutations in individuals with breast cancer referred for *BRCA1* and *BRCA2* testing using next-generation sequencing with a 25-gene panel. *Cancer* 2015

We need new technologies to deliver on the promises of genetic medicine

THE PRECISION MEDICINE INITIATIVE

https://www.whitehouse.gov/precision-medicine

Massively parallel functional analyses are a possible solution

Starita et al. *Genetics*, 2015 Findlay et al. *Nature*, 2014 Rosenberg et al. *Cell*, 2015 Patwardhan et al. *Nature Biotech*, 2012 Fowler et al. *Nature Methods*, 2010