
The eMERGE Network

eMERGE WORKGROUPS				
Clinical Annotation	EHR Integration			
Genomics	Outcomes			
PGx	Phenotyping			
Return of Results/ELSI				
eMERGE SUPPLEMENTS				
Geocoding	Health Care Provider Survey			
Phenotyping – OMOP Model				
eMERGE SUBGROUPS				
Familial Implications of ROR	HLA			
Infobutton	ROR Legal Considerations			
Participant Survey	Phenotype Variables			

eMERGE PHASE III: SEPTEMBER 2015 - MAY 2019

eMERGE

E1 2007-2011

Can EMR and biobank be used for genomic research?

- Genome-wide genotyping
- GWAS

E2 2011-2015

Can genomic findings be applied in clinical care and how?

- Clinical implementation Pilots
- GWAS

E3 2015-2019

Can sequencing technology improve genomic discovery and clinical implementations?

- Sequencing
- Clinical implementation
- GWAS

ELSI Research

eMERGE III: What do we do?

SPECIFIC AIMS of the **eMERGE Network**

- Sequence and assess clinically relevant genes presumed to affect gene function in about 25,000 individuals
 - 2 Assess the phenotypic implications of these variants

3 Integrate genetic variants into EMRs for clinical care

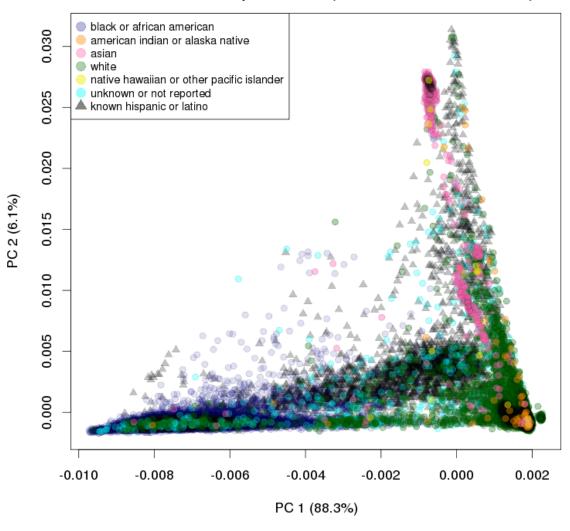
4 Create community resources

Impact: 110k genomic dataset

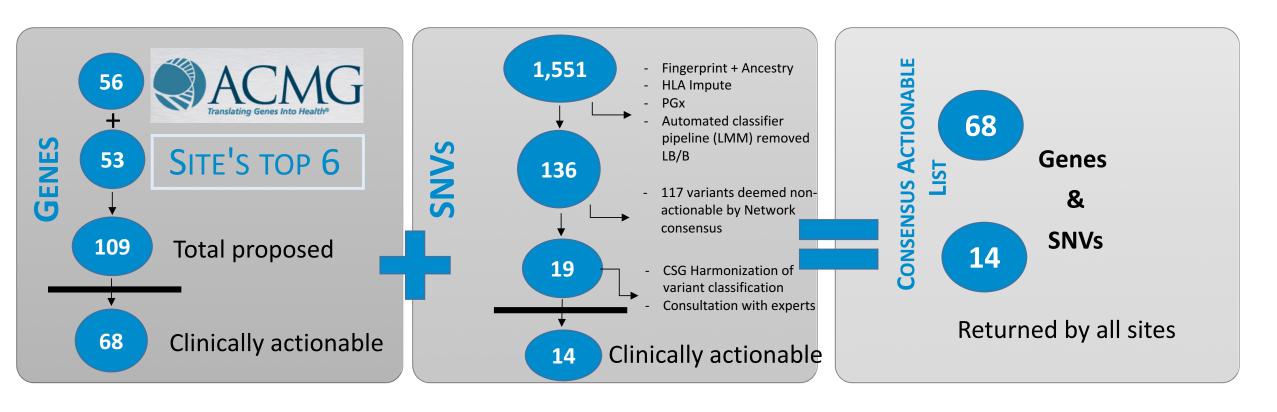
- Data on over 110,000 participants and informatics tools with which to harness the data
- eMERGE Record Counter
 - Drag and drop demographics, phenotypes, ICD codes to obtain preliminary cohort counts
- SPHINX (<u>Sequence and PH</u>enotype <u>IN</u>tegration Exchange)⁺
 - Search catalog by genes, drugs, rsID and pathways
 - For each gene view: SNVs, pathways, drug interactions
 - For each variant view: SNPid, category, frequencies
 - European, African, & Asian ancestry allele data

Set Name	Platform	Count
el-elll Merged*	GWAS	83,717
Exome chip	Exome	12,330
Whole exome	Sequencing	3,745
PGx	Sequencing	9,010
Whole genome	Sequencing	1,800
eMERGEseq	Sequencing	25,000
Total Current		111,078
Total Expected		136,078

^{*}el-II: 55,029 samples; and eIII: 28,688 samples

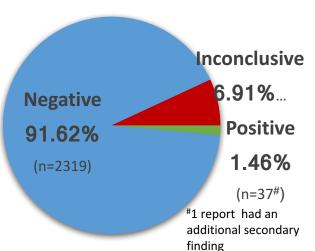

^{*}Rasmussen-Torvik LJ, Stallings SC, Gordon AS, Almoguera B, Basford MA, et al. Design and Anticipated Outcomes of the eMERGE-PGx Project: A Multicenter Pilot for Preemptive Pharmacogenomics in Electronic Health Record Systems. Clinical Pharmacology & Therapeutics. 2014 Oct; 96(4):482-

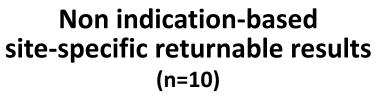
^{9.} PMID: 24960519 PMCID: PMC4169732


Deliverable: Imputation and merging of el-III GWAS data

- Imputation of all eMERGE array data against the HRC reference using the Michigan Imputation Server
- HRC reference contains 39,235,157 SNPs, no indels, provides access to rare variation (low as 0.1%)
- 83,717 individuals in data set released to network
 - Principle components analysis (PCA) examined ancestry

PCA of el-III imputation (Chr 1-22, n = 83717)

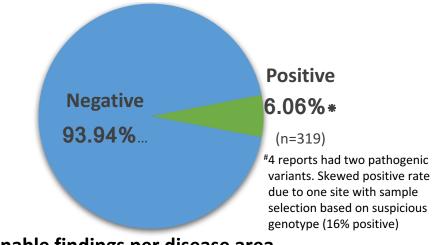

Deliverable: Development of an eMERGEseq Platform

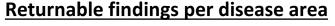

- Clinical reports are generated on the "Consensus Actionable List" and any specific genes or SNVs requested by individual sites
- To date: 14,077 samples sequenced and 3,716 reports issued

Partners-Broad Interpretation and Reporting: Review of 5268 cases

Indication-based returnable results (n=2531)

Non indication-based consensus returnable results** (n=5268)

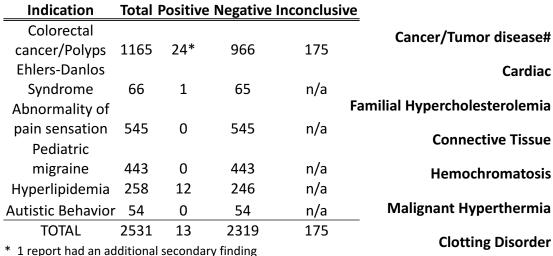


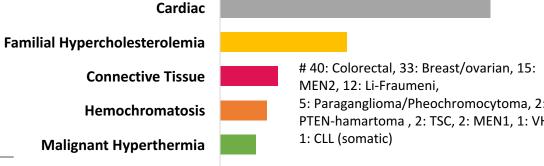

Negative

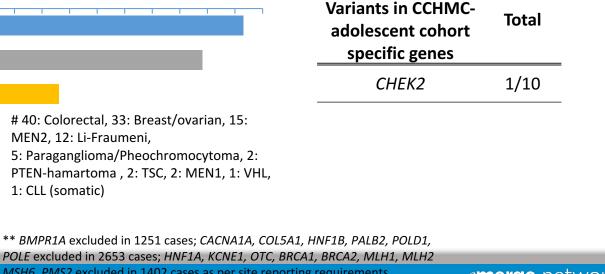
(n=9)

90%

Path/Likely Path

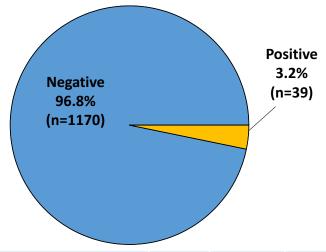





Clotting Disorder

Endocrine (Diabetes)

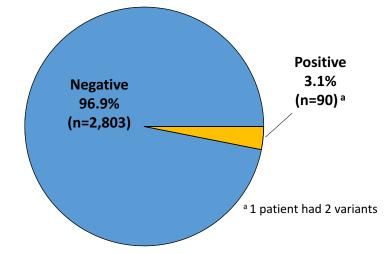
MSH6, PMS2 excluded in 1402 cases as per site reporting requirements

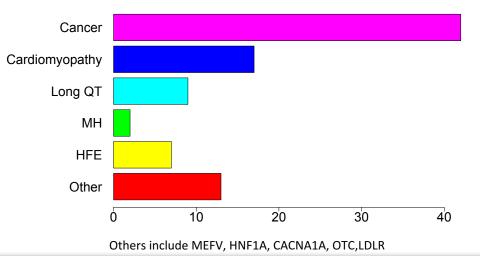

Positive

(n=1)

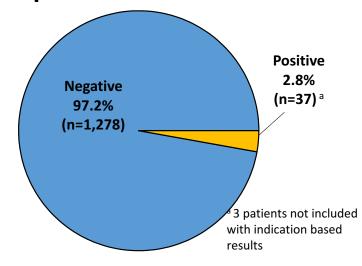
10%

Interpretation & reporting: Baylor


Indication based returnable results



Indications	Total	Positive	Negative
Cardiomyopathy	1	1	0
Cardiac Arrythmia	31	0	31
Hyperlipidemia ^{a, b}	808	22	786
Colorectal Cancer	595	3	592
Breast/Ovarian Cancer ^c	72	16	56

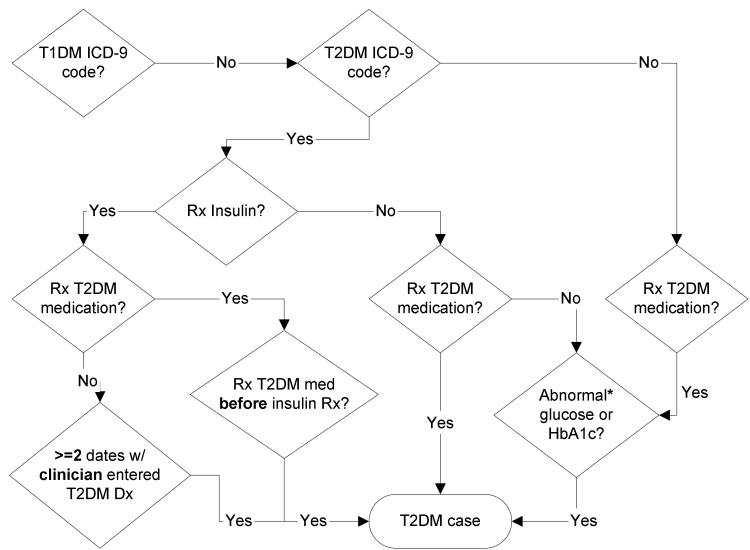

^a 298 patients had colorectal cancer and hyperlipidemia

Non indication based consensus returnable results

Non indication based site-specific returnable results

Path and Lpath variants in NU and Vanderbilt specific returned	Total
CHEK2	24
ATM	7
SERPINA1	3
MC4R	3
F11, FLG, KCNE2 (x1)	3

^b Hyperlipidemia includes FH, hypertriglyceridemia, hyperlipidemia and coronary artery disease indications.


 $^{^{\}rm c}$ All $\,$ returned genes belong to the 68 consensus $\,$ except for CHEK2 in $\,$ a breast cancer patient

Impact: Electronic phenotyping & PheKB

- PheKB (<u>Phe</u>notype <u>K</u>nowledge<u>B</u>ase)
 - Collaborative environment to building and validating electronic algorithms
 - Computational algorithm library
 - 37 finalized, public phenotypes
- Demonstrated feasibility of use in Genomic Medicine
- Tools and process allowed for computational and algorithm development cross collaboration around the world

Kirby JC, Speltz P, Rasmussen LV, Basford M, Gottesman O, et al. *PheKB: a catalog and workflow for creating electronic phenotype algorithms for transportability.* J Am Med Inform Assoc. 2016 Nov;23(6):1046-1052. doi: 10.1093/jamia/ocv202. **PMID: 27026615 PMCID: PMC5070514.**

Type II Diabetes Case Algorithm

^{*} Abnormal lab= Random glucose > 200mg/dl, Fasting glucose > 125 mg/dl, or hemoglobin A1c ≥6.5%.

Phenotype Development Workflow

Tool Support

Create

- • Phenotype algorithm and data dictionary are in development
 - Share algorithm with project team
 - Standardize Phenotype Development
 - Standardize data collection

Validate

- Algorithm and Data Dictionary in review by validation site(s)
 - Share algorithm with validation team
 - Validate algorithm
 - Validate Data Dictionary

Dictionary/Dataset Validation

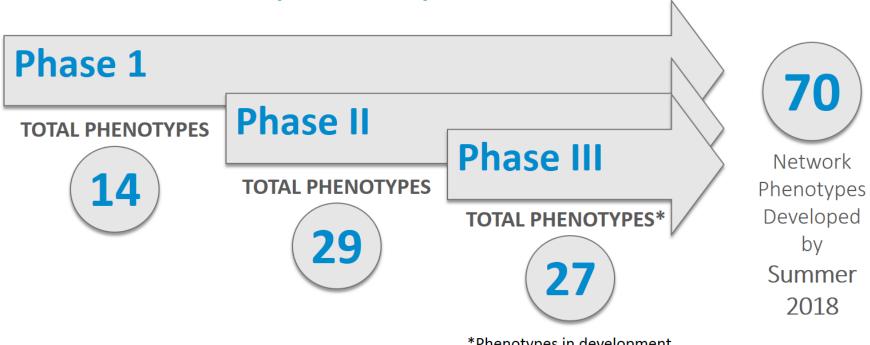
Share

- Share and implement algorithm and data dictionary for multi-site data collection
 - ❖ Validate Dataset against Data dictionary

Dictionary/Dataset Validation

eMERGE

RecordCounter



Publish

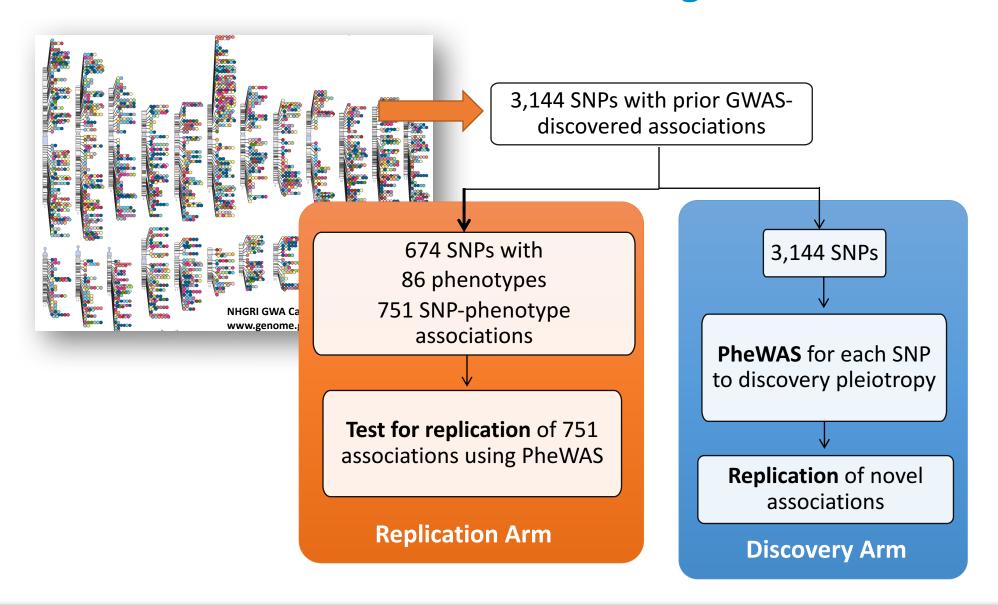
 Phenotype published and Algorithm is sharable to public Phe**KB**

Phenotypes

PHENOTYPES: Development & Implementation

*Phenotypes in development

emerge network eMERGE and Beyond Workshop


Impact: eMERGE PheWAS

 Developed methods for large scale genotype/phenotype analyses and implemented them across an entire collaborative Network

- Phenome-wide association studies (PheWAS)
 - 3144 SNPS present in NHGRI catalog (2012) in 13,835 individuals across 5 sites.
 - 1358 phenotypes analyzed for each SNP
 - Addition of Neanderthal PheWAS catalogue
 - Creation of Phecode mappings from ICD codes

Denny JC, Bastarache L, Ritchie MD et al. *Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data*. Nat Biotechnol. 2013 Dec;31(12):1102-10. **PMID: 24270849 PMCID: PMC3969265**

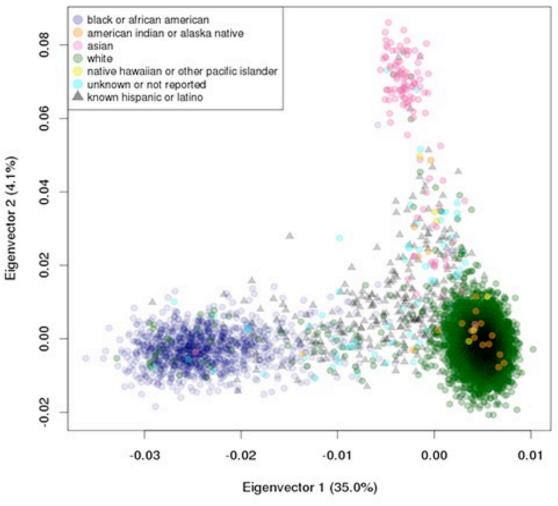
PheWAS of "all" NHGRI GWAS Catalog SNPs

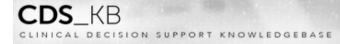
Impact: eMERGE Pharmacogenomics (PGx)

- Multi-site test of the concept that genetic sequence information can be coupled to electronic medical records (EMRs) for use in healthcare
- Genetic sequencing on a 9010 participant data set
 - Sequencing and phenotype data available on SPHINX
- 82 pharmacogenetic genes investigated
- Many more opportunities for research on these data
 - PGx SNVs on the eMERGE-Seq panel
- Sites continue to collect utilization and outcomes data

Bush WS, Crosslin DR, Owusu-Obeng A, Wallace J, Almoguera B. et al. *Genetic variation among 82 pharmacogenes: The PGRNseq data from the eMERGE network. Clin Pharmacol Ther. 2016 Aug;100(2):160-9. doi: 10.1002/cpt.350.* **PMID: 26857349 PMCID: PMC5010878.**

Deliverable: PGRNseq multi-sample calling


 Original PGRNseq aligned to multiple references used by the original five sequencing centers


• All 9010 BAMs re-aligned to the same genome reference hs37d5.fa

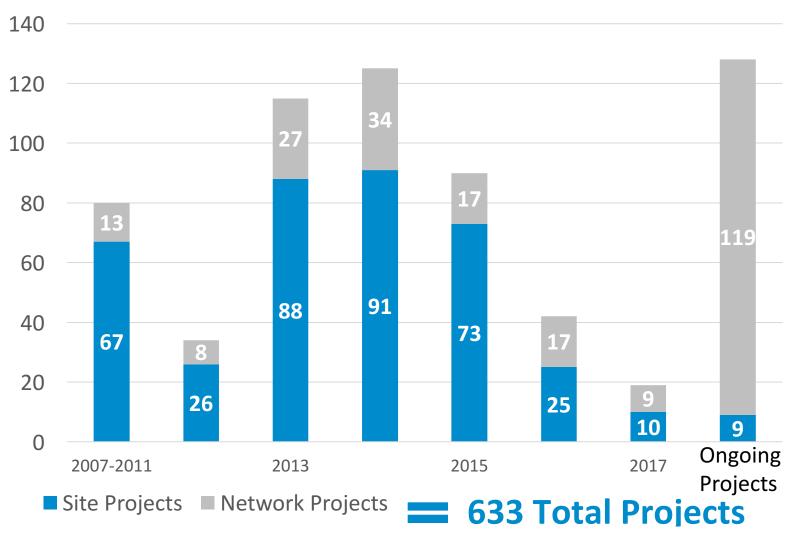
 9010 individuals in data set provided to the network for analysis

 Principle components analysis (PCA) examined ancestry

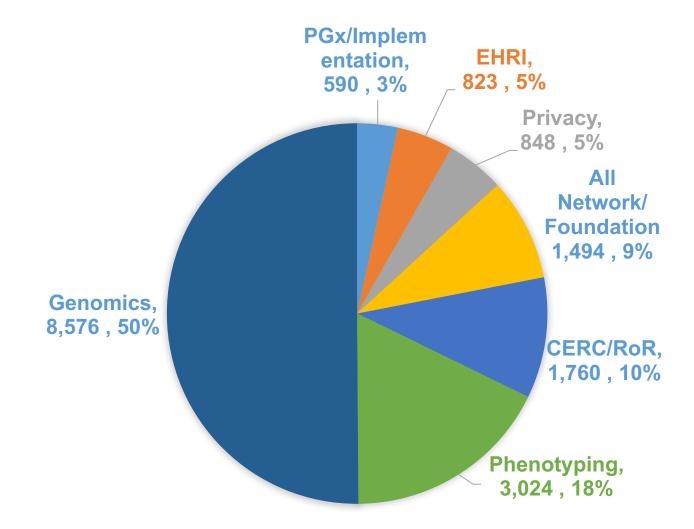
Impact: Return of genomic data via EMR

- Infrastructure and tools, in particular decision support tools, to enable genomic medicine
- InfoButton*
 - Explored use of infobuttons as a decision support tool to provide context specific links within the electronic health record (EHR) to relevant genomic medicine content
 - Assessed the coverage of content topics among information resources developed
- CDS_KB (<u>Clinical Decision Support Knowledge Base</u>)
 - Partnership with IGNITE network
 - Goal is to catalog and share CDS implementation artifacts and design considerations for genomic medicine programs from a broad community of institutions

^{*(}Overby CL, Rasmussen LV, Hartzler A, Connolly JJ, Peterson JF, et al. *A Template for Authoring and Adapting Genomic Medicine Content in the eMERGE Infobutton Project*. AMIA Annu Symp Proc. 2014 Nov 14;2014:944-53. **PMID: 25954402 PMCID: PMC4419923.**)

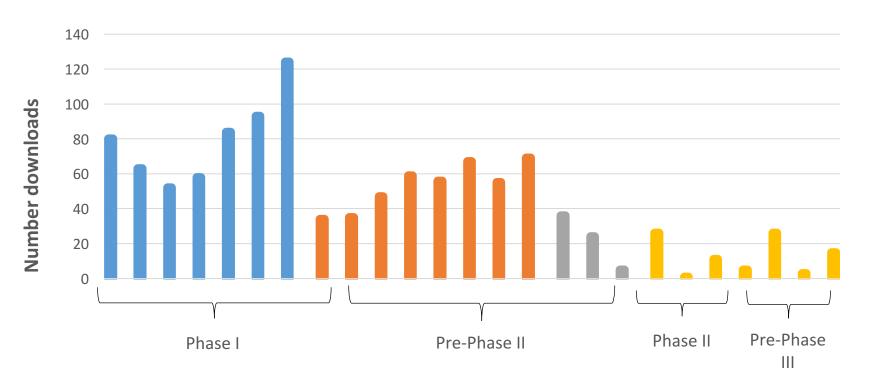


Impact: Network wide analyses 'DNAnexus'


- Utilization for sharing and managing genetic data in a cloudbased system
- Network seminar series demonstrating utility of the analysis pipeline and development of apps
 - Large scale analyses possible for all investigators, regardless of local computing power
- DNAnexus houses Network wide genetic datasets
 - GWAS
 - Including a subset of geocoded samples
 - PGRNseq
 - eMERGEseq

Impact: *e***MERGE Publications** *2007-2017*

Number of Published Projects Through August 2017


Citations of eMERGE Publications by Category

Cumulative Citation Counts: 17,115 (2007-March 2017)

Impact: dbGaP & Website analytics 2007-2017

Data Reuse: # Downloads of e MERGE dbGaP Submissions as of August 2017

eMERGE dbGaP Submissions

> 1100 external downloads as of August 2017

PERCTRONIC MEDICAL RECORDS & GENOMICS

eMERGE Website

Average usage past 6 months

- 63.1% new visitors
- 1596 sessions/month
- 1043 users/month
- Views from 96 countries

•

PheKB Website

Average usage past 6 months

- 56.2% new visitors
- 1171 sessions/month
- 540 users/month
- Views from 76 countries

eMERGE Tools

discovering phenotypes from electronic medical records

Infobutton Project template MyResults.org

An **informational tool** for educating patients about genetic test results

*e*merge ModelConsentLanguage

SPHINX

A data exploration tool for genetics-related drug response hypothesis generation

PheWAS catalog

Additional Tools

GENOTYPING tools

CDS tools

PHENOTYPING tools

Natural Language Processing (NLP) Tools

eMERGE III: Future Deliverables

- dbGaP submissions
 - GWAS el-III imputed set (ready to submit)
 - Interim (Fall 2017) and final eMERGEseq data
- Return of clinical results and EHR integration at all sites
 - Establishment of IT support for return of results processes based on data delivered through the network
 - Analysis of solutions, challenges and lessons learned
 - Manuscripts and methods documentation of Network-wide efforts
 - Sharing with CDSKB and standard bodies as appropriate
- Outcomes analysis for effect of return of results on patients and providers across sites
 - Compare differences in health outcomes and provider behaviors for return of negative and positive results
 - EHR and survey based methods for examining patient impacts and changes in care or awareness by providers
- Creation and deployment of 27 phenotypes, 8 deployed to date
 - 25 el-III imputed GWAS
 - 13 PGRNseq
 - 24 eMERGEseq

Questions??

eMERGE Demonstration Dissemination Development Discovery Methods/Tools Genomic Variants Evidence Implementation Protection of **GWAS & PheWAS** Clinical Validity **Implementation Human Subjects** Phenotype Sensitivity strategies

- Privacy
- Informed consent
- GM education **EMR Phenotyping**
- Validation
- Harmonization Genomic data QC **GWAS PheWAS Clinical Decision** Support

- Heterogeneities Specificity
- Co-morbidities
- Complications
- Genetic-covariate
- Interactions among variants
- Family history
- Environment interactions
- Physical
- Psychosocial
- Treatment response

- Prevalence/penetrance

Clinical & Personal

Utilities

- Health outcomes
- Clinical diagnosis
- Risk factor modification
- Medication selection
- Provider behavior **Health Benefits and** Risks

- Evidence-based interaction/interv ention
- Target population
- Stakeholders' adoption **Evaluations**
- Patients
- Health providers
- Costeffectiveness

Best Practices Clinical Care Science

eMERGE Geocoding

Factors	Source	Resolution	National/ Local
Demographics	Coordinating Center/Site EDW	Patient Level	National
SES	Census/ACS	Block Group Level	National
Built Environment	RUCA (rural-urban-commuting- area-codes	Tract Level	National
Traffic Volume	Google?		
Road Density	ArcGIS shapefiles	Block Group Level	National
Food Accessibility	Food Environment Atlas (USDA Economic Research Service)	County Level	National
Water Quality	NURE-HSSR database; Enviromapper?	Various	
Density of Parks	ArcGIS shapefiles	Block Group Level	National
Walkability	Walk Score Professional	Zip Code	National
Entropy Index	Census/ACS	Block Group Level	National
Crime			Local
Hospital Utilization	AHRF, HHS, HRSA	County Level	National

CSER, eMERGE, and IGNITE

Clinical
Sequencing
Evidence
Generating
Research
(FY2017-2020)

Electronic
Medical
Records and
Genomics
(FY2015-2018)

Implementing
Genomics in
Practice
(FY2018-2022)

Commonalities and Complementarity of CSER and eMERGE

CSER (FY2017-2020)

- ~4,600 pts, 6 sites
- Community clinical scenarios
- Focus: clinical encounter
- Increased ethnic and socioeconomic diversity
- Evidence generation for clinical utility of genomic sequencing
- Real-world barriers to integrating genomic data for healthcare utilization

- EMR integration
- Clinical impact of RoR
- Data sharing concerns

eMERGE (FY2015-2018)

- 25K pts, 9 sites
- Electronic phenotyping
- Focus: system-wide
- Health outcomes of rare variants in ~100 clinically relevant genes
- System-wide impact of reporting actionable variants
- Improved e-phenotyping
- Novel variant discovery
- Electronic CDS

Commonalities and Complementarity of eMERGE and IGNITE

eMERGE (FY2015-2018)

- 25K pts, 9 sites
- Electronic phenotyping
- Focus: system-wide
- Health outcomes of rare variants in ~100 clinically relevant genes
- System-wide impact of reporting actionable variants
- Improved e-phenotyping
- Novel variant discovery
- Electronic CDS

- EMR integration
- Costeffectiveness
- Patient/ clinician education

IGNITE (FY2018-2022)

- ~15K pts, 4-6 sites
- Diverse, real-world clinical settings
- Focus: pragmatic trials
- Clinical utility of established genomic medicine interventions
- Increased ethnic and socioeconomic diversity
- Generalizable knowledge on use of trials in genomic medicine interventions

Timeline of NHGRI Genomic Medicine Programs

You are here Fiscal Year 16 | 17 | 18 | 19 | 20 | 21 | 22 Program emerge network ClinGen (HD) Renewal Phases **Sept 2017**

Projected Phases

Resources

www.gwas.org

Manuscripts (to date)

https://emerge.mc.vanderbilt.edu/publications/

dbGaP

(published to date)

https://emerge.mc.vanderbilt.edu/dbgap/

GWAS sequencing platforms (el-III)

https://emerge.mc.vanderbilt.edu/wp-content/uploads/2015/02/Platform-Information-eMERGE.docx

TOOLS

https://phewascatalog.org/

https://phekb.org/

https://cdskb.org/

https://www.emergesphinx.org/