Skip to main content
Log in

Monte Amiata volcano (Tuscany, Italy) in the history of volcanology: 2—its role in the definition of “ignimbrite” concepts and in the development of the “rheoignimbrite” model of Alfred Rittmann

  • Review
  • Published:
Rendiconti Lincei. Scienze Fisiche e Naturali Aims and scope Submit manuscript

Abstract

The explosive eruptions that occurred between nineteenth and twentieth centuries produced a fundamental cultural impact on the development of Volcanology. Pyroclastic products and ignimbrites features start to be at the base of an international debate. Various descriptions of explosive eruptions, and a new terminology of their products, such as nuée ardente and ignimbrite, were presented and extensively discussed in the framework of the International Association of Volcanology conferences held in 1961 at Catania and in 1963 at Tokyo. Ignimbrite deposits are first assimilated to welded tuffs. That attention to explosive volcanism of the first half of the twentieth century was the context in which has matured the Alfred Rittmann model of rheoignimbrite as welded ignimbrite showing secondary flowage structures. This term introduced by Rittmann in 1958, and shared by Giorgio Marinelli in 1961, was intended to describe the extensive sheet of acidic vitrophyric volcanic rocks of Monte Amiata volcano, interpreted as lava flows by all previous authors. Rheomorphic ignimbrites, in the Rittmann model, have features that strongly differentiate them from normal ignimbrites and that are very similar to what shown by acidic lava flows, as fluidal structures and wrinkles. The concept of rheomorphic ignimbrite is still in use into the volcanological literature, even if not for the Monte Amiata volcanics, nowadays definitively considered to be lava flows and domes. However, the Rittmann and Marinelli authoritative assumptions inhibited, up to present times, new volcanological interpretation of Monte Amiata acidic lavas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Modified from Rittmann (1931)

Fig. 4

Modified from Rittmann (1963a)

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. International Association of Volcanology (IAV) for English speaking people.

References

  • Abich H (1882) Geologische forschungen in den Kaukasischen Landern. II Theil: Geologie des Armenischen hochlandes. 1. Westhalfte. A. Holder, Wien

  • Anderson T, Flett JS (1903) Report on the eruptions of the Soufrière, in St. Vincent, in 1902, and on a visit to Montagne Pelée, in Martinique—part I. Philos Trans R Soc Lond A 200:353–553

    Google Scholar 

  • Aramaki S (1957) Classification of pyroclastic flows. Volcanol Soc Japan Bull S2(1):47–57 (in Japanese)

    Google Scholar 

  • Aramaki S (1961) Classification of pyroclastic flows. Int Geol Rev 3:518–524

    Google Scholar 

  • Aramaki S (1964) Geology of Akamizu-dake, Kagoshima Prefecture, and the welded pyroclastic deposits. J Geol Soc Japan 70(830):554–564 (in Japanese with Abstract in English)

    Google Scholar 

  • Aramaki S, Yamasaki M (1963) Pyroclastic flows in Japan. Bull Volcanol 26:89–99

    Google Scholar 

  • Arrighi S, Principe C, Rosi M (2001) Violent strombolian and sub-plinian eruption at Vesuvius during the post-1631 activity. Bull Volcanol 63:126–150

    Google Scholar 

  • Backlund HG (1937) Die Umgrenzung der Svekofenniden. Bull Geol Inst Univ Uppsala 27:219–269

    Google Scholar 

  • Balconi M, Castellana G, de Maio M (1961) Notizie preliminari sulle ignimbriti di Angera e di Arona-Meina-Montrignasco (Lago Maggiore). Period Mineral 30:210

    Google Scholar 

  • Barberi F, Innocenti F (1995) Giorgio Marinelli. Boll Soc Geol Italy 114:311–318

    Google Scholar 

  • Barberi F, Borsi S, Ferrara G, Innocenti F, Marinelli G, Mazzuoli R (1971a) A magmatic province of anatectic origin: the Tuscan-Latial Province (Italy). In: 15th IUGG Congress, Moscow, Abstract

  • Barberi F, Innocenti F, Ricci CA (1971b) Il magmatismo nell’Appennino Centro Settentrionale. Rend Soc It Min Petr 27:1–46

    Google Scholar 

  • Barksdale JD (1951) Cretaceous glassy welded tuffs, Lewis and Clark County, Montana. Am J Sci 249:439–443

    Google Scholar 

  • Bates RL, Jackson JA (1987) Glossary of geology. American Geological Institute, Alexandria

    Google Scholar 

  • Bigazzi G, Bonadonna FP, Ghezzo C, Giuliani O, Radicati di Brozolo F, Rita F (1981) Geochronological study of the Monte Amiata lavas (Central Italy). Bull Volcanol 44:455–465

    CAS  Google Scholar 

  • Bonorino FG (1944) Nota sobre la presencia de ignimbritas en la Argentina. Univ Nac Mus La Plata Geol 35:577–590

    Google Scholar 

  • Bordet P, Tazieff H (1963) Remarque sur l’éruption de Katmai et de la Vallée des Dix-Mille-Fumées et sur le problème des ignimbrites. Bull Soc Géol France S7(5):210–213

    Google Scholar 

  • Bouladon J, Jouravsky G (1954) Les ignimbrites du Precambrian III de Tiouine et du sud marocain. Maroc Serv Géol Notes Mem 120:37–59

    Google Scholar 

  • Boyer C (1972) Study of a few Paleozoic ignimbrites in the Armorican Massif and in the Central Massif, France. Bull Volcanol 36:46–82

    Google Scholar 

  • Borsi S (1963) Notes on the emplacement temperature of the ignimbrites of Tuscany (Italy). Bull Volcanol 25:323–325

    CAS  Google Scholar 

  • Borsi S, Marinelli G, Mazzoncini F, Mittempergher M, Tedesco C (1963) Reconnaissance of some ignimbrites at Pantelleria and Aeolian Islands. Bull Volcanol 25:359–363

    CAS  Google Scholar 

  • Branch CD (1962) Report on the International Symposium on Volcanology, Japan 1962. Commonwealth of Australia, Department of National Development, Bureau of Mineral Resources Geology and Geophysics, Records 1962/150, pp 1‒26

  • Branch CD (1963) The emplacement of acid magma in the epizone, and the relationship with ignimbrites, in North Queensland, Australia. Bull Volcanol 25:47–60

    CAS  Google Scholar 

  • Branney MJ, Kokelaar BP (2002) Pyroclastic density currents and the sedimentation of ignimbrites. Geol Soc Lond Mem 27

  • Branney MJ, Kokelaar BP, McConnell BJ (1992) the bad step tuff: a lava-like rheomorphic ignimbrite in a calc-alkaline piecemeal caldera, English Lake District. Bull Volcanol 54:187–199

    Google Scholar 

  • Breislak S (1798) Topografia fisica della Campania. Stamperia Antonio Brazzini, Firenze

  • Brogi A, Liotta D, Meccheri M, Fabbrini L (2010) Transtensional shear zones controlling volcanic eruptions: the Middle Pleistocene Mt. Amiata volcano (inner Northern Apennines, Italy). Terra Nova 22:137–146

    Google Scholar 

  • Calamai A, Cataldi R, Squarci P, Taffi L (1970) Geology, geophysics and hydrogeology of the Monte Amiata geothermal fields. Geothermics 1:1–9

    Google Scholar 

  • Choubert G (1963) Essai de mise au point du problème des ignimbrites. Bull Volcanol 25:123–140

    CAS  Google Scholar 

  • Cook EF (1959) Ignimbrite bibliography. Idaho Bur Min Geol Inf Circ 4:1–30

    Google Scholar 

  • Cook EF (1962) Ignimbrite bibliography and review. Idaho Bur Min Geol Inf Circ 13:1–70

    Google Scholar 

  • Cook EF (1963) Ignimbrites of the Great Basin, USA. Bull Volcanol 25:89–96

    CAS  Google Scholar 

  • Cristiani C, Mazzuoli R (2003) Monte Amiata volcanic products and their inclusions. Period Mineral 72:169–181

    Google Scholar 

  • Dakyns JR, Greenly E (1905) On the probable Peléan origin of the felsitic slates of Snowdon, and their metamorphism. Geol Mag S5(2):541–549

    Google Scholar 

  • Delibrias G, Di Paola GM, Rosi M, Santacroce R (1979) La storia eruttiva del complesso vulcanico Somma-Vesuvio ricostruita dalle successioni piroclastiche del Monte Somma. Rend Soc It Min Petr 35:411–438

    Google Scholar 

  • Dini A (2017) Miniere e minerali del Distretto mercurifero del Monte Amiata. In: Principe C, Lavorini G, Vezzoli L (eds) Il vulcano di Monte Amiata. Edizioni Scientifiche e Artistiche, Nola, pp 343–369 (ISBN: 978-88-99742-32-4)

    Google Scholar 

  • Enlows HE (1955) Welded tuffs of Chiricahua National Monument, Arizona. Geol Soc Am Bull 66:1215–1246

    CAS  Google Scholar 

  • Escher BG (1931) Over het vulkanisme van Java in verband met de uitbarsting van den Merapi. De Ingenieur 46(37):357–373

    Google Scholar 

  • Escher BG (1933a) On a classification of central eruptions according to gas pressure of the magma and viscosity of the lava. Leids Geol Mededel 6:45–49

    Google Scholar 

  • Escher BG (1933b) On the character of the Merapi eruption in Central Java. Leids Geol Mededel 6:51–58

    Google Scholar 

  • Ferrari L, Conticelli S, Burlamacchi L, Manetti P (1996) Volcanological evolution of the Monte Amiata Southern Tuscany: new geological and petrochemical data. Acta Vulcanol 8:41–56

    Google Scholar 

  • Fenner CN (1920) The Katmai region, Alaska, and the great eruption of 1912. J Geol 28:569–606

    CAS  Google Scholar 

  • Fenner CN (1923) The origin and mode of emplacement of the great tuff deposit of the Valley of Ten Thousand Smokes. Nat Geogr Soc Contrib Tech Pap Katmai Ser 1:1–74

    Google Scholar 

  • Fenner CN (1937) Tuffs and other volcanic deposits of Katmai and Yellowstone Park. Am Geophys Union Trans 18:236–239

    Google Scholar 

  • Fenner CN (1948) Incandescent tuff flows in Southern Peru. Geol Soc Am Bull 59:879–893

    CAS  Google Scholar 

  • Freundt A, Wilson CJN, Carey SN (2000) Ignimbrites and block-and-ash deposits. In: Sigurdsson H (ed) Encyclopedia of Volcanoes. Academic Press, San Diego, pp 581–600

    Google Scholar 

  • Gilbert CM (1938) Welded tuff in eastern California. Geol Soc Am Bull 49:1829–1862

    Google Scholar 

  • Giordano D, Nichols ARL, Dingwell DB (2005) Glass transition temperatures of natural hydrous melts: a relationship with shear viscosity and implications for the welding process. J Volcanol Geotherm Res 142:105–118

    CAS  Google Scholar 

  • Gorshkov GS (1963) On the origin of ignimbrites in relation to the study of recent eruptions. Bull Volcanol 25:33–37

    CAS  Google Scholar 

  • Gottsmann J, Dingwell DB (2002) The thermal history of a spatter-fed lava flow: the 8-ka pantellerite flow of Mayor Island, New Zealand. Bull Volcanol 64:410–422

    Google Scholar 

  • Griggs RF (1917) The valley of ten thousand smokes: National Geographic Society explorations in the Katmai district of Alaska. Natl Geogr Mag 31(1):13–68

    Google Scholar 

  • Griggs RF (1918a) The valley of ten thousand smokes: an account of the discovery and exploration of the most wonderful volcanic region in the world. Natl Geogr Mag 33(2):115–169

    Google Scholar 

  • Griggs RF (1918b) Are the ten thousand smokes real volcanoes? In: Scientific results of the Katmai expedition of the National Geographic Society, Paper II. Ohio J Sci, vol 19, pp 97‒116

  • Griggs RF (1918c) The great hot mud flow of the Valley of Ten Thousand Smokes (Katmai, Alaska). In: Scientific Results of the Katmai Expedition of the National Geographic Society, Paper III. Ohio J Sci, vol 19, pp 117‒142

  • Griggs RF (1923) Observations on the incandescent sand flow of the Valley of Ten Thousand Smokes. Koninklijke Akademie van Wetenschappen Amsterdam Proc Sci Sect 25:42–50

    Google Scholar 

  • Guettard J-É (1754) Sur quelques montagnes de la France qui ont été des volcans, lû le 10 Mai 1752. Histoire de l'Académie Royale des Sciences de Paris, avec les Mémoires de Mathématique et de Physique, Physique générale Année 1752:27–59

  • Hamilton W (1776) Campi Phlegraei. Observations on the volcanoes of the two Sicilies. 2 volumes. Editor Mr. Peter Fabris, Naples

  • Hausen DM (1954) Welded tuffs of Oregon and Idaho. Mississippi Ac Sci J 5:209–220

    Google Scholar 

  • Hentschel H (1963) Die Bildung der Bimsstein-Tuffe und das Problem der Ignimbrite. Bull Volcanol 25:291–313

    CAS  Google Scholar 

  • Hildreth W, Fierstein J (2012) The Novarupta-Katmai Eruption of 1912—Largest Eruption of the Twentieth Century: Centennial Perspectives. US Geol Survey Prof Paper 1791

  • Hjelmqvist S (1956) On the occurrence of ignimbrite in the pre-Cambrian. Sveriges Geol Undersokning C 542:18

    Google Scholar 

  • Iddings JP (1899) Chapter X—the rhyolites. In: Geology of the Yellowstone National Park. Part 2: descriptive geology, petrography, and paleontology. US Geol Survey Monograph, vol 32, pp 356‒432

  • Iddings JP (1909) Igneous rocks. Volume 1—composition, texture and classification. Wiley, New York

    Google Scholar 

  • Jaggar TA (1920) Seismometric investigation of the Hawaiian lava column. Seismol Soc Am Bull 10:155–275

    Google Scholar 

  • Johnston-Lavis HJ (1909) The eruption of Vesuvius in April 1906. Sci Trans R Dublin Soc 2(9):8

    Google Scholar 

  • Kennedy GC (1955) Some aspects of the role of water in rock melts. In: Poldervaart A (ed) Crust of the earth: a symposium. Geol Soc Am Spec Papers, vol 62, pp 489‒504

  • Kobberger G, Schmincke H-U (1999) Deposition of rheomorphic ignimbrite D (Mogán Formation), Gran Canaria, Canary Islands, Spain. Bull Volcanol 60:465–485

    Google Scholar 

  • Kozu S (1934) The great activity of Komagatake in 1929. Tschermark’s Mineralogische und Petralographische Mittheilungen Wien 45:133–174

    CAS  Google Scholar 

  • Lacroix A (1903a) Les éruptions de nuages denses de la Montagne Pelée. Ac Sci Paris C R 136:216–218

    Google Scholar 

  • Lacroix A (1903b) L'éruption de la Montagne Pelée en janvier 1903. Ac Sci Paris C R 136:442–443

    Google Scholar 

  • Lacroix A (1904) La Montagne Pelée et ses éruptions. Masson et Cie, Paris

    Google Scholar 

  • Lacroix A (1908) La Montagne Pelée après ses éruptions, avec observations sur les éruptions du Vésuve en 1879 et en 1906. Masson et Cie, Paris

    Google Scholar 

  • Lacroix A (1930) Remarques sur les matériaux de projection des volcans et sur la génèse des roches pyroclastiques qu'ils constituent. Centenaire de la Societé Geologique de France, Livre Jubilaire 1830–1930(2):431–472

    Google Scholar 

  • La Felice S, Adhana TA, Principe C, Vezzoli L (2017) Le caratteristiche petro-chimiche delle vulcaniti di Monte Amiata in relazione alla stratigrafia. In: Principe C, Lavorini G, Vezzoli L (eds) Il vulcano di Monte Amiata. Edizioni Scientifiche e Artistiche, Nola, pp 145–170 (ISBN: 978-88-99742-32-4)

    Google Scholar 

  • Landi P, La Felice S, Petrelli M, Vezzoli L, Principe C (2018) Deciphering textural and chemical zoning of K-feldspar megacrysts from Mt. Amiata Volcano (Southern Tuscany, Italy): Insights into the petrogenesis and abnormal crystal growth. Lithos 324–325:569–583

    Google Scholar 

  • Laurenzi M, La Felice S (2017) Nuovi dati geocronologici sulle vulcaniti incontrate dal pozzo David Lazzaretti. In: Principe C, Lavorini G, Vezzoli L (eds) Il vulcano di Monte Amiata. Edizioni Scientifiche e Artistiche, Nola, pp 233–241 (ISBN: 978-88-99742-32-4)

    Google Scholar 

  • Laurenzi MA, Braschi E, Casalini M, Conticelli S (2015) New 40Ar-39Ar dating and revision of the geochronology of the Monte Amiata Volcano, Central Italy. Ital J Geosci 134:255–265

    Google Scholar 

  • Lipman PW (1967) Mineral and chemical variations within an ash-flow sheet from Aso caldera, Southwestern Japan. Contrib Mineral Petrol 16:300–327

    CAS  Google Scholar 

  • Lipman PW, Mullineaux DR (1981) The 1980 eruptions of Mount St. Helens, Washington. US Geol Survey Prof Paper 1250

  • Locardi E, Mittempergher M (1967) On the genesis of ignimbrites: how ignimbrites and other pyroclastic products originate from a flowing melt. Bull Volcanol 31:131–152

    CAS  Google Scholar 

  • Lock BE (1972) A Lower Paleozoic rheo-ignimbrite from White Bay, Newfoundland. Can J Earth Sci 9:1495–1503

    Google Scholar 

  • Macdonald GA (1972) Volcanoes. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • MacGregor AG (1952) Eruptive mechanisms: Mt. Pelée, the Soufrière of St. Vincent, and the Valley of Ten Thousand Smokes. Bull Volcanol 12:49–74

    CAS  Google Scholar 

  • MacGregor AG (1955) Classification of nuée ardente eruptions. Bull Volcanol 16:7–11

    Google Scholar 

  • Mackin JH, Nelson WH (1950) Early Tertiary welded tuffs in the Iron Springs district. Utah Geol Soc Am Bull Part 2(61):1528

    Google Scholar 

  • Mansfield GR, Ross CS (1935) Welded rhyolite tuffs in southeastern Idaho. Am Geophys Union Trans 16:308–321

    Google Scholar 

  • Marinelli G (1961) Genesi e classificazione delle vulcaniti recenti toscane. Atti Soc Tosc Sc Nat Pisa Mem A 68:63–116

    Google Scholar 

  • Marroni M, Moratti G, Costantini A, Conticelli S, Benvenuti MG, Pandolfi L, Bonini M, Cornamusini G, Laurenzi MA (2015) Geology of the Monte Amiata region, Southern Tuscany, Central Italy. Ital J Geosci 134:171–199

    Google Scholar 

  • Marshall P (1935) Acid Rocks of the Taupo-Rotorua Volcanic District. Trans R Soc N Z 64:1–44

    Google Scholar 

  • Matumoto T (1943) The four gigantic caldera volcanoes of Kyusyu. Japan J Geol Geogr 19:1–57

    CAS  Google Scholar 

  • Mazzuoli R, Pratesi M (1963a) Textures and structures of the ignimbrites of Mount Amiata. Bull Volcanol 25:285–290

    CAS  Google Scholar 

  • Mazzuoli R, Pratesi M (1963b) Rilevamento e studio chimico petrografico delle rocce vulcaniche del Monte Amiata. Atti Soc Tosc Sc Nat Pisa Mem A 70:355–429

    Google Scholar 

  • McCall GJH (1962a) Froth-flow lavas resembling ignimbrites in the east African rift valleys. Nature 194:343–344

    Google Scholar 

  • McCall GJH (1962b) Kenya ignimbrites. Nature 196:365–367

    CAS  Google Scholar 

  • McCall GJH (1965) Froth flows in Kenya. Geol Rundsch 54:1148–1195

    CAS  Google Scholar 

  • Mercalli G (1907) I vulcani della Terra. Ulrico Hoepli, Milan

    Google Scholar 

  • Micheli PA (1733) Schedae variae ad lithologiam pertinentes, et observationes quaedam peculiares circa fossilia, et montium structuram, in descriptionibus itinerum at anno 1733 a se peractorum adnotatae. Manuscript. University of Florence, Library of Sciences

  • Micheli PA (1754) Relazione del viaggio fatto l’Anno 1733, dal dì 23. Maggio, fino a’ 21. Giugno, per diversi luoghi dello Stato Senese, dal celebre Bottanico Pier’Antonio Micheli e dal Signor Dottore Gio. Battista Mannaioni, distesa dal medesimo Micheli, con alcune annotazioni di Giovanni Targioni Tozzetti suo scolare. In: Targioni Tozzetti G (ed) Relazioni di alcuni viaggi fatti in diverse parti della Toscana per osservare le produzioni naturali e gli antichi monumenti di essa, vol 6, 1st edn. Gaetano Cambiagi Stampatore Granducale, Firenze, pp 173–250

  • Micheluccini M (1963) Observations préliminaires sur l’anisotropie mécanique des ignimbrites de la Toscane. Bull Volcanol 25:327–341

    CAS  Google Scholar 

  • Mittempergher M (1959) La serie effusiva paleozoica del Trentino-Alto Adige. Rend Soc Mineral Italy 15:366–367

    Google Scholar 

  • Mittempergher M, Tedesco C (1963) Some observations on the ignimbrites, lava domes and lavas of Mt. Cimino (Central Italy). Bull Volcanol 25:343–358

    CAS  Google Scholar 

  • Moore BN (1934) Deposits of possible nuée ardente origin in the Crater Lake region, Oregon. J Geol 42:358–375

    Google Scholar 

  • Neumann van Padang M (1933) De uitbarsting van den Merapi (Midden Java) in de jaren 1930–1931. Vulkanol Seismol Med 12:1–116

    Google Scholar 

  • Noble DC (1968) Laminar viscous flowage structures in ash-flow tuff from Gran Canaria Islands: A discussion. J Geol 76:721–723

    Google Scholar 

  • Oftedahl C (1957) Studies on the Igneous Rock Complex of the Oslo Region. XVI. On Ignimbrite and Related Rocks. Skrifter utgitt av det Norske Videnskaps-Akademi i Oslo, I Mat-Naturv Klasse 4

  • Oliver RL (1954) Welded tuffs in the Borrowdale volcanic series, English Lake district with a note on similar rocks in Wales. Geol Mag 91:473–483

    CAS  Google Scholar 

  • Osborne GD (1950) The Kuttung vulcanicity of the Hunter-Karuah district, with special reference to the occurrence of ignimbrites. R Soc New South Wales J Proc 83:288–301

    Google Scholar 

  • Pantò G (1963) Ignimbrites of Hungary with regard to their genetics and classification. Bull Volcanol 25:175–181

    Google Scholar 

  • Peccerillo A (2005) The Tuscany Province. In: Plio-Quaternary volcanism in Italy. Petrology, geochemistry, geodynamics. Springer, Heidelberg, pp 17‒50

  • Peccerillo A, Poli G, Donati C (2001) The Plio-Quaternary magmatism of southern Tuscany and Northern Latium: compositional characteristics, genesis and geodynamic significance. Ofioliti 26:229–238

    Google Scholar 

  • Principe C (1998) The 1631 eruption of Vesuvius: volcanological concepts in Italy at the beginning of the XVIIth century. In: Morello N (ed) Volcanoes and history, Proceedings of the 20th INHIGEO symposium, Napoli-Eolie-Catania (Italy), 19–25 September 1995. Brigati, Genova, pp 525‒542

  • Principe C, Vezzoli L (2017) Vulcano-tettonica e morfologie vulcaniche del Monte Amiata. In: Principe C, Lavorini G, Vezzoli L (eds) Il vulcano di Monte Amiata. Edizioni Scientifiche e Artistiche, Nola, pp 129–144 (ISBN: 978-88-99742-32-4)

    Google Scholar 

  • Principe C, Tanguy JC, Arrighi S, Paiotti A, Le Goff M, Zoppi U (2004) Chronology of Vesuvius activity from AD 79 to 1631 based on archeomagnetism of lavas and historical sources. Bull Volcanol 66:703–724

    Google Scholar 

  • Principe C, Vezzoli L, La Felice S (2017) Stratigrafia ed evoluzione geologica del vulcano di Monte Amiata. In: Principe C, Lavorini G, Vezzoli L (eds) Il vulcano di Monte Amiata. Edizioni Scientifiche e Artistiche, Nola, pp 85–101 (ISBN: 978-88-99742-32-4)

    Google Scholar 

  • Principe C, Vezzoli L, La Felice S (2018) Geology of Monte Amiata volcano (Southern Tuscany). In: Alpine and mediterranean quaternary: past, present, future, AIQUA conference, Florence, 13–14 June 2018, vol 31, pp 235–238

  • Richards HC, Bryan WH (1934) The problem of the Brisbane tuff. Proc R Soc Qld 45:50–62

    Google Scholar 

  • Rittmann A (1931) Vulkanische Glutwolken und Glutlawinen. Naturwissenschaften 19(51):1017–1020

    Google Scholar 

  • Rittmann A (1936) Vulkane und ihre Tatigkeit. F. Enke Verlag, Stuttgart

    Google Scholar 

  • Rittmann A (1944) Vulcani attività e genesi. Editrice Politecnica, Napoli

    Google Scholar 

  • Rittmann A (1955) Sur une enclave volcanique trouvée par A. Amstutz dans les Pennides. Bull Volcanol 17:3–12

    CAS  Google Scholar 

  • Rittmann A (1958) Cenni sulle colate di ignimbriti. Boll Acc Gioenia Sc Nat Catania 4(10):524–533

    Google Scholar 

  • Rittmann A (1960) Vulkane und ihre tatigkeit, 2nd edn. F. Enke Verlag, Stuttgart

    Google Scholar 

  • Rittmann A (1961) Sur les ignimbrites en Italie. Arch Sci Soc Phys Hist Nat Genève 14:423–433

    Google Scholar 

  • Rittmann A (1962) Volcanoes and their activity. Wiley, New York

    Google Scholar 

  • Rittmann A (1963a) Erklärungsversuch zum mechanismus der Ignimbritausbrüche. Geol Rundsch 52:853–861

    CAS  Google Scholar 

  • Rittmann A (1963b) Les volcans et leur activité. Masson et Cie, Paris

    Google Scholar 

  • Rittmann A (1967) I vulcani e la loro attività. Cappelli, Bologna

    Google Scholar 

  • Rosi M, Principe C, Vecci R (1993) The 1631 Vesuvius eruption. A reconstruction based on historical and stratigraphical data. J Volcanol Geotherm Res 58:151–182

    Google Scholar 

  • Rosi M, Vezzoli L, Aleotti P, De Censi M (1996) Interaction between caldera collapse and eruptive dynamics during the Campanian Ignimbrite eruption, Phlegraean Fields, Italy. Bull Volcanol 57:541–554

    Google Scholar 

  • Ross CS, Smith RL (1961) Ash-flow tuffs: their origin, geologic relations and identification. US Geol Survey Prof Paper 366

  • Rutten MG (1959a) Ignimbrites Permiennes de l’Estrelle. Compte Rendu sommaire des séances de la Société Géologique de France, p 168

  • Rutten MG (1959b) Ignimbrites or fluidized tuff flows on some mid-Italian volcanoes. Geol Mijnb 21:396–399

    Google Scholar 

  • Rutten MG (1963) Acid lava flow structure, as compared to ignimbrites. Bull Volcanol 25:111–121

    CAS  Google Scholar 

  • Rutten MG (1965) Tectonic of late Precambrian ignimbrites in western Rajasthan (India). Geol Mijnb 44:316–319

    Google Scholar 

  • Rutten MG, van Everdingens RO (1961) Rheo-ignimbrites of the Ramnes volcano, Permian, Oslo graben. Geol Mijnb 40:49–57

    Google Scholar 

  • Sabatini V (1899) Relazione sul lavoro eseguito nel triennio 1896–97-98 sui vulcani dell'Italia centrale e i loro prodotti. Boll R Comit Geol Italy 30:30–60

    Google Scholar 

  • Sabatini V (1910) Analogie tra Monte Amiata e Monte Cimino. Atti R Acc Lincei Rend 5(19):284–290

    Google Scholar 

  • Sabatini V (1911) Lave che sembrano tufi e tufi che sembrano lave. Boll Soc Geol Italy 30:913–921

    Google Scholar 

  • Sabatini V (1912) I Vulcani dell'Italia centrale e i loro prodotti. Parte 2: Vulcani Cimini. Mem Descr Carta Geol Italy, vol 15. Tipografia Nazionale G. Bertero e C, Roma

  • Schiaffino L (1963) I costituenti cristallini delle masse di fondo nelle ignimbriti della Toscana. Bull Volcanol 25:243–251

    CAS  Google Scholar 

  • Schmincke H-U, Swanson DA (1967) Laminar viscous flowage structures in ash-flow tuffs from Gran Canaria, Canary Islands. J Geol 75:641–664

    CAS  Google Scholar 

  • Self S, Rampino MR (1981) The 1883 eruption of Krakatau. Nature 294:699–704

    Google Scholar 

  • Shirinian KG (1963) Ignimbrites and tuffo-lavas. Bull Volcanol 25:13–18

    Google Scholar 

  • Smith RL (1960) Ash-flows. Geol Soc Am Bull 71:795–842

    Google Scholar 

  • Solovev SP (1950) The principal features of the complex of young acid effusives and ignimbrites in southern Sikhote-alin, and its petrochemical characteristics. Zapiski-Vsesoyuznoe Mineralogicheskoe Obshchestvo 79:211–222 (in Russian)

    CAS  Google Scholar 

  • Sparks RSJ (1978) The dynamics of bubble formation and growth in magma: A review and analysis. J Volcanol Geotherm Res 3:1–37

    CAS  Google Scholar 

  • Sparks RSJ, Self S, Walker GPL (1973) Products of ignimbrite eruptions. Geology 1:115–118

    Google Scholar 

  • Steiner A (1963) Crystallization behaviour and origin of the acidic ignimbrite and rhyolite magma in the North Island of New Zealand. Bull Volcanol 25:217–241

    CAS  Google Scholar 

  • Tardi A, Vittorini S (1973) Le acclività delle vulcaniti del Monte Amiata e loro rapporti con i caratteri geolitologici. Atti Soc Tosc Sci Nat Pisa Mem A 80:1–16

    Google Scholar 

  • Tsuya H (1930) The volcano Komagatake, Hokkaido, its geology, activity, and petrography. In: Tsuya H, Tsuboi S, Kishinouye F, Takahasi R, Tsuboi C, Nakata K, Miyabe N (eds) The eruption of Komagatake, Hokkaido, in 1929. Earthq Res Inst Bull Tokyo Univ, vol 8, pp 238‒270

  • Ventriglia U (1963) Il Vulcano Cimino. Bull Volcanol 25:183–199

    CAS  Google Scholar 

  • Verbeek RDM (1885) Krakatau. Batavia

  • Vezzoli L, Principe C (2017) Facies vulcaniche e meccanismi di messa in posto delle vulcaniti del Monte Amiata. In: Principe C, Lavorini G, Vezzoli L (eds) Il vulcano di Monte Amiata. Edizioni Scientifiche e Artistiche, Nola, pp 195–213 (ISBN: 978-88-99742-32-4)

    Google Scholar 

  • Vezzoli L, Principe C (2020) Monte Amiata volcano (Tuscany, Italy) in the history of Volcanology: 1—its role in the debates on extinct volcanoes, source of magma, and eruptive mechanisms (AD 1733–1935). Earth Sci Hist 39:28–63

    Google Scholar 

  • Vezzoli L, La Felice S, Norelli F, Vanossi D (2017) Le Terre Coloranti e la Farina Fossile del Monte Amiata. Caratteristiche geologiche, attività estrattiva e significato paleoambientale. In: Principe C, Lavorini G, Vezzoli L (eds) Il vulcano di Monte Amiata. Edizioni Scientifiche e Artistiche, Nola, pp 313–336 (ISBN 978-88-99742-32-4)

  • Villari L (1969) On particular ignimbrites of the Island of Pantelleria (Channel of Sicily). Bull Volcanol 33:828–839

    Google Scholar 

  • Vlodavetz VL (1963a) Les tufolaves et les ignimbrites sur le territoire de l’URSS. Bull Volcanol 25:5–11

    Google Scholar 

  • Vlodavetz VL (1963b) Sur la genèse des tufolaves à Kamtchatka. Bull Volcanol 25:27–30

    Google Scholar 

  • van Bemmelen RW (1961) Volcanology and Geology of ignimbrites in Indonesia, North Italy and the U.S.A. Overdruk Geol Mijnb 40:399–411

    Google Scholar 

  • van Bemmelen RW (1963) Volcanology and geology of ignimbrites in Indonesia, North Italy, and the U.S.A. Bull Volcanol 25:151–173

    Google Scholar 

  • Wallenstein N, Duncan A, Coutinho R, Chester D (2018) Origin of the term nuées ardentes and the 1580 and 1808 eruptions on São Jorge Island, Azores. J Volcanol Geotherm Res 358:165–170

    CAS  Google Scholar 

  • Walker GPL (1973) Explosive volcanic eruptions—a new classification scheme. Geol Rundsch 62:431–446

    CAS  Google Scholar 

  • Walker GPL (1983) Ignimbrite and ignimbrite problems. J Volcanol Geotherm Res 17:65–88

    Google Scholar 

  • Walker GW, Swanson DA (1968) Laminar flowage in a Pliocene soda rhyolite ash-flow tuff, Lake and Harney counties, Oregon. US Geol Survey Prof Paper 600-B:37‒47

  • Westerveld J (1943) Welded rhyolitic tuffs or "ignimbrites" in the Pasoemah region, West Palembang, South Sumatra. Leids Geol Mededel 13:202–217

    Google Scholar 

  • Westerveld J (1947) On the origin of the acid volcanic rocks around Lake Toba, North Sumatra. Verhand Kon Ned Akad v Wetensc Afd Natuurkunde Amsterdam 2(43):1–52

    Google Scholar 

  • Westerveld J (1963) The tectonic causes of ignimbrite and pumice tuff deposition and of subsequent basalto-andesitic volcanism. Bull Volcanol 25:67–88

    CAS  Google Scholar 

  • White DA (1962) Report on the International Association of Vulcanology (IAV) symposium on ignimbrites and hyaloclastites, Italy, 1 September–1 October 1961. Commonwealth of Australia, Department of National Development, Bureau of Mineral Resources Geology and Geophysics, Records 1962/101, pp 1‒44

  • Williams H (1941) Calderas and their origin. Univ Calif Pub Dept Geol Sci Bull 25:239–346

    Google Scholar 

  • Williams H (1942) The geology of Crater Lake National Park, Oregon, with a reconnaissance of the Cascade Range southward to Mount Shasta. Carnegie Inst Washington Pub 540

  • Williams H (1957) Glowing avalanche deposits of the Sudbury Basin. In: Annual report of the Ontario Department of Mines, vol 65, no 3, pp 57‒89

  • Wilson L, Sparks RSJ, Walker GPL (1980) Explosive volcanic eruptions. IV. The control of magma properties and conduit geometry on eruption column behaviour. Geophys J R Astron Soc 63:117–148

    Google Scholar 

  • Wolff JA, Wright JV (1981) Rheomorphism of welded tuffs. J Volcanol Geotherm Res 10:13–34

    Google Scholar 

  • Woods AW (1995) The dynamics of explosive volcanic eruptions. Rev Geophys 33:495–530

    Google Scholar 

  • Yamasaki N (1911) The condition of the eruption of Mt. Asama in 1783. RepEarthq Investig Comm 73:20–28 (in Japanese)

    Google Scholar 

  • Zavaritsky AN (1947) The ignimbrites of Armenia. Akad Nauk SSSR Izv Ser Geol 3:3–18 (In Russian with English summary)

    Google Scholar 

  • Zeil W (1964) Die Verbreitung des jungen Vulkanismus in der Hochkordillere Nordchiles. Geol Rundsch 53:731–757

    Google Scholar 

  • Zirkel F (1876) Microscopical petrography. In: King C (ed) Report on the geological exploration of the Fortieth Parallel. Prof Paper Engineer Depart, US Army, volume 6. Government Printing Office, Washington, pp 1‒267

Download references

Acknowledgements

This work hopes to be a second step in our study of the history of volcanology, focusing specifically on the role of Monte Amiata. Our research on the topic started with the monograph Il Vulcano di Monte Amiata, funded by the Regione Toscana by means of the LAMMA Consortium. We would like to thank the Library of Natural and Environmental Sciences of the University of Pisa for giving us access to the collection of Giorgio Marinelli’s offprints Miscellanea Marinelli. The authors are indebted with Professor Franco Barberi for the critical lecture of the manuscript and his—as always—useful comments. The manuscript benefitted of the reviews of Daniele Musumeci and of an anonymous reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Principe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Principe, C., Vezzoli, L. Monte Amiata volcano (Tuscany, Italy) in the history of volcanology: 2—its role in the definition of “ignimbrite” concepts and in the development of the “rheoignimbrite” model of Alfred Rittmann. Rend. Fis. Acc. Lincei 31, 539–561 (2020). https://doi.org/10.1007/s12210-020-00932-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-020-00932-8

Keywords

Navigation