Skip to main content
Log in

Impact of the Atatürk Dam Lake on Agro-Meteorological Aspects of the Southeastern Anatolia Region, Turkey

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

In this study, the spatial and temporal impacts of the Atatürk Dam on agro-meteorological aspects of the Southeastern Anatolia region have been investigated. Change detection and environmental impacts due to water-reserve changes in Atatürk Dam Lake have been determined and evaluated using multi-temporal Landsat satellite imageries and meteorological datasets within a period of 1984–2011. These time series have been evaluated for three time periods. Dam construction period constitutes the first part of the study. Land cover/use changes especially on agricultural fields under the Atatürk Dam Lake and its vicinity have been identified between the periods of 1984–1992. The second period comprises the 10-year period after the completion of filling up the reservoir in 1992. At this period, Landsat and meteorological time-series analyses are examined to assess the impact of the Atatürk Dam Lake on selected irrigated agricultural areas. For the last 9-year period from 2002 to 2011, the relationships between seasonal water-reserve changes and irrigated plains under changing climatic factors primarily driving vegetation activity (monthly, seasonal, and annual fluctuations of rainfall rate, air temperature, humidity) on the watershed have been investigated using a 30-year meteorological time series. The results showed that approximately 368 km2 of agricultural fields have been affected because of inundation due to the Atatürk Dam Lake. However, irrigated agricultural fields have been increased by 56.3% of the total area (1552 of 2756 km2) on Harran Plain within the period of 1984–2011.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akyurek, G., (2005). Impact of Atatürk Dam on social and environmental aspects of the Southeastern Anatolia Project. M.Sc. METU Civil Engineering, 140 pp.

  • Ali, A. M., & Saaed, Z. S. (2016). Analysis of recorded inflow data of Atatürk reservoir. Journal of Engineering, 3(22), 89–110.

    Google Scholar 

  • Aydogdu, M. H., & Bilgic, A. (2016). An evaluation of farmers’ willingness to pay for efficient irrigation for sustainable usage of resources: the Gap-Harran Plain case, Turkey. Journal of Integrative Environmental Sciences, 13(2–4), 175–186. doi:10.1080/1943815X.2016.1241808.

    Google Scholar 

  • Aydogdu, M. H., Yenigun, K., & Aydogdu, M. (2015). Factors affecting farmers’ satisfaction from water user associations in the Harran Plain-GAP region, Turkey. Journal of Agricultural Science and Technology, 17, 1669–1684.

    Google Scholar 

  • Chance, E. W., Cobourn, K. M., Thomas, V. A., Dawson, B. C., & Flores, A. N. (2017). Identifying irrigated areas in the Snake River Plain, Idaho: Evaluating performance across composting algorithms. Spectral Indices, and Sensors, Remote Sensing, 9(6), 546. doi:10.3390/rs9060546.

    Google Scholar 

  • Cetin, H., Laman, M., Ertunc, A. (2000). Settlement and slaking problems in the world’s fourth largest rock-fill dam, the Ataturk Dam in Turkey. Engineering Geology 56, 225–242.

    Article  Google Scholar 

  • Cohen, W., & Goward, S. (2004). Landsat’s role in ecological applications of remote sensing. BioScience, 54, 535–545.

    Article  Google Scholar 

  • Cohen, W., Spies, T., Alig, R., Oetter, D., Maiersperger, T., & Fiorella, M. (2002). Characterizing 23 years (1972–95) of stand replacement disturbance in western Oregon forests with Landsat imagery. Ecosystems, 5, 122–137.

    Article  Google Scholar 

  • Crist, E. P., & Cicone, R. C. (1984). A physically-based transformation of thematic mapper data—The Tm Tasseled Cap. IEEE Transactions on Geoscience and Remote sensing, 22, 256–263.

    Article  Google Scholar 

  • Crist, E. P., & Kauth, R. J. (1986). The tasseled cap de-mystified. Photogrammetric Engineering & Remote Sensing, 52(1), 81–86.

    Google Scholar 

  • DMI. (2011). Data evaluations. Available from: http://www.dmi.gov.tr/veridegerlendirme/il-veilceleristatistik.aspxm=Sanlıurfa.

  • DSI. (2013). Agriculture and irrigation. Ankara: DSİ Genel Müdürlüğü. (In Turkish).

    Google Scholar 

  • Dymond, C. C., Mladenoff, D. J., & Radeloff, V. C. (2002). Phenological differences in tasseled cap indices improve deciduous forest classification. Remote Sensing of Environment, 80(3), 460–472.

    Article  Google Scholar 

  • Franklin, S. E., Lavigne, M. B., Moskal, L. M., Wulder, M. A., & McCaffrey, T. M. (2001). Interpretation of forest harvest conditions in New Brunswick using Landsat TM enhanced wetness difference imagery (EWDI). Canadian Journal of Remote Sensing, 27, 118–128.

    Article  Google Scholar 

  • GAP. (2012). GAP administration, recent status in GAP (p. 6). Sanliurfa: GAP Publishing Units.

    Google Scholar 

  • Gómez, C., White, J. C., & Wulder, M. A. (2016). Optical remotely sensed time series data for land cover classification: A review. Isprs Journal of Photogrammetry and Remote Sensing, 116, 55–72. doi:10.1016/j.isprsjprs.2016.03.008.

    Article  Google Scholar 

  • Guo, Z., & Du, S. (2017). Mining parameter information for building extraction and change detection with very high-resolution imagery and GIS data. Giscience & Remote Sensing, 54(1), 38–63. doi:10.1080/15481603.2016.1250328.

    Article  Google Scholar 

  • Hais, M., Jonasova, M., Langhammer, J., & Kucera, T. (2009). Comparison of two types of forest disturbance using multitemporal Landsat TM/ETM+ imagery and field vegetation data. Remote Sensing of Environment, 113, 835–845.

    Article  Google Scholar 

  • Healey, S. P., Cohen, W. B., Yang, Z. Q., & Krankina, O. N. (2005). Comparison of Tasseled Cap-based Landsat data structures for use in forest disturbance detection. Remote Sensing of Environment, 97, 301–310.

    Article  Google Scholar 

  • Huang, C., Wylie, B., Yang, L., Homer, C., & Zylstra, G. (2002). Derivation of a tasseled cap transformation based on Landsat 7 at-satellite reflectance. International Journal of Remote Sensing, 23, 1741–1748.

    Article  Google Scholar 

  • Kaisheng, L., & Fulu, T. (2017). Method for wetland type extraction using remote sensing combing object-oriented and tasseled cap transformation. Transactions of the Chinese Society of Agricultural Engineering, 33(3), 198–203.

    Google Scholar 

  • Kolars, J.F., Mitchell, W.A., (1991). The euphrates river and the southeast anatolia development project. USA: Southern Illinois University Press.

  • Kauth, R., & Thomas, G. (1976). The tasselled cap—A graphical description of the spectral– temporal development of agricultural crops as seen by Landsat.In Proceedings of the symposium on machine processing of remotely sensed data (pp. 4B-41–4B-51). Indiana: Purdue University of West Lafayette.

  • Linke, J., Franklin, S. E., Hall-Beyer, M., & Stenhouse, G. (2008). Effects of cutline density and land-cover heterogeneity on landscape metrics in western Alberta. Canadian Journal of Remote Sensing, 34(4), 390–404.

    Article  Google Scholar 

  • Masek, J. G., Huang, C. Q., Wolfe, R., Cohen, W., Hall, F., Kutler, J., Nelson, P. (2008). North American forest disturbance mapped from a decadal Landsat record. Remote Sensing of Environment, 112, 2914–2926.

    Article  Google Scholar 

  • Masek, J. G., Vermote, E. F., Saleous, N. E., Wolfe, R., Hall, F. G., Huemmrich, K. F., Gao, F., Kutler, J., Lim, T. K. (2006). A Landsat surface reflectance dataset for North America, 1990–2000. IEEE Geoscience and Remote Sensing Letters, 3(1), 68–72.

    Article  Google Scholar 

  • Moon, H., Choi, T., Kim, G., Park, N., Park, H., & Choi, J. (2017). Land cover classification of RapidEye satellite images using tasseled cap transformation (TCT). Korean Journal of Remote Sensing, 33(1), 79–88.

    Article  Google Scholar 

  • Ozcan, O., (2007). Evaluation of flood risk analysis in Sakarya river sub-basin by using remote sensing and GIS, M. sc. ITU Informatics Institute, Istanbul (in Turkish).

  • Ozdogan, M., (2004). The hydroclimatologic effects of irrigation in Southeastern Turkey’, Ph.D. Dissertation, Geography Department, Boston University, 168 pp.

  • Ozdogan, M., Woodcock, C. E., Salvucci, G. D., & Demir, H. (2006). Changes in Summer irrigated crop area and water use in southeastern Turkey from 1993 to 2002: Implications for current and future water resources. Water Resources Management, 20, 467–488.

    Article  Google Scholar 

  • Ozdogan, M., Yang, Y., Allez, G., & Cervantes, C. (2010). Remote sensing of irrigated agriculture: Opportunities and challenges. Remote Sens., 2010(2), 2274–2304.

    Article  Google Scholar 

  • Pax-Lenney, M., & Woodcock, C. E. (1997). The effect of spatial resolution on the ability to monitor the status of agricultural lands. Remote Sensing of Environment, 61, 210–220.

    Article  Google Scholar 

  • Potter, C., Tan, P. N., Steinbach, M., Klooster, S., Kumar, V., Myneni, R., Genovese, V. (2003). Major disturbance events in terrestrial ecosystems detected using global satellite data sets. Global Change Biology, 9(7), 1005–1021.

    Article  Google Scholar 

  • Qui, B., Zhang, K., Tang, Z., Chen, C., & Wang, Z. (2017). Developing soil indices based on brightness, darkness, and greenness to improve land surface mapping accuracy. GIScience and Remote Sensing. doi:10.1080/15481603.2017.1328758.

    Google Scholar 

  • Senturk, S., Bagis, S., Ustundag, B. (2014). Application of remote sensing techniques in locating dry and irrigated farmland parcels. In The third international conference on agro-geoinformatics, Beijing, 2014, (pp. 1–4), doi: 10.1109/Agro-Geoinformatics.2014.6910630.

  • Serra, P., & Pons, X. (2008). Monitoring farmers’ decisions on Mediterranean irrigated crops using satellite image time series. International Journal of Remote Sensing, 29(8), 2293–2316. doi:10.1080/01431160701408444.

    Article  Google Scholar 

  • Seto, K. C., Woodcock, C. E., Song, C., Huang, X., Lu, J., & Kaufmann, R. K. (2002). Monitoring land-use change in the Pearl River Delta using Landsat TM. International Journal of Remote Sensing, 23, 1985–2004.

    Article  Google Scholar 

  • Song, C., Woodcock, C. E., Seto, K. C., Lenney, M. P., & Macomber, S. A. (2001). Classification and change detection using Landsat TM data: When and how to correct atmospheric effects? Remote Sensing of Environment, 75, 230–244.

    Article  Google Scholar 

  • Tortajada, C. (2001). Environmental Sustainability of Water Projects Doctoral Thesis Royal Institute of Technology, Stockholm.

  • Vogelmann, J. E., Howard, S. M., Yang, L., Larson, C. R., Wylie, B. K., & Van Driel, J. N. (2001). Completion of the 1990’s National land cover data set for the conterminous United States. Photogrammetric Engineering and Remote Sensing, 67, 650–662.

    Google Scholar 

  • Wulder, M. A., White, J. C., Goward, S. N., Masek, J. G., Irons, J. R., Herold, M., Cohen, W. B., Loveland, T. R., Woodcock, C. E. (2008). Landsat continuity: Issues and opportunities for land cover monitoring. Remote Sensing of Environment, 112, 955–969.

    Article  Google Scholar 

  • Yapar, G., & Ağraz, M. (2012). Drought option contracts price for Harran region. Selcuk University the Journal of Social and Economic Research., 22, 119–140.

    Google Scholar 

  • Yesilnacar, M.I. (2003). Grouting applications in the Sanliurfa tunnels of GAP, Turkey. Tunnelling and Underground Space Technology 18(4), 321–330.

    Article  Google Scholar 

  • Yesilnacar, M. I., & Cetin, H. (2005). Site Selection for hazardous wastes: A case study from the GAP area, Turkey. Engineering Geology, 81, 371–388.

    Article  Google Scholar 

  • Zhu, Z., & Woodcock, C. E. (2014). Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: an algorithm designed specifically for monitoring land cover change. Remote Sensing of Environment, 152, 217–234. doi:10.1016/j.rse.2014.06.012.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orkan Özcan.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özcan, O., Bookhagen, B. & Musaoğlu, N. Impact of the Atatürk Dam Lake on Agro-Meteorological Aspects of the Southeastern Anatolia Region, Turkey. J Indian Soc Remote Sens 46, 471–481 (2018). https://doi.org/10.1007/s12524-017-0703-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-017-0703-9

Keywords

Navigation