Skip to main content

Advertisement

Log in

Identification of Potential Megalin/Cubilin Substrates Using Extensive Proteomics Quantification from Kidney Megalin-Knockdown Mice

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Megalin and cubilin, endocytic proteins present in the proximal tubule of the kidney, are responsible for reabsorbing filtered proteins from urine. Our hypothesis was that potential substrates of megalin/cubilin could be identified by examining urinary protein differences between control (WT) mice and kidney-specific megalin knockdown (KD) mice. Using the IonStar proteomics approach, 877 potential megalin/cubilin substrates were discovered, with 23 of these compounds representing known megalin/cubilin substrates. Some of the proteins with the largest fold changes in the urine between KD and WT included the known megalin substrates retinol-binding protein and vitamin D-binding protein. Of the total proteins identified as novel substrates, about three-quarters of compounds had molecular weights (MWs) below 69 kDa, the MW of albumin, and the remaining had higher MWs, with about 5% of the proteins having MWs greater than 150 kDa. Sex differences in the number of identified substrates occurred, but this may be due to differences in kidney megalin expression between both male and female megalin KD and WT animals, with the ratio of megalin between WT and KD being 2.76 and 2.14 for female and male mice, respectively. The top three ingenuity canonical pathways based on the urinary proteins in both female and male KD mice were acute phase response signaling, liver X receptor/retinoid X receptor activation, and intrinsic prothrombin activation pathways. In conclusion, analysis of urine samples from kidney-specific megalin KD and WT mice was found to be useful for the identification of potential endogenous substrates for megalin and cubilin.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DBP:

Vitamin D binding protein

FDR:

False discovery rate

FXR:

Farnesoid X receptor

IPA:

Ingenuity pathway analysis

KD:

Knockdown

LC–MS/MS:

Liquid chromatography mass spectrometry

LMW:

Low molecular weight

LXR:

Liver X receptor

MUPs:

Major mouse urinary proteins

MW:

Molecular weight

NPXY:

Asn-Pro-any amino acid-tyrosine motifs

PSM:

Peptide-spectrum match

PT:

Proximal tubule

RBP4:

Retinal binding protein

RXR:

Retinoid X receptor

SPR:

Surface plasmon resonance

WT:

Wild type

References

  1. Nielsen R, Christensen EI, Birn H. Megalin and cubilin in proximal tubule protein reabsorption: from experimental models to human disease. Kidney Int. 2016;89(1):58–67. https://doi.org/10.1016/j.kint.2015.11.007.

    Article  PubMed  Google Scholar 

  2. Christensen EI, Birn H. Megalin and cubilin: multifunctional endocytic receptors. Nat Rev Mol Cell Biol. 2002;3(4):258–67. https://doi.org/10.1038/nrm778.

    Article  Google Scholar 

  3. Hammad SM, Barth JL, Knaak C, Argraves WS. Megalin acts in concert with cubilin to mediate endocytosis of high density lipoproteins. J Biol Chem. 2000;275(16):12003–8. https://doi.org/10.1074/jbc.275.16.12003.

    Article  PubMed  Google Scholar 

  4. Christensen EI, Moskaug JO, Vorum H, Jacobsen C, Gundersen TE, Nykjaer A, et al. Evidence for an essential role of megalin in transepithelial transport of retinol. J Am Soc Nephrol. 1999;10(4):685–95.

    Article  PubMed  Google Scholar 

  5. Gonzalez-Villalobos R, Klassen RB, Allen PL, Navar LG, Hammond TG. Megalin binds and internalizes angiotensin II. Am J Physiol Renal Physiol. 2005;288(2):F420–7. https://doi.org/10.1152/ajprenal.00243.2004.

    Article  PubMed  Google Scholar 

  6. Gonzalez-Villalobos R, Klassen RB, Allen PL, Johanson K, Baker CB, Kobori H, et al. Megalin binds and internalizes angiotensin-(1–7). Am J Physiol Renal Physiol. 2006;290(5):F1270–5. https://doi.org/10.1152/ajprenal.00164.2005.

    Article  PubMed  Google Scholar 

  7. Nykjaer A, Dragun D, Walther D, Vorum H, Jacobsen C, Herz J, et al. An endocytic pathway essential for renal uptake and activation of the steroid 25-(OH) vitamin D3. Cell. 1999;96(4):507–15.

    Article  PubMed  Google Scholar 

  8. Leheste JR, Rolinski B, Vorum H, Hilpert J, Nykjaer A, Jacobsen C, et al. Megalin knockout mice as an animal model of low molecular weight proteinuria. Am J Pathol. 1999;155(4):1361–70. https://doi.org/10.1016/S0002-9440(10)65238-8.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Orlando RA, Rader K, Authier F, Yamazaki H, Posner BI, Bergeron JJ, et al. Megalin is an endocytic receptor for insulin. J Am Soc Nephrol. 1998;9(10):1759–66.

    Article  PubMed  Google Scholar 

  10. Gburek J, Birn H, Verroust PJ, Goj B, Jacobsen C, Moestrup SK, et al. Renal uptake of myoglobin is mediated by the endocytic receptors megalin and cubilin. J Am Soc Nephrol. 2002;13:486a-a487.

    Article  Google Scholar 

  11. Moestrup SK, Birn H, Fischer PB, Petersen CM, Verroust PJ, Sim RB, et al. Megalin-mediated endocytosis of transcobalamin-vitamin-B12 complexes suggests a role of the receptor in vitamin-B12 homeostasis. Proc Natl Acad Sci U S A. 1996;93(16):8612–7.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sousa MM, Norden AG, Jacobsen C, Willnow TE, Christensen EI, Thakker RV, et al. Evidence for the role of megalin in renal uptake of transthyretin. J Biol Chem. 2000;275(49):38176–81. https://doi.org/10.1074/jbc.M002886200.

    Article  PubMed  Google Scholar 

  13. Nykjaer A, Fyfe JC, Kozyraki R, Leheste J-R, Jacobsen C, Nielsen MS, et al. Cubilin dysfunction causes abnormal metabolism of the steroid hormone 25(OH) vitamin D. PNAS. 2001;98(24):13895–900. https://doi.org/10.1073/pnas.241516998.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Liu CP, Hu Y, Lin JC, Fu HL, Lim LY, Yuan ZX. Targeting strategies for drug delivery to the kidney: From renal glomeruli to tubules. Med Res Rev. 2019;39(2):561–78. https://doi.org/10.1002/med.21532.

    Article  PubMed  Google Scholar 

  15. Lameire N. Nephrotoxicity of recent anti-cancer agents. Clin Kidney J. 2014;7(1):11–22. https://doi.org/10.1093/ckj/sft135.

    Article  PubMed  Google Scholar 

  16. Hori Y, Aoki N, Kuwahara S, Hosojima M, Kaseda R, Goto S, et al. Megalin blockade with cilastatin suppresses drug-induced nephrotoxicity. J Am Soc Nephrol. 2017;28(6):1783–91. https://doi.org/10.1681/asn.2016060606.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bryniarski MA, Zhao B, Chaves LD, Mikkelsen JH, Yee BM, Yacoub R, et al. Immunoglobulin G is a novel substrate for the endocytic protein megalin. AAPS J. 2021;23(2):40. https://doi.org/10.1208/s12248-021-00557-1.

    Article  PubMed  Google Scholar 

  18. Leheste J-R, Rolinski B, Vorum H, Hilpert J, Nykjaer A, Jacobsen C, et al. Megalin Knockout mice as an animal model of low molecular weight proteinuria. Am J Pathol. 1999;155(4):1361–70. https://doi.org/10.1016/S0002-9440(10)65238-8.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Shen S, An B, Wang X, Hilchey SP, Li J, Cao J, et al. Surfactant cocktail-aided extraction/precipitation/on-pellet digestion strategy enables efficient and reproducible sample preparation for large-scale quantitative proteomics. Anal Chem. 2018;90(17):10350–9. https://doi.org/10.1021/acs.analchem.8b02172.

    Article  PubMed  Google Scholar 

  20. Tu C, Mammen MJ, Li J, Shen X, Jiang X, Hu Q, et al. Large-scale, ion-current-based proteomics investigation of bronchoalveolar lavage fluid in chronic obstructive pulmonary disease patients. J Proteome Res. 2014;13:627.

    Article  PubMed  Google Scholar 

  21. Tu C, Fiandalo MV, Pop E, Stocking JJ, Azabdaftari G, Li J, et al. Proteomic analysis of charcoal-stripped fetal bovine serum reveals changes in the insulin-like growth factor signaling pathway. J Proteome Res. 2018;17(9):2963–77. https://doi.org/10.1021/acs.jproteome.8b00135.

    Article  PubMed  Google Scholar 

  22. Tu C, Li J, Young R, Page BJ, Engler F, Halfon MS, et al. Combinatorial peptide ligand library treatment followed by a dual-enzyme, dual-activation approach on a nanoflow liquid chromatography/orbitrap/electron transfer dissociation system for comprehensive analysis of swine plasma proteome. Anal Chem. 2011;83(12):4802–13. https://doi.org/10.1021/ac200376m.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tu C, Bu Y, Vujcic M, Shen S, Li J, Qu M, et al. Ion current-based proteomic profiling for understanding the inhibitory effect of tumor necrosis factor alpha on myogenic differentiation. J Proteome Res. 2016;15(9):3147–57. https://doi.org/10.1021/acs.jproteome.6b00321.

    Article  PubMed  Google Scholar 

  24. Shen X, Shen S, Li J, Hu Q, Nie L, Tu C, et al. An IonStar experimental strategy for MS1 ion current-based quantification using ultrahigh-field orbitrap: reproducible, in-depth, and accurate protein measurement in large cohorts. J Proteome Res. 2017;16(7):2445–56. https://doi.org/10.1021/acs.jproteome.7b00061.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shen X, Shen S, Li J, Hu Q, Nie L, Tu C, et al. IonStar enables high-precision, low-missing-data proteomics quantification in large biological cohorts. PNAS. 2018;115(21):E4767–76. https://doi.org/10.1073/pnas.1800541115.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang X, Jin L, Hu C, Shen S, Qian S, Ma M, et al. Ultra-high-resolution IonStar strategy enhancing accuracy and precision of MS1-based proteomics and an extensive comparison with state-of-the-art SWATH-MS in large-cohort quantification. Anal Chem. 2021;93(11):4884–93. https://doi.org/10.1021/acs.analchem.0c05002.

    Article  PubMed  Google Scholar 

  27. Sadygov RG, Maroto FM, Huhmer AF. ChromAlign: a two-step algorithmic procedure for time alignment of three-dimensional LC-MS chromatographic surfaces. Anal Chem. 2006;78(24):8207–17. https://doi.org/10.1021/ac060923y.

    Article  PubMed  Google Scholar 

  28. Krämer A, Green J, Pollard J Jr, Tugendreich S. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics. 2013;30(4):523–30. https://doi.org/10.1093/bioinformatics/btt703.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Koral K, Li H, Ganesh N, Birnbaum MJ, Hallows KR, Erkan E. Akt recruits Dab2 to albumin endocytosis in the proximal tubule. Am J Physiol Renal Physiol. 2014;307(12):F1380–9. https://doi.org/10.1152/ajprenal.00454.2014.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Nagai J, Christensen EI, Morris SM, Willnow TE, Cooper JA, Nielsen R. Mutually dependent localization of megalin and Dab2 in the renal proximal tubule. American Journal of Physiology-Renal Physiology. 2005;289(3):F569–76. https://doi.org/10.1152/ajprenal.00292.2004.

    Article  PubMed  Google Scholar 

  31. Gburek J, Verroust PJ, Willnow TE, Fyfe JC, Nowacki W, Jacobsen C, et al. Megalin and cubilin are endocytic receptors involved in renal clearance of hemoglobin. J Am Soc Nephrol. 2002;13(2):423–30.

    Article  PubMed  Google Scholar 

  32. Oyama Y, Takeda T, Hama H, Tanuma A, Iino N, Sato K, et al. Evidence for megalin-mediated proximal tubular uptake of L-FABP, a carrier of potentially nephrotoxic molecules. Lab Invest. 2005;85(4):522–31. https://doi.org/10.1038/labinvest.3700240.

    Article  PubMed  Google Scholar 

  33. Birn H, Vorum H, Verroust PJ, Moestrup SK, Christensen EI. Receptor- associated protein is important for normal processing of megalin in kidney proximal tubules. J Am Soc Nephrol. 2000;11(2):191–202.

  34. Kounnas MZ, Loukinova EB, Stefansson S, Harmony JAK, Brewer BH, Strickland DK, et al. Identification of glycoprotein-330 as an endocytic receptor for apolipoprotein-J/clusterin. J Biol Chem. 1995;270(22):13070–5. https://doi.org/10.1074/jbc.270.22.13070.

    Article  PubMed  Google Scholar 

  35. Godyna S, Liau G, Popa I, Stefansson S, Argraves WS. Identification of the low-density- lipoprotein receptor-related protein (Lrp) as an endocytic receptor for thrombospondin-1. J Cell Biol. 1995;129(5):1403–10. https://doi.org/10.1083/jcb.129.5.1403.

    Article  PubMed  Google Scholar 

  36. Hama H, Saito A, Takeda T, Tanuma A, Xie Y, Sato K, et al. Evidence indicating that renal tubular metabolism of leptin is mediated by megalin but not by the leptin receptors. Endocrinology. 2004;145(8):3935–40. https://doi.org/10.1210/en.2004-0074.

    Article  PubMed  Google Scholar 

  37. Nielsen R, Courtoy PJ, Jacobsen C, Dom G, Lima WR, Jadot M, et al. Endocytosis provides a major alternative pathway for lysosomal biogenesis in kidney proximal tubular cells. Proc Natl Acad Sci U S A. 2007;104(13):5407–12. https://doi.org/10.1073/pnas.0700330104.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kaseda R, Iino N, Hosojima M, Takeda T, Hosaka K, Kobayashi A, et al. Megalin-mediated endocytosis of cystatin C in proximal tubule cells. Biochem Biophys Res Commun. 2007;357(4):1130–4. https://doi.org/10.1016/j.bbrc.2007.04.072.

    Article  PubMed  Google Scholar 

  39. Kounnas MZ, Chappell DA, Strickland DK, Argraves WS. Glycoprotein-330, a member of the low-density-lipoprotein receptor family, binds lipoprotein-lipase in-vitro. J Biol Chem. 1993;268(19):14176–81.

    Article  PubMed  Google Scholar 

  40. Willnow TE, Goldstein JL, Orth K, Brown MS, Herz J. Low-density-lipoprotein receptor- related protein and Gp330 bind similar ligands, including plasminogen activator-inhibitor complexes and lactoferrin, an inhibitor of chylomicron remnant clearance. J Biol Chem. 1992;267(36):26172–80.

    Article  PubMed  Google Scholar 

  41. Kanalas JJ. Analysis of plasmin binding and urokinase activation of plasminogen bound to the Heymann nephritis autoantigen, Gp330. Arch Biochem Biophys. 1992;299(2):255–60. https://doi.org/10.1016/0003-9861(92)90272-X.

    Article  PubMed  Google Scholar 

  42. Kanalas JJ, Makker SP. Identification of the rat Heymann nephritis autoantigen (GP330) as a receptor site for plasminogen. J Biol Chem. 1991;266(17):10825–9.

    Article  PubMed  Google Scholar 

  43. Cui S, Verroust PJ, Moestrup SK, Christensen EI. Megalin/gp330 mediates uptake of albumin in renal proximal tubule. Am J Physiol. 1996;271(4 Pt 2):F900–7. https://doi.org/10.1152/ajprenal.1996.271.4.F900.

    Article  PubMed  Google Scholar 

  44. Birn H, Zhai X, Holm J, Hansen SI, Jacobsen C, Christensen EI, et al. Megalin binds and mediates cellular internalization of folate binding protein. FEBS J. 2005;272(17):4423–30. https://doi.org/10.1111/j.1742-4658.2005.04857.x.

    Article  PubMed  Google Scholar 

  45. Faber K, Hvidberg V, Moestrup SK, Dahlback B, Nielsen LB. Megalin is a receptor for apolipoprotein M, and kidney-specific megalin-deficiency confers urinary excretion of apolipoprotein M. Mol Endocrinol. 2006;20(1):212–8. https://doi.org/10.1210/me.2005-0209.

    Article  PubMed  Google Scholar 

  46. Sun Y, Lu X, Danser AHJ. Megalin: a novel determinant of renin-angiotensin system activity in the kidney? Curr Hypertens Rep. 2020;22(4):30. https://doi.org/10.1007/s11906-020-01037-1.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kukida M, Sawada H, Daugherty A, Lu HS. Megalin: a bridge connecting kidney, the renin- angiotensin system, and atherosclerosis. Pharmacol Res. 2020;151: 104537. https://doi.org/10.1016/j.phrs.2019.104537.

    Article  PubMed  Google Scholar 

  48. Geertzen HGM, Ouderaa FJGvd, Kassenaar AAH. Isolation and metabolism of male sex- dependent urinary protein from rats. Acta Endocrinol (Copenh). 1973;72(1):197. doi: https://doi.org/10.1530/acta.0.0720197.

  49. Lane SE, Neuhaus OW. Multiple forms of 2 u, a sex-dependent urinary protein of the adult male rat. Biochim Biophys Acta. 1972;263(2):433–40. https://doi.org/10.1016/0005-2795(72)90095-5.

    Article  PubMed  Google Scholar 

  50. Flower DR. The lipocalin protein family: structure and function. Biochem J. 1996;318(Pt 1):1–14. https://doi.org/10.1042/bj3180001.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Baylis C. Sexual dimorphism, the aging kidney, and involvement of nitric oxide deficiency. Semin Nephrol. 2009;29(6):569–78. https://doi.org/10.1016/j.semnephrol.2009.07.003.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Munger K, Baylis C. Sex differences in renal hemodynamics in rats. Am J Physiol. 1988;254(2 Pt 2):F223–31. https://doi.org/10.1152/ajprenal.1988.254.2.F223.

    Article  PubMed  Google Scholar 

  53. Remuzzi A, Puntorieri S, Mazzoleni A, Remuzzi G. Sex related differences in glomerular ultrafiltration and proteinuria in Munich-Wistar rats. Kidney Int. 1988;34(4):481–6. https://doi.org/10.1038/ki.1988.206.

    Article  PubMed  Google Scholar 

  54. Dickinson H, Moritz KM, Kett MM. A comparative study of renal function in male and female spiny mice - sex specific responses to a high salt challenge. Biol Sex Differ. 2013;4(1):21. https://doi.org/10.1186/2042-6410-4-21.

    Article  PubMed  PubMed Central  Google Scholar 

  55. BaireyMerz CN, Dember LM, Ingelfinger JR, Vinson A, Neugarten J, Sandberg KL, et al. Sex and the kidneys: current understanding and research opportunities. Nat Rev Nephrol. 2019;15(12):776–83. https://doi.org/10.1038/s41581-019-0208-6.

    Article  Google Scholar 

  56. Yang H, Zhang W, Lu S, Lu G, Zhang H, Zhuang Y, et al. Mup-knockout mice generated through CRISPR/Cas9-mediated deletion for use in urinary protein analysis. Acta Biochim Biophys Sin (Shanghai). 2016;48(5):468–73. https://doi.org/10.1093/abbs/gmw003.

    Article  Google Scholar 

  57. Leheste JR, Melsen F, Wellner M, Jansen P, Schlichting U, Renner-Muller I, et al. Hypocalcemia and osteopathy in mice with kidney-specific megalin gene defect. FASEB J. 2003;17(2):247–9. https://doi.org/10.1096/fj.02-0578fje.

    Article  PubMed  Google Scholar 

  58. Bryniarski MA, Zhao B, Chaves LD, Mikkelsen JH, Yee BM, Yacoub R, et al. Immunoglobulin G is a novel substrate for the endocytic protein megalin. Aaps j. 2021;23(2):40. https://doi.org/10.1208/s12248-021-00557-1.

    Article  PubMed  Google Scholar 

Download references

Funding

Financial support by the Center of Protein Therapeutics, University at Buffalo (MEM).

Author information

Authors and Affiliations

Authors

Contributions

Participated in research design: Morris, Qu, and Zhao.

Conducted experiments: Morris, Zhao, Tu, and Shen.

Contributed new reagents or analytic tools: Morris and Qu.

Performed data analysis: Morris, Tu, Shen, and Zhao.

Wrote or contributed to the writing of the manuscript: Morris, Qu, Tu, Shen, and Zhao.

Corresponding author

Correspondence to Marilyn E. Morris.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 959 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, B., Tu, C., Shen, S. et al. Identification of Potential Megalin/Cubilin Substrates Using Extensive Proteomics Quantification from Kidney Megalin-Knockdown Mice. AAPS J 24, 109 (2022). https://doi.org/10.1208/s12248-022-00758-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-022-00758-2

Keywords

Navigation