Skip to main content

Formazione reticolare e gruppi cellulari monoaminergici e colinergici

  • Chapter
Il sistema nervoso centrale

Riassunto

L’area che occupa la porzione centrale del tronco è nota come formazione reticolare. Per gran parte della sua estensione, questa area è occupata da aggregati di cellule sparse, diverse per tipo e dimensioni, e i sistemi di fibre che attraversano questo territorio sono parimenti organizzati in maniera alquanto diffusa. Il termine “formazione reticolare” si riferisce al fatto che i dendriti delle cellule in questa area sono disposti in fasci che insieme formano una struttura a forma di rete [161]. I sistemi di fibre che la attraversano decorrono negli interstizi di questa rete. La formazione reticolare è circondata dai nuclei dei nervi cranici, dai nuclei di proiezione sensoriale e dai lunghi sistemi di fibre ascendenti e discendenti. Per motivi di citoarchitettonica, di chemoarchitettonica e funzionali, la formazione reticolare del bulbo e del ponte è stata divisa in tre zone longitudinali [29] (Figg. 22.1, 22.2):

  1. 1.

    Una zona mediana e paramediana, costituita dai nuclei del rafe. I neuroni serotoninergici dei gruppi B1–B9 di Dahlström e Fuxe [43, 44] sono disposti nei nuclei del rafe e nell’adiacente formazione reticolare.

  2. 2.

    Una zona mediale, che contiene numerose cellule di grandi dimensioni, nota come campo tegmentale mediale.

  3. 3.

    Una zona laterale, una zona ampiamente parvocellulare, nota come campo tegmentale laterale.

La formazione rcticolare. Rapprcsentazione scmischcmatica in proiczione dorsale del tronco encefalico. Sinistra, citoarchitettura; destra, suddivisioni della formazione reticolare (campo tegmentale mediale, grigio chiaro; campo tegmentale latcralc, grigio scuro), i nuclei del rafe (rosso), i gruppi cellulari noradrencrgici A1–A6 (rosso chiaro), i gruppi adrenergici C1 e C2 (rosso media) e i gruppi cellulari colinergici Ch5 e 6 (grigio). AMB, nucleo ambiguo

La formazionc rcticolare. Sezioni schematichc trasverse condotte a livello della parte caudalc (A) e rostrale (B) del bulbo. La parte rostrale del tegmento pontino (C) e del mesencefalo (D), per mostrare la posizione del campo tcgmcntale mediale (grigio chiaro) e il campo tegmentale laterale (grigio scuro), i nuclei del rafe (rosso), i gruppi cellular! noradrenergici A1–A7 (rosso chiaro), i gruppi cellular! adrenergici Cl e S2 (rosso rnedio) e i gruppi cellular! colinergici Ch5 e Ch6 (grigio). A1–A7, gruppi cellulari noradrenergici A1–A7; AMB, nucleo ambiguo; Cl, C2, gruppi cellulari adrenergici C1, C2; Cocl, nuclei cocleari; CUI, nucleo cuneato laterale; CUm, nucleo cuneato mediale; FLM, fascicolo longitudinale mediale; GRAC, nucleo gracile; LRN, nucleo reticolare laterale; MesV, tratto mesencefalico del nervo trigemino; Nucleo subcoer., nucleo subcoeruleus; NRTP, nucleo reticolare del tegmento pontino; PAG, grigio periacqueduttale; Prep, nucleo preposito dell’ipoglosso; Rest.b, corpo restiforme; SOL, nucleo del tratto solitario; V spin, tratto spinale del nervo trigemino; Vest, nuclei vestibolari; VMS, velo midollare superiore; X, nucleo dorsale del vago; XII, nucleo del nervo ipoglosso

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. Aghajanian GK, Wang RY (1977) Habenular and other midbrain raphe afferents demonstrated by a modified retrograde tracing technique. Brain Res 122:229–242

    Article  CAS  PubMed  Google Scholar 

  2. Aldes LD, Shaw B, Chronister RB, Haycock JW (1990) Catecholamine-containing axon terminals in the hypoglossal nucleus of the rat: an immuno-electron-microscopic study. Brain Res 81:167–178

    CAS  Google Scholar 

  3. Aldes LD, Chapman ME, Chronister RB, Haycock JW (1992) Sources of noradrenergic afferents to the hypoglossal nucleus in the rat. Brain Res Bull 29:931–942

    Article  CAS  PubMed  Google Scholar 

  4. Alstermark B, Kummel H, Tantisira B (1987) Monosynaptic raphespinal and reticulospinal projection to forelimb motoneurones in cats. Neurosci Lett 74:286–290

    Article  CAS  PubMed  Google Scholar 

  5. Armstrong DM, Saper CB, Levey AI, Wainer BH, Terry RD (1983) Distribution of cholinergic neurons in rat brain: demonstrated by the immunocytochemical localization of choline acetyltransferase. J Comp Neurol 216:53–68

    Article  CAS  PubMed  Google Scholar 

  6. Arnsten AF, Goldman-Rakic PS (1984) Selective prefrontal cortical projections to the region of the locus coeruleus and raphe nuclei in the rhesus monkey. Brain Res 306:9–18

    Article  CAS  PubMed  Google Scholar 

  7. Aston-Jones G (2004) Locus coerulaeus, A5 and A7 noradrenergic cell groups. In: Paxinos G (ed) The rat nervous system. Elsevier, Amsterdam, pp 259–294

    Chapter  Google Scholar 

  8. Aston-Jones G, Ennis M, Pieribone VA, Nickell WT, Shipley MT (1986) The brain nucleus locus coeruleus: restricted afferent control of a broad efferent network. Science 234:734–737

    Article  CAS  PubMed  Google Scholar 

  9. Aston-Jones G, Shipley MT, Chouvet G, Ennis M, Van Bockstaele E, Pieribone V, Shiekhattar R, Akaoka H, Drolet G, Astier B et al (1991) Afferent regulation of locus coeruleus neurons: anatomy, physiology and pharmacology. Prog Brain Res 88:47–75

    Article  CAS  PubMed  Google Scholar 

  10. Aston-Jones G, Chen S, Zhu Y, Oshinsky ML (2001) A neural circuit for circadian regulation of arousal. Nat Neurosci 4:732–738

    Article  CAS  PubMed  Google Scholar 

  11. Bajic D, Van Bockstaele EJ, Proudfit HK (2001) Ultrastructural analysis of ventrolateral periaqueductal gray projections to the A7 catecholamine cell group. Neuroscience 104:181–197

    Article  CAS  PubMed  Google Scholar 

  12. Baker KG, Halliday GM, Halasz P, Hornung JP, Geffen LB, Cotton RG, Tork I (1991) Cytoarchitecture of serotonin-synthesizing neurons in the pontine tegmentum of the human brain. Synapse 7:301–320

    Article  CAS  PubMed  Google Scholar 

  13. Basbaum AI, Clanton CH, Fields HL (1978) Three bulbospinal pathways from the rostral medulla of the cat: an autoradiographic study of pain modulating systems. J Comp Neurol 178:209–224

    Article  CAS  PubMed  Google Scholar 

  14. Beckstead RM, Domesick VB, Nauta WJ (1979) Efferent connections of the substantia nigra and ventral tegmental area in the rat. Brain Res 175:191–217

    Article  CAS  PubMed  Google Scholar 

  15. Behzadi G, Kalen P, Parvopassu F, Wiklund L (1990) Afferents to the median raphe nucleus of the rat: retrograde cholera toxin and wheat germ conjugated horseradish peroxidase tracing, and selective D-[3H]aspartate labelling of possible excitatory amino acid inputs. Neuroscience 37:77–100

    Article  CAS  PubMed  Google Scholar 

  16. Bishop GA, Ho RH (1985) The distribution and origin of serotonin immunoreactivity in the rat cerebellum. Brain Res 331:195–207

    Article  CAS  PubMed  Google Scholar 

  17. Blessing W (2004) Lower brain stem regulation of visceral, cardiovascular, and respiratory function. In: Paxinos G, Mai JK (eds) The human nervous system. Elsevier, Amsterdam, pp 465–478

    Google Scholar 

  18. Blessing WW, Chalmers JP (1979) Direct projection of catecholamine (presumably dopamine)-containing neurons from hypothalamus to spinal cord. Neurosci Lett 11:35–40

    Article  CAS  PubMed  Google Scholar 

  19. Blessing WW, Furness JB, Costa M, West MJ, Chalmers JP (1981) Projection of ventrolateral medullary (A1) catecholamine neurons toward nucleus tractus solitarii. Cell Tissue Res 220:27–40

    Article  CAS  PubMed  Google Scholar 

  20. Blomqvist A, Berkley KJ (1992) A re-examination of the spino-reticulo-diencephalic pathway in the cat. Brain Res 579:17–31

    Article  CAS  PubMed  Google Scholar 

  21. Bobillier P, Seguin S, Petitjean F, Salvert D, Touret M, Jouvet M (1976) The raphe nuclei of the cat brain stem: a topographical atlas of their efferent projections as revealed by autoradiography. Brain Res 113:449–486

    Article  CAS  PubMed  Google Scholar 

  22. Bobillier P, Seguin S, Degueurce A, Lewis BD, Pujol JF (1979) The efferent connections of the nucleus raphe centralis superior in the rat as revealed by radioautography. Brain Res 166:1–8

    Article  CAS  PubMed  Google Scholar 

  23. Bowker RM, Westlund KN, Coulter JD (1981) Serotonergic projections to the spinal cord from the midbrain in the rat: an immunocytochemical and retrograde transport study. Neurosci Lett 24:221–226

    Article  CAS  PubMed  Google Scholar 

  24. Bowker RM, Westlund KN, Coulter JD (1981) Origins of serotonergic projections to the spinal cord in rat: an immunocytochemical-retrograde transport study. Brain Res 226:187–199

    Article  CAS  PubMed  Google Scholar 

  25. Bowker RM, Westlund KN, Coulter JD (1982) Origins of serotonergic projections to the lumbar spinal cord in the monkey using a combined retrograde transport and immunocytochemical technique. Brain Res Bull 9:271–278

    Article  CAS  PubMed  Google Scholar 

  26. Bowker RM, Westlund KN, Sullivan MC, Coulter JD (1982) Organization of descending serotonergic projections to the spinal cord. Prog Brain Res 57:239–265

    Article  CAS  PubMed  Google Scholar 

  27. Bowker RM, Westlund KN, Sullivan MC, Coulter JD (1982) A combined retrograde transport and immunocytochemical staining method for demonstrating the origins of serotonergic projections. J Histochem Cytochem 30:805–810

    CAS  PubMed  Google Scholar 

  28. Bowker RM, Westlund KN, Sullivan MC, Wilber JF, Coulter JD (1983) Descending serotonergic, peptidergic and cholinergic pathways from the raphe nuclei: a multiple transmitter complex. Brain Res 288:33–48

    Article  CAS  PubMed  Google Scholar 

  29. Brodal A (1957) The reticular formation of the brain stem. Anatomical aspects and functional correlations. In: The Henderson Trust Lectures. Oliver and Boyd, Edinburgh

    Google Scholar 

  30. Butcher LL, Woolf NJ (2004) Cholinergic neurons and networks revisited. In: Paxinos G, Mai JK (eds) The rat nervous system. Elsevier, Amsterdam, pp 1263–1268

    Google Scholar 

  31. Byrum CE, Guyenet PG (1987) Afferent and efferent connections of the A5 noradrenergic cell group in the rat. J Comp Neurol 261:529–542

    Article  CAS  PubMed  Google Scholar 

  32. Card JP, Sved JC, Craig B, Raizada M, Vazquez J, Sved AF (2006) Efferent projections of rat rostroventrolateral medulla C1 catecholamine neurons: Implications for the central control of cardiovascular regulation. J Comp Neurol 499:840–859

    Article  PubMed  Google Scholar 

  33. Carlton SM, Leichnetz GR, Young EG, Mayer DJ (1983) Supramedullary afferents of the nucleus raphe magnus in the rat: a study using the transcannula HRP gel and autoradiographic techniques. J Comp Neurol 214:43–58

    Article  CAS  PubMed  Google Scholar 

  34. Chase MH, Soja PJ, Morales FR (1989) Evidence that glycine mediates the postsynaptic potentials that inhibit lumbar motoneurons during the atonia of active sleep. J Neurosci 9:743–751

    CAS  PubMed  Google Scholar 

  35. Chen S, Yang M, Miselis RR, Aston-Jones G (1999) Characterization of transsynaptic tracing with central application of pseudorabies virus. Brain Res 838:171–183

    Article  CAS  PubMed  Google Scholar 

  36. Chou TC, Björkum AA, Gaus SE, Lu J, Scammell TE, Saper CB (2002) Afferents to the ventrolateral preoptic nucleus. J Neurosci 22:977–990

    CAS  PubMed  Google Scholar 

  37. Clark FM, Proudfit HK (1991) The projection of noradrenergic neurons in the A7 catecholamine cell group to the spinal cord in the rat demonstrated by anterograde tracing combined with immunocytochemistry. Brain Res 547:279–288

    Article  CAS  PubMed  Google Scholar 

  38. Clark FM, Proudfit HK (1991) The projection of locus coeruleus neurons to the spinal cord in the rat determined by anterograde tracing combined with immunocytochemistry. Brain Res 538:231–245

    Article  CAS  PubMed  Google Scholar 

  39. Clark FM, Proudfit HK (1992) Anatomical evidence for genetic differences in the innervation of the rat spinal cord by noradrenergic locus coeruleus neurons. Brain Res 591:44–53

    Article  CAS  PubMed  Google Scholar 

  40. Clark FM, Proudfit HK (1993) The projections of noradrenergic neurons in the A5 catecholamine cell group to the spinal cord in the rat: anatomical evidence that A5 neurons modulate nociception. Brain Res 616:200–210

    Article  CAS  PubMed  Google Scholar 

  41. Conrad LC, Pfaff DW (1976) Efferents from medial basal forebrain and hypothalamus in the rat. II. An autoradiographic study of the anterior hypothalamus. J Comp Neurol 169:221–261

    Article  CAS  PubMed  Google Scholar 

  42. Craig AD (1995) Distribution of brainstem projections from spinal lamina I neurons in the cat and the monkey. J Comp Neurol 361:225–248

    Article  CAS  PubMed  Google Scholar 

  43. Dahlström A, Fuxe K (1964) Localization of monoamines in the lower brain stem. Experientia 20:398–399

    Article  PubMed  Google Scholar 

  44. Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of the brain stem neurons. Acta Physiol Scand [Suppl] 62(247):1–55

    Google Scholar 

  45. Dampney RA (1994) Functional organization of central pathways regulating the cardiovascular system. Physiol Rev 74:323–364

    CAS  PubMed  Google Scholar 

  46. Datiche F, Luppi PH, Cattarelli M (1995) Serotonergic and non-serotonergic projections from the raphe nuclei to the piriform cortex in the rat: a cholera toxin B subunit (CTb) and 5-HT immunohistochemical study. Brain Res 671:27–37

    Article  CAS  PubMed  Google Scholar 

  47. Descarries L, Mechawar N (2000) Ultrastructural evidence for diffuse transmission by monoamine and acetylcholine neurons of the central nervous system. Prog Brain Res 125:27–47

    Article  CAS  PubMed  Google Scholar 

  48. Ennis M, Aston-Jones G (1989) GABA-mediated inhibition of locus coeruleus from the dorsomedial rostral medulla. J Neurosci 9:2973–2981

    CAS  PubMed  Google Scholar 

  49. Espana RA, Reis KM, Valentino RJ, Berridge CW (2005) Organization of hypocretin/orexin efferents to locus coeruleus and basal forebrain arousalrelated structures. J Comp Neurol 481:160–178

    Article  PubMed  Google Scholar 

  50. Forel A (1877) Untersuchungen über die Haubenregion und ihre oberen Verknüpfungen im Gehirne des Menschen und einiger Säugethiere, mit Beiträgen zu Methoden der Gehirnuntersuchung. Arch f Psychiat u Nervenkrankh 7:392–495

    Google Scholar 

  51. Fort P, Luppi PH, Wenthold R, Jouvet M (1990) Glycine immunoreactive neurons in the medulla oblongata in cats. C R Acad Sci III 311:205–212

    CAS  PubMed  Google Scholar 

  52. Fritschy JM, Grzanna R (1989) Immunohistochemical analysis of the neurotoxic effects of DSP-4 identifies two populations of noradrenergic axon terminals. Neuroscience 30:181–197

    Article  CAS  PubMed  Google Scholar 

  53. Fritschy JM, Grzanna R (1990) Demonstration of two separate descending noradrenergic pathways to the rat spinal cord: evidence for an intragriseal trajectory of locus coeruleus axons in the superficial layers of the dorsal horn. J Comp Neurol 291:553–582

    Article  CAS  PubMed  Google Scholar 

  54. Fritschy JM, Grzanna R (1990) Distribution of locus coeruleus axons within the rat brainstem demonstrated by Phaseolus vulgaris leucoagglutinin anterograde tracing in combination with dopamine-betahydroxylase immunofluorescence. J Comp Neurol 293:616–631

    Article  CAS  PubMed  Google Scholar 

  55. Fritschy JM, Lyons WE, Mullen CA, Kosofsky BE, Molliver ME, Grzanna R (1987) Distribution of locus coeruleus axons in the rat spinal cord: a combined anterograde transport and immunohistochemical study. Brain Res 437:176–180

    Article  CAS  PubMed  Google Scholar 

  56. Gallager DW, Pert A (1978) Afferents to brain stem nuclei (brain stem raphe, nucleus reticularis pontis caudalis and nucleus gigantocellularis) in the rat as demonstrated by microiontophoretically applied horseradish peroxidase. Brain Res 144:257–275

    Article  CAS  PubMed  Google Scholar 

  57. Gang S, Nakazono Y, Aoki M, Aoki N (1993) Differential projections to the raphe nuclei from the medial parabrachial-Kolliker-Fuse (NPBM-KF) nuclear complex and the retrofacial nucleus in cats: retrograde WGA-HRP tracing. J Auton Nerv Syst 45:241–244

    Article  CAS  PubMed  Google Scholar 

  58. Garver DL, Sladek JR Jr (1975) Monoamine distribution in primate brain. I. Catecholamine-containing perikarya in the brain stem of Macaca speciosa. J Comp Neurol 159:289–304

    Article  CAS  PubMed  Google Scholar 

  59. Gonzalo-Ruiz A, Lieberman AR, Sanchez-Anquela JM (1995) Organization of serotoninergic projections from the raphe nuclei to the anterior thalamic nuclei in the rat: a combined retrograde tracing and 5-HT immunohistochemical study. J Chem Neuroanat 8:103–115

    Article  CAS  PubMed  Google Scholar 

  60. Groenewegen HJ, Ahlenius S, Naber SN, Kowali NW, Nauta WJ (1986) Cytoarchitecture, fiber connections, and some histochemical aspects of the interpeduncular nucleus of the cat. J Comp Neurol 249:65–102

    Article  CAS  PubMed  Google Scholar 

  61. Grzanna R, Chee WK, Akeyson EW (1987) Noradrenergic projections to brainstem nuclei: evidence for differential projections from noradrenergic subgroups. J Comp Neurol 263:76–91

    Article  CAS  PubMed  Google Scholar 

  62. Grzanna R, Berger U, Fritschy JM, Geffard M (1989) Acute action of DSP-4 on central norepinephrine axons: biochemical and immunohistochemical evidence for differential effects. J Histochem Cytochem 37:1435–1442

    CAS  PubMed  Google Scholar 

  63. Guyenet PG, Koshiya N, Huangfu D, Verberne AJ, Riley TA (1993) Central respiratory control of A5 and A6 pontine noradrenergic neurons. Am J Physiol 264:R1035–1044

    CAS  PubMed  Google Scholar 

  64. Habaguchi T, Takakusaki K, Saitoh K, Sugimoto J, Sakamoto T (2002) Medullary reticulospinal tract mediating the generalized motor inhibition in cats: II. Functional organization within the medullary reticular formation with respect to postsynaptic inhibition of forelimb and hindlimb motoneurons. Neuroscience 113:65–77

    Article  CAS  PubMed  Google Scholar 

  65. Hajnik T, Lai YY, Siegel JM (2000) Atonia-related regions in the rodent pons and medulla. J Neurophysiol 84:1942–1948

    CAS  PubMed  Google Scholar 

  66. Hajos M, Richards CD, Szekely AD, Sharp T (1998) An electrophysiological and neuroanatomical study of the medial prefrontal cortical projection to the midbrain raphe nuclei in the rat. Neuroscience 87:95–108

    Article  CAS  PubMed  Google Scholar 

  67. Halberstadt AL, Balaban CD (2003) Organization of projections from the raphe nuclei to the vestibular nuclei in rats. Neuroscience 120:573–594

    Article  CAS  PubMed  Google Scholar 

  68. Halberstadt AL, Balaban CD (2006) Anterograde tracing of projections from the dorsal raphe nucleus to the vestibular nuclei. Neuroscience 143:641–654

    Article  CAS  PubMed  Google Scholar 

  69. Halberstadt AL, Balaban CD (2006) Serotonergic and nonserotonergic neurons in the dorsal raphe nucleus send collateralized projections to both the vestibular nuclei and the central amygdaloid nucleus. Neuroscience 140:1067–1077

    Article  CAS  PubMed  Google Scholar 

  70. Herbert H (1992) Evidence for projections from medullary nuclei onto serotonergic and dopaminergic neurons in the midbrain dorsal raphe nucleus of the rat. Cell Tissue Res 270:149–156

    Article  CAS  PubMed  Google Scholar 

  71. Herkenham M, Nauta WJ (1979) Efferent connections of the habenular nuclei in the rat. J Comp Neurol 187:19–47

    Article  CAS  PubMed  Google Scholar 

  72. Hermann DM, Luppi PH, Peyron C, Hinckel P, Jouvet M (1997) Afferent projections to the rat nuclei raphe magnus, raphe pallidus and reticularis gigantocellularis pars alpha demonstrated by iontophoretic application of choleratoxin (subunit b). J Chem Neuroanat 13:1–21

    Article  CAS  PubMed  Google Scholar 

  73. Hilaire G, Viemari JC, Coulon P, Simonneau M, Bevengut M (2004) Modulation of the respiratory rhythm generator by the pontine noradrenergic A5 and A6 groups in rodents. Respir Physiol Neurobiol 143:187–197

    Article  CAS  PubMed  Google Scholar 

  74. Hirota K, Kushikata T (2001) Central noradrenergic neurones and the mechanism of general anaesthesia. Br J Anaesth 87:811–813

    Article  CAS  PubMed  Google Scholar 

  75. Hökfelt T, Fuxe K, Johansson O (1974) Immunochemical evidence for the existence of adrenaline neurons in the rat brain. Brain Res 66:235–251

    Article  Google Scholar 

  76. Hökfelt T, Matensson R, Björklund A, Kleinau S, Goldstein M (1984) Distributional maps of tyrosine-hydroxylase-immunoreactive neurons in the rat brain. In: Björklund A, Hökfelt T (eds) Classical transmitters in the CNS. Elsevier, Amsterdam, pp 277–379 (Handbook of chemical neuroanatomy)

    Google Scholar 

  77. Holstege G (1991) Descending motor pathways and the spinal motor system: limbic and non-limbic components. Prog Brain Res 87:307–421

    Article  CAS  PubMed  Google Scholar 

  78. Holstege G, Kuypers HG (1982) The anatomy of brain stem pathways to the spinal cord in cat. A labeled amino acid tracing study. Prog Brain Res 57:145–175

    Article  CAS  PubMed  Google Scholar 

  79. Holstege G, Griffiths D, de Wall H, Dalm E (1986) Anatomical and physiological observations on supraspinal control of bladder and urethral sphincter muscles in the cat. J Comp Neurol 250:449–461

    Article  CAS  PubMed  Google Scholar 

  80. Holstege JC (1996) The ventro-medial medullary projections to spinal motoneurons. Ultrastructure, transmitters and functional aspects. Prog Brain Res 107:159–181

    Article  CAS  PubMed  Google Scholar 

  81. Holstege JC, Kuypers HG (1982) Brain stem projections to spinal motoneuronal cell groups in rat studied by means of electron microscopy autoradiography. Prog Brain Res 57:177–183

    Article  CAS  PubMed  Google Scholar 

  82. Holstege JC, Kuypers HG (1987) Brainstem projections to lumbar motoneurons in rat. I. An ultrastructural study using autoradiography and the combination of autoradiography and horseradish peroxidase histochemistry. Neuroscience 21:345–367

    Article  CAS  PubMed  Google Scholar 

  83. Holstege JC, Kuypers HG (1987) Brainstem projections to spinal motoneurons: an update. Neuroscience 23:809–821

    Article  CAS  PubMed  Google Scholar 

  84. Holstege JC, van Dijken H, Buijs RM, Godeknegt H, Gosens T, Bongers CM (1996) Distribution of dopamine immunoreactivity in the rat, cat and monkey spinal cord. J Comp Neurol 376:631–652

    Article  CAS  PubMed  Google Scholar 

  85. Honda T, Semba K (1994) Serotonergic synaptic input to cholinergic neurons in the rat mesopontine tegmentum. Brain Res 647:299–306

    Article  CAS  PubMed  Google Scholar 

  86. Hornung JP (2003) The human raphe nuclei and the serotonergic system. J Chem Neuroanat 26:331–343

    Article  CAS  PubMed  Google Scholar 

  87. Hornung JP (2004) Raphe nuclei. In: Paxinos G, Mai JK (eds) The human nervous system. Elsevier, Amsterdam, pp 425–450

    Google Scholar 

  88. Hosogai M, Matsuo S, Sibahara T, Kawai Y (1998) Projection of respiratory neurons in rat medullary raphe nuclei to the phrenic nucleus. Respir Physiol 112:37–50

    Article  CAS  PubMed  Google Scholar 

  89. Hosoya Y (1980) Hypothalamic projections to the ventral medulla oblongata in the rat, with special reference to the nucleus raphe pallidus: a study using autoradiographic and HRP techniques. Brain Res 344:338–350

    Article  Google Scholar 

  90. Hosoya Y, Sugiura Y, Ito R, Kohno K (1990) Descending projections from the hypothalamic paraventricular nucleus to the A5 area, including the superior salivatory nucleus, in the rat. Exp Brain Res 82:513–518

    Article  CAS  PubMed  Google Scholar 

  91. Hubbard JE, Di Carlo V (1974) Fluorescence histochemistry of monoamine-containing cell bodies in the brain stem of the squirrel monkey (Saimiri sciureus). II. Catecholamine-containing groups. J Comp Neurol 153:369–384

    Article  CAS  PubMed  Google Scholar 

  92. Ikai Y, Takada M, Shinonaga Y, Mizuno N (1992) Dopaminergic and non-dopaminergic neurons in the ventral tegmental area of the rat project, respectively, to the cerebellar cortex and deep cerebellar nuclei. Neuroscience 51:719–728

    Article  CAS  PubMed  Google Scholar 

  93. Imai H, Steindler DA, Kitai ST (1986) The organization of divergent axonal projections from the midbrain raphe nuclei in the rat. J Comp Neurol 243:363–380

    Article  CAS  PubMed  Google Scholar 

  94. Jones BE (1990) Immunhistochemical study of choline acetyltransferase-immunoreactive processes and cells innervating the pontomedullary reticular formation in the rat. J Comp Neurol 295:485–514

    Article  CAS  PubMed  Google Scholar 

  95. Jones BE (1995) Reticular formation: cytoarchitecture, transmitters and projections. In: Paxinos G (ed) The rat nervous system. Academic, San Diego, pp 155–171

    Google Scholar 

  96. Jones BE, Friedman L (1983) Atlas of catecholamine perikarya, varicosities and pathways in the brainstem of the cat. J Comp Neurol 215:382–396

    Article  CAS  PubMed  Google Scholar 

  97. Jones SL, Light AR (1992) Serotoninergic medullary raphespinal projection to the lumbar spinal cord in the rat: a retrograde immunohistochemical study. J Comp Neurol 322:599–610

    Article  CAS  PubMed  Google Scholar 

  98. Kalen P, Wiklund L (1989) Projections from the medial septum and diagonal band of Broca to the dorsal and central superior raphe nuclei: a noncholinergic pathway. Exp Brain Res 75:401–416

    Article  CAS  PubMed  Google Scholar 

  99. Kalen P, Skagerberg G, Lindvall O (1988) Projections from the ventral tegmental area and mesencephalic raphe to the dorsal raphe nucleus in the rat. Evidence for a minor dopaminergic component. Exp Brain Res 73:69–77

    Article  CAS  PubMed  Google Scholar 

  100. Kalia M, Fuxe K, Goldstein M, Harfstrand A, Agnati LF, Coyle JT (1984) Evidence for the existence of putative dopamine-, adrenaline-and noradrenaline-containing vagal motor neurons in the brainstem of the rat. Neurosci Lett 50:57–62

    Article  CAS  PubMed  Google Scholar 

  101. Kazakov VN, Kravtsov P, Krakhotkina ED, Maisky VA (1993) Sources of cortical, hypothalamic and spinal serotonergic projections: topical organization within the nucleus raphe dorsalis. Neuroscience 56:157–164

    Article  CAS  PubMed  Google Scholar 

  102. Kerr CW, Bishop GA (1991) Topographical organization in the origin of serotonergic projections to different regions of the cat cerebellar cortex. J Comp Neurol 308:502–515

    Article  Google Scholar 

  103. Kievit J, Kuypers HG (1975) Subcortical afferents to the frontal lobe in the rhesus monkey studied by means of retrograde horseradish peroxidase transport. Brain Res 85:261–266

    Article  CAS  PubMed  Google Scholar 

  104. Kohler C, Steinbusch H (1982) Identification of serotonin and non-serotonin-containing neurons of the midbrain raphe projecting to the entorhinal area and the hippocampal formation. A combined immunohistochemical and fluorescent retrograde tracing study in the rat brain. Neuroscience 7:951–975

    Article  CAS  PubMed  Google Scholar 

  105. Kohler C, Chan-Palay V, Steinbusch H (1982) The distribution and origin of serotonin-containing fibers in the septal area: a combined immunohistochemical and fluorescent retrograde tracing study in the rat. J Comp Neurol 209:91–111

    Article  CAS  PubMed  Google Scholar 

  106. Kojima M, Sano Y (1983) The organization of serotonin fibers in the anterior column of the mam malian spinal cord. An immunohistochemical study. Anat Embryol (Berl) 167:1–11

    Article  CAS  Google Scholar 

  107. Kojima M, Matsuura T, Tanaka A, Amagai T, Imanishi J, Sano Y (1985) Characteristic distribution of noradrenergic terminals on the anterior horn motoneurons innervating the perineal striated muscles in the rat. An immuno-electromicroscopic study. Anat Embryol (Berl) 171:267–273

    Article  CAS  Google Scholar 

  108. Koshiya N, Guyenet PG (1994) A5 noradrenergic neurons and the carotid sympathetic chemoreflex. Am J Physiol 267:R519–526

    CAS  PubMed  Google Scholar 

  109. Koutcherov Y, Huang X-F, Halliday G, Paxinos G (2004) Organization of human brain stem nuclei. In: Paxinos G, Mai JK (eds) The human nervous system. Elsevier, Amsterdam, pp 267–319

    Chapter  Google Scholar 

  110. Kromer LF, Moore RY (1976) Cochlear nucleus innervation by central norepinephrine neurons in the rat. Brain Res 118:531–537

    Article  CAS  PubMed  Google Scholar 

  111. Kromer LF, Moore RY (1980) Norepinephrine innervation of the cochlear nuclei by locus coeruleus neurons in the rat. Anat Embryol (Berl) 158:227–244

    Article  CAS  Google Scholar 

  112. Kubota Y, Leung E, Vincent SR (1992) Ultrastructure of cholinergic neurons in the laterodorsal tegmental nucleus of the rat: interaction with catecholamine fibers. Brain Res Bull 29:479–491

    Article  CAS  PubMed  Google Scholar 

  113. Leanza G, Perez S, Pellitteri R, Russo A, Stanzani S (1995) Branching serotonergic and non-serotonergic projections from caudal brainstem to the medial preoptic area and the lumbar spinal cord in the rat. Neurosci Lett 200:5–8

    Article  CAS  PubMed  Google Scholar 

  114. Leite-Almeida H, Valle-Fernandes A, Almeida A (2006) Brain projections from the medullary dorsal reticular nucleus: an anterograde and retrograde tracing study in the rat. Neuroscience 140:577–595

    Article  CAS  PubMed  Google Scholar 

  115. Levey AI (1983) Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1–Ch6). Neuroscience 10:1185–1201

    Article  PubMed  Google Scholar 

  116. Levitt P, Moore RY (1979) Origin and organization of brainstem catecholamine innervation in the rat. J Comp Neurol 186:505–528

    Article  CAS  PubMed  Google Scholar 

  117. Li YQ, Takada M, Mizuno N (1993) The sites of origin of serotoninergic afferent fibers in the trigeminal motor, facial, and hypoglossal nuclei in the rat. Neurosci Res 17:307–313

    Article  CAS  PubMed  Google Scholar 

  118. Lima D, Mendes-Ribeiro JA, Coimbra A (1991) The spino-latero-reticular system of the rat: projections from the superficial dorsal horn and structural characterization of marginal neurons involved. Neuroscience 45:137–152

    Article  CAS  PubMed  Google Scholar 

  119. Loewy AD, McKellar S (1981) Serotonergic projections from the ventral medulla to the intermediolateral cell column in the rat. Brain Res 211:146–152

    Article  CAS  PubMed  Google Scholar 

  120. Loewy AD, McKellar S, Saper CB (1979) Direct projections from the A5 catecholamine cell group to the intermediolateral cell column. Brain Res 174:309–314

    Article  CAS  PubMed  Google Scholar 

  121. Loewy AD, Wallach JH, McKellar S (1981) Efferent connections of the ventral medulla oblongata in the rat. Brain Res 228:63–80

    CAS  PubMed  Google Scholar 

  122. Luppi PH, Gervasoni D, Boissard R, Verret L, Goutagny R, Peyron C, Salvert D, Leger L, Barbagli B, Fort P (2004) Brainstem structures responsible for paradoxical sleep onset and maintenance. Arch Ital Biol 142:397–411

    CAS  PubMed  Google Scholar 

  123. Lyons WE, Grzanna R (1988) Noradrenergic neurons with divergent projections to the motor trigeminal nucleus and the spinal cord: a double retrograde neuronal labeling study. Neuroscience 26:681–693

    Article  CAS  PubMed  Google Scholar 

  124. Lyons WE, Fritschy JM, Grzanna R (1989) The noradrenergic neurotoxin DSP-4 eliminates the coeruleospinal projection but spares projections of the A5 and A7 groups to the ventral horn of the rat spinal cord. J Neurosci 9:1481–1489

    CAS  PubMed  Google Scholar 

  125. Mamounas LA, Mullen CA, O’Hearn E, Molliver ME (1991) Dual serotoninergic projections to forebrain in the rat: morphologically distinct 5-HT axon terminals exhibit differential vulnerability to neurotoxic amphetamine derivatives. J Comp Neurol 314:558–586

    Article  CAS  PubMed  Google Scholar 

  126. Manaker S, Fogarty PF (1995) Raphespinal and reticulospinal neurons project to the dorsal vagal complex in the rat. Exp Brain Res 106:79–92

    Article  CAS  PubMed  Google Scholar 

  127. Marlier L, Sandillon F, Poulat P, Rajaofetra N, Geffard M, Privat A (1991) Serotonergic innervation of the dorsal horn of rat spinal cord: light and electron microscopic immunocytochemical study. J Neurocytol 20:310–322

    Article  CAS  PubMed  Google Scholar 

  128. Mason P (2005) Ventromedial medulla: pain modulation and beyond. J Comp Neurol 493:2–8

    Article  PubMed  Google Scholar 

  129. Matsuyama K, Kobayashi Y, Takakusaki K, Mori S, Kimura H (1993) Termination mode and branching patterns of reticuloreticular and reticulospinal fibers of the nucleus reticularis pontis oralis in the cat: an anterograde PHA-L tracing study. Neurosci Res 17:9–21

    Article  CAS  PubMed  Google Scholar 

  130. Matsuyama K, Takakusaki K, Nakajima K, Mori S (1997) Multi-segmental innervation of single pontine reticulospinal axons in the cervico-thoracic region of the cat: anterograde PHA-L tracing study. J Comp Neurol 377:234–250

    Article  CAS  PubMed  Google Scholar 

  131. Matsuzaki S, Takada M, Li YQ, Tokuno H, Mizuno N (1993) Serotoninergic projections from the dorsal raphe nucleus to the nucleus submedius in the rat and cat. Neuroscience 55:403–416

    Article  CAS  PubMed  Google Scholar 

  132. Meessen H, Olszewski J (1949) A cytoarchitectonic atlas of the rhombencephalon of the rabbit. Karger, Basel

    Google Scholar 

  133. Mesulam MM, Mufson EJ, Wainer BH, Levey AI (1983) Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1–Ch6). Neuroscience 10:1185–1201

    Article  CAS  PubMed  Google Scholar 

  134. Mesulam MM, Mufson EJ, Levey AI, Wainer BH (1984) Atlas of cholinergic neurons in the forebrain and upper brainstem of the macaque based on monoclonal choline acetyltransferase immuno histochemistry and acetylcholinesterase histochemistry. Neuroscience 12:669–686

    Article  CAS  PubMed  Google Scholar 

  135. Morgane PJ, Jacobs MS (1979) Raphe projections to the locus coeruleus in the rat. Brain Res Bull 4:519–534

    Article  CAS  PubMed  Google Scholar 

  136. O’Hearn E, Molliver ME (1984) Organization of raphe-cortical projections in rat: a quantitative retrograde study. Brain Res Bull 13:709–726

    Article  PubMed  Google Scholar 

  137. Olschowka JA, Molliver ME, Grzanna R, Rice FL, Coyle JT (1981) Ultrastructural demonstration of noradrenergic synapses in the rat central nervous system by dopamine-beta-hydroxylase immunocytochemistry. J Histochem Cytochem 29:271–280

    CAS  PubMed  Google Scholar 

  138. Pan B, Castro-Lopes JM, Coimbra A (1999) Central afferent pathways conveying nociceptive input to the hypothalamic paraventricular nucleus as revealed by a combination of retrograde labeling and c-fos activation. J Comp Neurol 413:129–145

    Article  CAS  PubMed  Google Scholar 

  139. Panagopoulos NT, Papadopoulos GC, Matsokis NA (1991) Dopaminergic innervation and binding in the rat cerebellum. Neurosci Lett 130:208–212

    Article  CAS  PubMed  Google Scholar 

  140. Paxinos G, Watson C (1986) The rat brain in stereotactic coordinates, 2nd edn. Academic, San Diego

    Google Scholar 

  141. Pearson J, Halliday G, Sakamoto N, Michel P (1990) Catecholaminergic neurons. In: Paxinos G (ed) The human nervous system. Academic, San Diego, pp 1023–1049

    Google Scholar 

  142. Peschanski M, Besson JM (1984) Coerulear projections to the lateral diencephalon in the rat. An anatomical study using wheat-germ agglutinin conjugated to HRP. Neurosci Lett 46:329–334

    Article  CAS  PubMed  Google Scholar 

  143. Petit JM, Luppi PH, Peyron C, Rampon C, Jouvet M (1995) VIP-like immunoreactive projections from the dorsal raphe and caudal linear raphe nuclei to the bed nucleus of the stria terminalis demonstrated by a double immunohistochemical method in the rat. Neurosci Lett 193:77–80

    Article  CAS  PubMed  Google Scholar 

  144. Petrov T, Krukoff TL, Jhamandas JH (1993) Branching projections of catecholaminergic brainstem neurons to the paraventricular hypothalamic nucleus and the central nucleus of the amygdala in the rat. Brain Res 609:81–92

    Article  CAS  PubMed  Google Scholar 

  145. Peyron C, Luppi PH, Kitahama K, Fort P, Hermann DM, Jouvet M (1995) Origin of the dopaminergic innervation of the rat dorsal raphe nucleus. Neuroreport 6:2527–2531

    Article  CAS  PubMed  Google Scholar 

  146. Peyron C, Petit JM, Rampon C, Jouvet M, Luppi PH (1998) Forebrain afferents to the rat dorsal raphe nucleus demonstrated by retrograde and anterograde tracing methods. Neuroscience 82:443–468

    Article  CAS  PubMed  Google Scholar 

  147. Porrino LJ, Goldman-Rakic PS (1982) Brainstem innervation of prefrontal and anterior cingulate cortex in the rhesus monkey revealed by retrograde transport of HRP. J Comp Neurol 205:63–76

    Article  CAS  PubMed  Google Scholar 

  148. Proudfit HK, Clark FM (1991) The projections of locus coeruleus neurons to the spinal cord. Prog Brain Res 88:123–141

    Article  CAS  PubMed  Google Scholar 

  149. Rajaofetra N, Ridet JL, Poulat P, Marlier L, Sandillon F, Geffard M, Privat A (1992) Immunocytochemical Immunocytochemical mapping of noradrenergic projections to the rat spinal cord with an antiserum against noradrenaline. J Neurocytol 21:481–494

    Article  CAS  PubMed  Google Scholar 

  150. Rajaofetra N, Passagia JG, Marlier L, Poulat P, Pellas F, Sandillon F, Verschuere B, Gouy D, Geffard M, Privat A (1992) Serotoninergic, noradrenergic, and peptidergic innervation of Onuf’s nucleus of normal and transected spinal cords of baboons (Papio papio). J Comp Neurol 318:1–17

    Article  CAS  PubMed  Google Scholar 

  151. Rampon C, Peyron C, Gervasoni D, Pow DV, Luppi PH, Fort P (1999) Origins of the glycinergic inputs to the rat locus coeruleus and dorsal raphe nuclei: a study combining retrograde tracing with glycine immunohistochemistry. Eur J Neurosci 11:1058–1066

    Article  CAS  PubMed  Google Scholar 

  152. Rawson JA, Scott CJ, Pereira A, Jakubowska A, Clarke IJ (2001) Noradrenergic projections from the A1 field to the preoptic area in the brain of the ewe and Fos responses to oestrogen in the A1 cells. J Neuroendocrinol 13:129–138

    Article  CAS  PubMed  Google Scholar 

  153. Reyes BA, Van Bockstaele EJ (2006) Divergent projections of catecholaminergic neurons in the nucleus of the solitary tract to limbic forebrain and medullary autonomic brain regions. Brain Res 1117:69–79

    Article  CAS  PubMed  Google Scholar 

  154. Ridet JL, Sandillon F, Rajaofetra N, Geffard M, Privat A (1992) Spinal dopaminergic system of the rat: light and electron microscopic study using an antiserum against dopamine, with particular emphasis on synaptic incidence. Brain Res 598:233–241

    Article  CAS  PubMed  Google Scholar 

  155. Ridet JL, Rajaofetra N, Teilhac JR, Geffard M, Privat A (1993) Evidence for nonsynaptic serotonergic and noradrenergic innervation of the rat dorsal horn and possible involvement of neuronglia interactions. Neuroscience 52:143–157

    Article  CAS  PubMed  Google Scholar 

  156. Roller FCW (1881) Ein kleinzelliger Hypoglossuskern. Arch f Mikr Anat 19:383–395

    Article  Google Scholar 

  157. Sakai K, Salvert D, Touret M, Jouvet M (1977) Afferent connections of the nucleus raphe dorsalis in the cat as visualized by the horseradish peroxidase technique. Brain Res 137:11–35

    Article  CAS  PubMed  Google Scholar 

  158. Saper CB (1990) Cholinergic system. In: Paxinos G (ed) The human nervous system. Academic, San Diego, pp 1095–1103

    Google Scholar 

  159. Saper CB, Swanson LW, Cowan WM (1979) An autoradiographic study of the efferent connections of the lateral hypothalamic area in the rat. J Comp Neurol 183:689–706

    Article  CAS  PubMed  Google Scholar 

  160. Sawchenko PE, Swanson LW (1982) The organization of noradrenergic pathways from the brainstem to the paraventricular and supraoptic nuclei in the rat. Brain Res 257:275–325

    CAS  PubMed  Google Scholar 

  161. Scheibel ME, Schebel AB (1958) Structural substrates for integrative patterns in the brain stem reticular core. In: Jasper HH, Procter LD (eds) Reticular formation of the brain. Little Brown, Boston, pp 31–55

    Google Scholar 

  162. Schreihofer AM, Guyenet PG (1997) Identification of C1 presympathetic neurons in rat rostral ventrolateral medulla by juxtacellular labeling in vivo. J Comp Neurol 387:524–536

    Article  CAS  PubMed  Google Scholar 

  163. Schreihofer AM, Guyenet PG (2002) The baroreflex and beyond: control of sympathetic vasomotor tone by GABAergic neurons in the ventrolateral medulla. Clin Exp Pharmacol Physiol 29:514–521

    Article  CAS  PubMed  Google Scholar 

  164. Schreihofer AM, Stornetta RL, Guyenet PG (1999) Evidence for glycinergic respiratory neurons: Botzinger neurons express mRNA for glycinergic transporter J Comp Neurol 407:583–597

    Article  CAS  PubMed  Google Scholar 

  165. Schreihofer AM, Stornetta RL, Guyenet PG (2000) Regulation of sympathetic tone and arterial pressure by rostral ventrolateral medulla after depletion of C1 cells in rat. J Physiol 529 Pt 1:221–236

    Article  Google Scholar 

  166. Semba K (2004) Aminergic and cholinergic afferents to REM sleep induction regions of the pontine reticular formation in the rat. J Comp Neurol 330:543–556

    Article  Google Scholar 

  167. Shinnar S, Maciewicz RJ, Shofer RJ (1975) A raphe projection to cat cerebellar cortex. Brain Res 97:139–143

    Article  CAS  PubMed  Google Scholar 

  168. Shute CC, Lewis PR (1967) The ascending cholinergic reticular system: neocortical, olfactory and subcortical projections. Brain 90:497–520

    Article  CAS  PubMed  Google Scholar 

  169. Skagerberg G, Bjorklund A (1985) Topographic principles in the spinal projections of serotonergic and nonserotonergic brainstem neurons in the rat. Neuroscience 15:445–480

    Article  CAS  PubMed  Google Scholar 

  170. Skagerberg G, Lindvall O (1985) Organization of diencephalic dopamine neurones projecting to the spinal cord in the rat. Brain Res 342:340–351

    Article  CAS  PubMed  Google Scholar 

  171. Skagerberg G, Bjorklund A, Lindvall O, Schmidt RH (1982) Origin and termination of the diencephalo-spinal dopamine system in the rat. Brain Res Bull 9:237–244

    Article  CAS  PubMed  Google Scholar 

  172. Sluka KA, Westlund KN (1992) Spinal projections of the locus coeruleus and the nucleus subcoeruleus in the Harlan and the Sasco Sprague-Dawley rat. Brain Res 579:67–73

    Article  CAS  PubMed  Google Scholar 

  173. Smith JC, Ellenberger HH, Ballanyi K, Richter DW, Feldman JL (1991) Pre-Botzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 254:726–729

    Article  CAS  PubMed  Google Scholar 

  174. Snowball RK, Dampney RA, Lumb BM (1997) Responses of neurones in the medullary raphe nuclei to inputs from visceral nociceptors and the ventrolateral periaqueductal grey in the rat. Exp Physiol 82:485–500

    CAS  PubMed  Google Scholar 

  175. Steinbusch HW, van der Kooy D, Verhofstad AA, Pellegrino A (1980) Serotonergic and non-serotonergic projections from the nucleus raphe dorsalis to the caudateputamen complex in the rat, studied by a combined immunofluorescence and fluorescent retrograde axonal labeling technique. Neurosci Lett 19:137–142

    Article  CAS  PubMed  Google Scholar 

  176. Steininger TL, Wainer BH, Blakely RD, Rye DB (1997) Serotonergic dorsal raphe nucleus projections to the cholinergic and noncholinergic neurons of the pedunculopontine tegmental region: a light and electron microscopic anterograde tracing and immunohistochemical study. J Comp Neurol 382:302–322

    Article  CAS  PubMed  Google Scholar 

  177. Steriade M, McVarley RW (1990) Brainstem control of wakefullness and sleep. Plenum, New York

    Google Scholar 

  178. Sukhotinsky I, Reiner K, Govrin-Lippmann R, Belenky M, Lu J, Hopkins DA, Saper CB, Devor M (2006) Projections from the mesopontine tegmental anesthesia area to regions involved in pain modulation. J Chem Neuroanat 32:159–178

    Article  CAS  PubMed  Google Scholar 

  179. Takahashi Y, Satoh K, Sakumoto T, Toyama M, Shimazu M (1979) A major source of catecholaminergic terminals in the nucleus tractus solitarii. Brain Res: 372–377

    Google Scholar 

  180. Takakusaki K, Kohyama J, Matsuyama K, Mori S (2001) Medullary reticulospinal tract mediating the generalized motor inhibition in cats: parallel inhibitory mechanisms acting on motoneurons and on interneuronal transmission in reflex pathways. Neuroscience 103:511–527

    Article  CAS  PubMed  Google Scholar 

  181. Takakusaki K, Habaguchi T, Saitoh K, Kohyama J (2004) Changes in the excitability of hindlimb motoneurons during muscular atonia induced by stimulating the pedunculopontine tegmental nucleus in cats. Neuroscience 124:467–480

    Article  CAS  PubMed  Google Scholar 

  182. Tallaksen-Greene SJ, Elde R, Wessendorf MW (1993) Regional distribution of serotonin and substance P coexisting in nerve fibers and terminals in the brainstem of the rat. Neuroscience 53:1127–1142

    Article  CAS  PubMed  Google Scholar 

  183. Tavares I, Lima D, Coimbra A (1996) The ventrolateral medulla of the rat is connected with the spinal cord dorsal horn by an indirect descending pathway relayed in the A5 noradrenergic cell group. J Comp Neurol 374:84–95

    Article  CAS  PubMed  Google Scholar 

  184. Tavares I, Lima D, Coimbra A (1997) The pontine A5 noradrenergic cells which project to the spinal cord dorsal horn are reciprocally connected with the caudal ventrolateral medulla in the rat. Eur J Neurosci 9:2452–2461

    Article  CAS  PubMed  Google Scholar 

  185. Ter Horst GJ, Toes GJ, Van Willigen JD (1991) Locus coeruleus projection to the dorsal motor vagus nucleus in the rat. Neuroscience 45:153–160

    Article  PubMed  Google Scholar 

  186. Thompson AM, Moore KR, Thompson GC (1995) Distribution and origin of serotoninergic afferents to guinea pig cochlear nucleus. J Comp Neurol 351:104–116

    Article  CAS  PubMed  Google Scholar 

  187. Tigges J, Tigges M, Cross NA, McBride RL, Letbetter WD, Anschel S (1982) Subcortical structures projecting to visual cortical areas in squirrel monkey. J Comp Neurol 209:29–40

    Article  CAS  PubMed  Google Scholar 

  188. Törk J, Hornung JP (1990) Raphe nuclei and the serotoninergic system. In: Paxinos G (ed) The human nervous system. Academic, San Diego, pp 1001–1022

    Google Scholar 

  189. Tsai C (1925) The optic tracts and centers of the opossum Didelphis viginiana. J Comp Neurol 39:173–216

    Article  Google Scholar 

  190. Valverde F (1961) Reticular formation of the pons and the medulla oblongata. A Golgi study. J Comp Neurol 116:71–99

    Article  CAS  Google Scholar 

  191. Van Bockstaele EJ, Chan J (1996) Electronmicroscopic evidence for coexistence of leucine5-enkephalin and gamma-aminobutyric acid in a sub population of axon terminals in the rat locus coeruleus region. Brain Res 746:171–182

    Article  Google Scholar 

  192. Van Bockstaele EJ, Pieribone VA, Aston-Jones G (1989) Diverse afferents converge on the nucleus paragigantocellularis in the rat ventrolateral medulla: retrograde and anterograde tracing studies. J Comp Neurol 290:561–584

    Article  PubMed  Google Scholar 

  193. Van Bockstaele EJ, Biswas A, Pickel VM (1993) Topography of serotonin neurons in the dorsal raphe nucleus that send axon collaterals to the rat prefrontal cortex and nucleus accumbens. Brain Res 624:188–198

    Article  PubMed  Google Scholar 

  194. Van Dijken H (2000) The dopaminergic innervation of the brain stem and the spinal cord. Thesis, University of Rotterdam

    Google Scholar 

  195. Vertes RP, Martin GF (1988) Autoradiographic analysis of ascending projections from the pontine and mesencephalic reticular formation and the median raphe nucleus in the rat. J Comp Neurol 275:511–541

    Article  CAS  PubMed  Google Scholar 

  196. Villar MJ, Vitale ML, Parisi MN (1987) Dorsal raphe serotonergic projection to the retina. A combined peroxidase tracing-neurochemical/highperformance liquid chromatography study in the rat. Neuroscience 22:681–686

    Article  CAS  PubMed  Google Scholar 

  197. Villar MJ, Vitale ML, Hokfelt T, Verhofstad AA (1988) Dorsal raphe serotoninergic branching neurons projecting both to the lateral geniculate body and superior colliculus: a combined retrograde tracingimmunohistochemical study in the rat. J Comp Neurol 277:126–140

    Article  CAS  PubMed  Google Scholar 

  198. Voogd J, Jaarsma D, Marani E (1996) The cerebellum. In: Hokfelt T (ed) Chemoarchitecture and anatomy. Elsevier, Amsterdam, pp 1–369 (Handbook of chemical neuroanatomy)

    Google Scholar 

  199. Walker JJ, Bishop GA, Ho RH, King JS (1988) Brainstem origin of serotonin-and enkephalinimmunoreactive afferents to the opossum’s cerebellum. J Comp Neurol 276:481–497

    Article  CAS  PubMed  Google Scholar 

  200. Waterhouse BD, Mihailoff GA, Baack JC, Woodward DJ (1986) Topographical distribution of dorsal and median raphe neurons projecting to motor, sensorimotor, and visual cortical areas in the rat. J Comp Neurol 249:460–476, 478–481

    Article  CAS  PubMed  Google Scholar 

  201. Waterhouse BD, Border B, Wahl L, Mihailoff GA (1993) Topographic organization of rat locus coeruleus and dorsal raphe nuclei: distribution of cells projecting to visual system structures. J Comp Neurol 336:345–361

    Article  CAS  PubMed  Google Scholar 

  202. Westlund KN, Coulter JD (1980) Descending projections of the locus coeruleus and subcoeruleus/ medial parabrachial nuclei in monkey: axonal transport studies and dopamine-beta-hydroxylase immunocytochemistry. Brain Res 2:235–264

    Article  CAS  PubMed  Google Scholar 

  203. Westlund KN, Craig AD (1996) Association of spinal lamina I projections with brainstem catecholamine neurons in the monkey. Exp Brain Res 110:151–162

    Article  CAS  PubMed  Google Scholar 

  204. Westlund KN, Bowker RM, Ziegler MG, Coulter JD (1981) Origins of spinal noradrenergic pathways demonstrated by retrograde transport of antibody to dopaminebeta-hydroxylase. Neurosci Lett 25:243–249

    Article  CAS  PubMed  Google Scholar 

  205. Westlund KN, Bowker RM, Ziegler MG, Coulter JD (1982) Descending noradrenergic projections and their spinal terminations. Prog Brain Res 57:219–238

    Article  CAS  PubMed  Google Scholar 

  206. Westlund KN, Bowker RM, Ziegler MG, Coulter JD (1983) Noradrenergic projections to the spinal cord of the rat. Brain Res 263:15–31

    Article  CAS  PubMed  Google Scholar 

  207. Westlund KN, Bowker RM, Ziegler MG, Coulter JD (1984) Origins and terminations of descending noradrenergic projections to the spinal cord of monkey. Brain Res 292:1–16

    Article  CAS  PubMed  Google Scholar 

  208. Westlund KN, Sorkin LS, Ferrington DG, Carlton SM, Willcockson HH, Willis WD (1990) Serotoninergic and noradrenergic projections to the ventral posterolateral nucleus of the monkey thalamus. J Comp Neurol 295:197–207

    Article  CAS  PubMed  Google Scholar 

  209. White SR (1985) A comparison of the effects of serotonin, substance P and thyrotropin-rel hormone on excitability of rat spinal motoneuron in vivo. Brain Res 335:63–70

    Article  CAS  PubMed  Google Scholar 

  210. White SR (1985) Serotonin and co-localized peptides: effects on spinal motoneuron excitability. Peptides 6[Suppl]:123–127

    Article  CAS  PubMed  Google Scholar 

  211. White SR, Neuman RS (1980) Facilitation of spinal motoneurone excitability by 5-hydroxytryptamine and noradrenaline. Brain Res 21:119–127

    Article  CAS  Google Scholar 

  212. White SR, Neuman RS (1983) Pharmacological antagonism of facilitatory but not inhibitory effects of seronin and norepinephrine on excitability of spinal motoneurons. Neuropharmacology 22:489–494

    Article  CAS  PubMed  Google Scholar 

  213. Woolf NJ, Butcher LL (1985) Cholinergic systems in the rat brain: II. Projections to the interpeduncular nucleus. Brain Res Bull 14:63–83

    Article  CAS  PubMed  Google Scholar 

  214. Woolf NJ, Butcher LL (1986) Cholinergic systems in the rat brain: III. Projections from the pontomesencephalic tegmentum to the thalamus, tectum, basal ganglia, and basal forebrain. Brain Res Bull 16:603–637

    Article  CAS  PubMed  Google Scholar 

  215. Woulfe JM, Hrycyshyn AW, Flumerfelt BA (1988) Collateral axonal projections from the A1 noradrenergic cell group to the paraventricular nucleus and bed nucleus of the stria terminalis in the rat. Exp Neurol 102:121–124

    Article  CAS  PubMed  Google Scholar 

  216. Woulfe JM, Flumerfelt BA, Hrycyshyn AW (1990) Efferent connections of the A1 noradrenergic cell group: a DBH immunohistochemical and PHA-L anterograde tracing study. Exp Neurol 109:308–322

    Article  CAS  PubMed  Google Scholar 

  217. Wu W, Elde R, Wessendorf MW (1993) Organization of the serotonergic innervation of spinal neurons in rats–III. Differential serotonergic innervation of somatic and parasympathetic preganglionic motoneurons as determined by patterns of co-existing peptides. Neuroscience 55:223–233

    Article  CAS  PubMed  Google Scholar 

  218. Yezierski RP, Bowker RM, Kevetter GA, Westlund KN, Coulter JD, Willis WD (1982) Serotonergic projections to the caudal brain stem: a double label study using horseradish peroxidase and serotonin immunocytochemistry. Brain Res 239:258–264

    Article  CAS  PubMed  Google Scholar 

  219. Zanella S, Roux JC, Viemari JC, Hilaire G (2006) Possible modulation of the mouse respiratory rhythm generator by A1/C1 neurones. Respir Physiol Neurobiol 153:126–138

    Article  CAS  PubMed  Google Scholar 

  220. Zemlan FP, Behbehani MM, Beckstead RM (1984) Ascending and descending projections from nucleus reticularis magnocellularis and nucleus reticularis gigantocellularis: an autoradiographic and horseradish peroxidase study in the rat. Brain Res 292:207–220

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Italia

About this chapter

Cite this chapter

Nieuwenhuys, R., Voogd, J., van Huijzen, C., Papa, M. (2010). Formazione reticolare e gruppi cellulari monoaminergici e colinergici. In: Il sistema nervoso centrale. Springer, Milano. https://doi.org/10.1007/978-88-470-1140-3_22

Download citation

Publish with us

Policies and ethics